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Abstract

Video moment retrieval and highlight detection are two

highly valuable tasks in video understanding, but until re-

cently they have been jointly studied. Although existing

studies have made impressive advancement recently, they

predominantly follow the data-driven bottom-up paradigm.

Such paradigm overlooks task-specific and inter-task ef-

fects, resulting in poor model performance. In this pa-

per, we propose a novel task-driven top-down frame-

work TaskWeave for joint moment retrieval and highlight

detection. The framework introduces a task-decoupled

unit to capture task-specific and common representations.

To investigate the interplay between the two tasks, we

propose an inter-task feedback mechanism, which trans-

forms the results of one task as guiding masks to as-

sist the other task. Different from existing methods, we

present a task-dependent joint loss function to optimize

the model. Comprehensive experiments and in-depth ab-

lation studies on QVHighlights, TVSum, and Charades-

STA datasets corroborate the effectiveness and flexibil-

ity of the proposed framework. Codes are available at

github.com/EdenGabriel/TaskWeave.

1. Introduction

As videos are prevailing in a wide range of applica-

tions, the diversity and massive scales of video content

have posed unprecedented challenges in finding relevant

moments based on user queries. To this end, the moment

retrieval (MR) [60, 63, 65] and highlight detection (HD)

[4, 56] tasks have emerged recently. MR aims to retrieve

video moments that are relevant to the given query [14, 62].

HD aims to predict the clip-level saliency scores in the

video [44].

As MR and HD tasks are closely related, they have

been jointly addressed and achieved breakthroughs recently
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Figure 1. Although the positive temporal intervals of moment re-

trieval and highlight detection exhibit high overlap, they pursue

different objectives.

[20, 25, 29, 32, 36, 53]. The existing joint approaches

in general utilize a shared backbone to learn the multi-

modal features as the common representations for MR and

HD. Then a MR prediction head is employed for moments

localization and a HD prediction head predicts saliency

scores. These methods adhere to the bottom-up, data-driven

paradigm, i.e. they capture common features from the input

data and then utilize the features for different tasks. The

effectiveness of these methods is built upon the premise of

the high correlation between MR and HD. As illustrated in

Fig. 1, the task MR and HD share the identical query and

video inputs, additionally exhibiting a substantial temporal

overlap between their respective positive temporal intervals.

However, the bottom-up, data-driven paradigm tends to

excessively rely on the common features, but overlooks the

inherent specific characteristics of MR and HD. This ten-

dency might simplify the joint modeling as a problem of

feature fusion, without considering the interplay between

the two tasks. The distinct objectives pursued by MR and

HD rely on distinct task-specific characteristics. Unfortu-

nately, existing methods overlook the specificity.

To address the aforementioned issues, we believe it is

essential to leverage the fundamental multi-modal data to
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mine commonalities across tasks (bottom-up), while also

strengthen the awareness of task-specific characteristics

(top-down). To this end, we propose a novel paradigm

TaskWeave from a task-driven perspective. The key idea

is to jointly address the tasks MR and HD by considering

the commonality, specificity, and interplay of MR and HD.

To effectively capture the commonality and specificity,

we design a task-decoupled unit, i.e. a shared expert to

capture common features and two task-specific experts to

acquire the distinct characteristics. In order to investigate

the interplay between MR and HD in-depth, we design an

inter-task feedback mechanism. It converts the predictions

of MR/HD into mask information, which are fed back to the

input of the HD/MR prediction head. Furthermore, we in-

troduce a principled task-dependent joint loss in which the

task-specific weights are dynamically adjusted, rather than

manually tuned.

We conduct experiments on the QVHighlights [25]

dataset to validate the effectiveness of the proposed method.

Moreover, we also conduct experiments for two individual

tasks on the datasets Charades-STA [14] (moment retrieval)

and TVSUM [43] (highlight detection). The proposed ap-

proach outperforms the existing methods.

The key contributions of this paper are three folds.

1. It proposes a novel task-driven, top-down framework

for joint moment retrieval and highlight detection.

2. It introduces a task-decoupled unit, an inter-task feed-

back mechanism, and a principled task-dependent loss.

3. It achieves state-of-the-art performance on three

datasets. The ablation study validates the methods.

2. Related Work

We review the related work from four aspects.

Moment Retrieval. Existing approaches for MR mainly

include two groups. One group follows a two-stage proce-

dure [1, 14, 60, 65], which involves generating candidate

temporal intervals and ranking them based on the correla-

tion with the query. The other group directly regresses the

temporal interval based on the aligned visual-text features

[8, 37, 58, 59, 61]. Moreover, most datasets provide only

one moment annotation for each video-query pair [1, 14],

which does not align with real-world scenarios.

Highlight Detection. The saliency score in the high-

light detection represents the relevance of a video clip to

the given query. Most prior highlight detection benchmark

datasets are query-agnostic [15, 44]. The saliency scores for

video clips remained constant regardless of the query. As a

result, some previous approaches treated HD as a solely vi-

sual task [4, 44, 49, 56].

MR and HD tasks are traditionally studied separately.

They have been jointly addressed recently as the introduc-

tion of QVHighlights dataset [25]. QVHighlights provides

multiple moment-annotations for each query and ensures

these moments are uniformly distributed throughout the

video. It also provides query-dependent highlightness an-

notations. With QVHighlights, the model Moment-DETR

[25] is proposed for joint MR and HD. Following Moment-

DETR, a growing number of approaches have been pro-

posed to accomplish the joint task [20, 29, 32, 36]. How-

ever, these methods adopt the data-driven and bottom-up

paradigm. Different from them, we propose a novel task-

driven and top-down paradigm.

Vision Transformers. Transformer-based models [2]

have brought huge achievement in both the image and

video related domains [5, 11, 27, 28, 54, 55]. One of the

most well-known methods is DETR [5], which regards ob-

ject detection as a set prediction problem. Its end-to-end

prediction procedure eliminates the intermediate or post-

processing steps. On the other hand, some studies have

employed cross-attention mechanism [35, 36, 50] to inject

multi-modal data into the Transformer architecture. In this

paper, we also adopt a DETR-like architecture [26, 31].

However, different from those methods, we incorporate di-

verse network architectures for feature extraction. Our fo-

cus lies in the collaboration of the network architectures.

Multi-task Learning. Multi-task learning (MTL) aims

to train a single model for multiple tasks [7]. The most

straightforward approach is to utilize a shared backbone to

extract common features, which relies on the data-driven

manner. However, it often leads to suboptimal performance

for unrelated tasks and lacks flexibility. In response, some

studies introduce MOE [19] and MMOE [33], which uti-

lize a set of the shared experts in place of the shared bot-

tom layer. To mitigate the seesaw phenomenon of multi-

task learning, PLE [45] employs separate experts for each

task while still retaining the shared experts. From the per-

spective of MTL, existing approaches for joint MR and HD

follow the shared bottom paradigm. Moreover, directly ap-

plying MTL methods to joint MR and HD does not yield fa-

vorable results. Existing MTL methods are complex, there-

fore direct usage of them leads to a sharp increase in model

complexity. This might decrease the performance. To this

end, we aim to design an effective task-driven framework to

jointly address MR and HD.

3. Methodology

3.1. Overview

Given a text query with W words and an untrimmed

video composed of N clips, the objective of the joint mo-

ment retrieval (MR) and highlight detection (HD) is to lo-

calize the center coordinate qc and width qw of temporal

intervals that are relevant to the text query, in addition to

ranking clip-wise saliency scores.

Architecture Overview. Given the high correlation be-

tween moment retrieval and highlight detection tasks, the
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Figure 2. The overall pipeline of the proposed task-driven model TaskWeave. We propose the task-decoupled unit to capture task-specific

and common features. Various experts can adopt different network implementations, showcasing the flexibility of the model. Inter-task

feedback mechanism is designed to investigate the influence between both tasks. There are two feedback manners: Moment-guided and

Highlightness-guided feedback. The principled task-dependent joint loss is introduced for jointly optimize the model.

most intuitive approach is using a shared backbone in con-

junction with two task-specific prediction heads. It is a

data-driven paradigm that is commonly employed by pre-

vious methods, for its simplicity and ease of implementa-

tion. However, the task-specific characteristics are inher-

ently present, since MR and HD have distinct objectives.

Additionally, the interplay between MR and HD should also

be considered, which can enhance the model’s performance.

The overall pipeline of our approach is illustrated in

Fig. 2. We employed the frozen video/text-encoder back-

bones to extract the video/text features, while ensuring their

dimensions remained consistent at D by the projection.

These features are utilized for multi-modal fusion through

methods such as cross-attention or concatenation, resulting

in query-related video representations Z ∈ R
N×D. In our

paper, we extract these representations through the cross-

attention. After cross-attention, inspired by [41, 46], a 1D

Max Pooling (MaxPool1d) with the kernel size 5, stride 1

and padding 2 is utilized to eliminate the rank loss problem

in the attention mechanism. These representations are fed

into the task-decoupled unit to capture the task-related fea-

tures Xmr ∈ R
N×D, Xhd ∈ R

N×D. Then, we employ the

task-specific decoders with inter-task feedback mechanism

to make predictions for moments localization and clip-wise

saliency scores. We introduce the principled task-dependent

loss to jointly optimize the model.

3.2. Task­decoupled Unit

Since moment retrieval and highlight detection have dis-

tinct objectives, the specificity of each task should be con-

sidered, rather than solely focusing on their commonalities.

For this purpose, we propose a task-decoupled unit from a

task-driven perspective to capture the task-related features,

which involves task-specific features and common features.

The task-decoupled unit is depicted in Fig. 2. Inspired by

the attention mechanism [2], the query-related video rep-

resentation Z is initially fed into two task-specific map-

pers, mr-mapper and hd-mapper. Each mapper is imple-

mented using one-layer feed-forward network. The output

of each task-specific mapper is directed into both the re-

spective task-specific expert network (MR-specific Expert

or HD-specific Expert) and the Shared Expert network.

Thanks to the design of our task-decoupled framework,

each expert can employ various networks, such as convolu-

tional network, Transformer, and feed-forward network. It

offers more flexibility in addressing the joint MR and HD

tasks. In our study, we also investigate the influence of dif-

ferent expert networks, referring to Sec. 4 for more details.

Consequently, we can capture the task-related features Xmr

and Xhd via element-wise product between the output of

the task-specific expert and that of the shared expert.

The MR-specific feature Xmr can be computed as:

Xmr = Pmr (Mmr (Z))⊗ S (Mmr (Z)) , (1)

where Mmr (·) refers to the mr-mapper operation. S (·) is

the shared expert calculation. ⊗ denotes the element-wise

product. Pmr (·) is the mr-specific expert calculation. The

calculation method for the HD-specific feature Xhd follows

the similar approach.

3.3. Inter­task Feedback Mechanism

It is imperative to investigate the interplay between the

moment retrieval and highlight detection tasks for their sig-

nificant correlation. However, existing methods overlook

this aspect and employ two decoders for direct prediction.
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To resolve this issue, we propose an inter-task feed-

back mechanism, which contains two task-specific decoders

(Transformer decoder for MR and lightweight decoder for

HD) and two feedback manners (moment-guided feedback

and highlightness-guided feedback). The output of one

task is transformed into the mask to assist another task in

the feedback mechanism. All components of the inter-task

feedback mechanism is detailed as follows.

Transformer Decoder for MR. Previous studies have

demonstrated that it is effective to employ dynamic anchors

as queries for the decoder within the DETR-like structure

[26, 31]. They iteratively update anchor boxes, thereby

transforming the procedure for updating queries into the

cascaded soft ROI-pooling. In our work, the Transformer

decoder for MR follows the work [31]. Each moment

query is represented by its temporal center coordinate qc
and width qw. The output of the Transformer decoder for

MR is denoted as Ymr ∈ R
Nq×2. Nq is the number of mo-

ment queries and set to 10 in our work.

Lightweight Decoder for HD. The most straightfor-

ward method for the HD decoder would be utilizing one or

more fully-connected layers, as seen in prior studies such as

Moment-DETR [25] and UMT [32]. However, such design

overlooks the diversity of video-query pairs [36], which

provides identical criterias for the saliency score prediction

of each video-query pair. Although QD-DETR [36] pro-

poses a global saliency token to predict the saliency scores,

it remains highly coupled with the encoder.

Different from those methods, we introduce CNN struc-

tures in the decoder. CNNs can capture local details, en-

suring accurate saliency predictions across varying queries

within the same video. The structure of the lightweight de-

coder for HD prediction is illustrated in Fig. 3, which al-

ternates between Linear and Conv1d layers. We denote the

input of the HD decoder as J ∈ R
N×d. The saliency pre-

diction Yhd ∈ R
N×1 can be computed as follows:

Yhd = DHD (J ) +
I
N
i=1

(

∑d
k=1 J ik

)

√
d

, (2)

where I
N
i=1 (·) represents the traversal operation. DHD (·)

refers to the decoder network operation.

Moment-guided Feedback. We propose a moment-

guided feedback manner to investigate the influence of MR

on HD. Our key focus is on how to effectively utilize the

results of moment retrieval for highlight detection. The im-

plementation procedure of moment-guided feedback is il-

lustrated in Fig. 3 (a).

We transform the tentatively predicted moment results

from the “(center, width)” format to the “(start, end)” for-

mat. These moment results are fed into the Moment-to-

Mask (M2M) converter to generate moment-aware masks

ξm2m. We initialize a clip-wise vector with a length of N

for each moment prediction. The indices in these vectors

correspond to the clip indexes within the video. We binarize

these vectors based on the moment results. We can obtain

the clip indexes that are included in the moments through

the prior information and set the values at those positions in

the vector to 1, while the rest to 0. The obtained Nq binary

vectors are then summed and normalized with L2 norm.

The obtained moment-aware masks ξm2m integrate the

prediction results from Nq queries and provide guidance

for the highlight detection. In the moment-guided feed-

back manner, the input J of the HD decoder is updated

by Xhd +Xhd ∗ ξm2m.

Highlightness-guided Feedback. Similar to the

moment-guided feedback, we introduce a highlightness-

guided feedback manner with the Highlightness-to-Mask

(H2M) converter, to explore the influence of HD on MR.

As illustrated in Fig. 3 (b), the saliency score vector is bi-

narized in the H2M to obtain the highlightness-aware mask

ξh2m. Values in the saliency score vector that are below the

mean of the vector are set to 0, while those above are set to

1. Then ξh2m would provide guidance for moment retrieval.

In this feedback manner, the input of the MR decoder is up-

dated by Xmr +Xmr ∗ ξh2m.

3.4. Task­dependent Joint Loss

A direct way to optimize the joint task is to sum the re-

spective task-specific loss functions. However, it neglects
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the variations in magnitudes of different task losses, lead-

ing to dominance of one task. Existing methods [20, 25, 29,

32, 36] utilize manually-set weights for the weighted sum

of task losses, which limit the task learning as tasks evolve

at different rates. To address this problem, inspired by the

studies using dynamic weights [10, 16, 22, 23, 30] based on

task learning stages, we introduce the task-dependent joint

loss as a more effective and flexible solution.

MR Loss. For moment retrieval, we define the MR like-

lihood using a Gaussian distribution as shown in Eq. (3),

with its mean determined by the output fθmr (x) of the neu-

ral network with θmr. x is the input of the neural network.

p
(

Ymr|fθmr (x)
)

= N
(

fθmr (x) , δmr

)

, (3)

where δmr is a learnable parameter that quantifies the un-

certainty of moment retrieval. The negative log-likelihood

can be derived as follows:

− log p
(

Ymr|fθmr (x)
)

∝ 1

2δmr
2

∥

∥Ymr − fθmr (x)
∥

∥

2
+ log δmr.

(4)

∥

∥Ymr − fθmr (x)
∥

∥

2
measures the offset between the

model’s predicted value and the ground-truth value.

Therefore, inspired by Eq. (4), the MR loss function

Lmr (θmr, δmr) can be defined as:

Lmr (θmr, δmr) =
1

2δmr
2
L (θmr) + log δmr. (5)

Following existing approaches [25, 32, 36], L (θmr) con-

sists of three components: the L1 loss LL1, the generalized

IoU loss [40] LgIoU, and the cross-entropy loss LBCE. LL1

and LgIoU are employed to calculate the mean absolute er-

ror and gIoU deviation between ground-truth moments and

predicted moments, respectively. LBCE is used to classify

whether the predicted moments belong to the foreground or

background. In summary, L (θmr) = LL1+LgIoU+LBCE.

HD Loss. For highlight detection, inspired by the Boltz-

mann distribution, the HD likelihood is modeled using a

softmax function applied to the scaled model output similar

to [23], as Eq. (6). The learnable scaling factor is denoted

as δhd. fθhd (x) is the output of the network with θhd on

input x.

p
(

Yhd|fθhd (x) , δhd
)

= softmax

(

1

δhd
2
fθhd (x)

)

. (6)

Similar to Eq. (4), the negative log-likelihood of Eq. (6)

can be calculated as follows:

− log p
(

Yhd = y|fθhd (x) , δhd
)

=
1

δhd
2
log

∑

y′ exp
(

fθhd
y′ (x)

)

exp
(

fθhd
y (x)

)

+ log

∑

y′ exp
(

1
δhd

2 f
θhd
y′ (x)

)

(

∑

y′ exp
(

fθhd
y′ (x)

))
1

δhd
2

≈ − 1

δhd
2
log softmax

(

Yhd, f
θhd (x)

)

+ log δhd,

(7)

where fθhd
y (x) refers to the y-th value of the

fθhd (x). We introduce a simplify assumption
∑

y′ exp
(

1
δhd

2 f
θhd
y′ (x)

)

≈
(

∑

y′ exp
(

fθhd
y′ (x)

))
1

δhd
2

when δhd → 1.

− log softmax
(

Yhd, f
θhd (x)

)

of Eq. (7) represents the

cross-entropy classification loss of Yhd. Inspired on this

term, we generalize this expression to other classification

losses. The HD loss function Lhd (θhd, δhd) can be formu-

lated as:

Lhd (θhd, δhd) =
1

δhd
2
L (θhd) + log δhd. (8)

Consistent with prior approaches [25, 36], L (θhd) includes

the hinge loss Lhinge, negative video-query pairs loss Lneg,

and rank-aware contrastive loss [17] Lcont, i.e. L (θhd) =
Lhinge + Lneg + Lcont. Lhinge is computed between two

pairs of positive and negative clips, with its margin 0.2 to

maintain consistency with [25] for fairness. Lneg and Lcont

from [36] are used to reduce the saliency of negative pairs.

We can obtain final task-dependent joint loss Ljoint

through integrating Eq. (5) and Eq. (8):

Ljoint = Lmr (θmr, δmr) + Lhd (θhd, δhd) . (9)

4. Experiments

4.1. Experimental Setup

Datasets. Extensive experiments are conducted on three

benchmark datasets: QVHighlights [25], TVSum [43], and

Charades-STA [14]. QVHighlights is currently the sole

publicly dataset for joint moment retrieval and highlight de-

tection tasks. It provides 10,310 queries associated with

18,367 moments, with an average of 1.8 disjoint moments

per query. In contrast to other MR datasets with one-to-

one query-moment mappings, QVHighlights aligns more

closely with real-world scenarios. Each video in the dataset

comprises 75 clips, each of which is 2s-long.

We also utilize two task-specific datasets, Charades-STA

[14] for MR and TVSum [43] for HD, to evaluate the model.
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Method VT VU GA MS PK PR FM BK BT DS Avg.

sLSTM [64]ECCV’16 41.1 46.2 46.3 47.7 44.8 46.1 45.2 40.6 47.1 45.5 45.1

SG [34]CVPR’17 42.3 47.2 47.5 48.9 45.6 47.3 46.4 41.7 48.3 46.6 46.2

LIM-S [51]CVPR’19 55.9 42.9 61.2 54.0 60.4 47.5 43.2 66.3 69.1 62.6 56.3

Trailer [47]ECCV’20 61.3 54.6 65.7 60.8 59.1 70.1 58.2 64.7 65.6 68.1 62.8

SL-Module [52]ICCV’21 86.5 68.7 74.9 86.2 79.0 63.2 58.9 72.6 78.9 64.0 73.3

MINI-Net† [18]ECCV’20 80.6 68.3 78.2 81.8 78.1 65.8 57.8 75.0 80.2 65.5 73.2

TCG† [57]ICCV’21 85.0 71.4 81.9 78.6 80.2 75.5 71.6 77.3 78.6 68.1 76.8

Joint-VA† [3]ICCV’21 83.7 57.3 78.5 86.1 80.1 69.2 70.0 73.0 97.4 67.5 76.3

UMT† [32]CVPR’22 87.5 81.5 88.2 78.8 81.4 87.0 76.0 86.9 84.4 79.6 83.1

QD-DETR [36]CVPR’23 88.2 87.4 85.6 85.0 85.8 86.9 76.4 91.3 89.2 73.7 85.0

UniVTG‡ [29]ICCV’23 83.9 85.1 89.0 80.1 84.6 81.4 70.9 91.7 73.5 69.3 81.0

TaskWeave(Ours) 88.2 90.8 93.3 87.5 87.0 82.0 80.9 92.9 89.5 81.2 87.3

Table 1. Experimental results (%) on TVSum. † means including audio

modality. ‡ means following the pretrain-finetune paradigm.

Backbone Method R1@0.5 R1@0.7

VGG

SAP [9]AAAI’19 27.42 13.36

SM-RL [48]CVPR’19 24.36 11.17

2D-TAN [65]AAAI’20 40.94 22.85

FVMR [13]CVPR’21 24.36 11.17

UMT† [32]CVPR’22 48.31 29.25

QD-DETR [36]CVPR’23 52.77 31.13

TaskWeave(Ours) 56.51 33.66

I3D

CTRL [14]ICCV’17 23.63 8.89

MAN [60]CVPR’19 46.53 22.72

VSLNet [61]ACL’20 47.31 30.19

QD-DETR [36]CVPR’23 50.67 31.02

TaskWeave(Ours) 53.36 31.4

Table 2. Experimental results (%) on Charades-STA

test split. † means including audio modality. ‡ means

following the pretrain-finetune paradigm.

Method

MR HD

R1 mAP ≥ Very Good

@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1

Moment-DETR [25]NIPS’21 53.94 34.84 - - 32.20 35.65 55.55

UMT† [32]CVPR’22 60.26 44.26 - - 38.59 39.85 64.19

QD-DETR [36]CVPR’23 62.68 46.66 62.23 41.82 41.22 39.13 63.03

EaTR [20]ICCV’23 61.36 45.79 61.86 41.91 41.74 37.15 58.65

UniVTG‡ [29]ICCV’23 59.74 - - - 36.13 38.83 61.81

TaskWeave(Ours) 64.26 50.06 65.39 46.47 45.38 39.28 63.68

Table 3. Experimental results (%) on QVHighlights val split. † means in-

cluding audio modality. ‡ means following the pretrain-finetune paradigm.

Task-

decoupled

Unit

Inter-

task

feedback

Joint

loss

MR HD

R1

@0.7

Avg.

mAP
mAP HIT@1

46.26 41.0 38.94 62.84

✓ 47.87 43.24 38.58 61.81

✓ ✓ 49.29 45.12 38.96 62.0

✓ ✓ ✓ 50.06 45.38 39.28 63.68

Table 4. The ablation results (%) of the components of

our proposed method.

Charades-STA provides 16,128 query-moment pairs. TV-

Sum comprises videos from 10 domains, with each domain

containing 5 videos.

Evaluation Metrics. We utilize the same evaluation

metrics used in prior approaches [25, 32, 36]. For QVHigh-

lights, mean average precision (mAP) with different tIoU

thresholds 0.5, 0.75, the average mAP over [0.5:0.05:0.95],

and Recall@1 with tIoU 0.5, 0.7 are utilized for MR evalua-

tion. mAP and HIT@1 are used for HD evaluation, where a

clip is considered as a true positive when it achieves a “Very

Good” [25] saliency score. For Charades-STA, we utilize

Recall@1 with tIoU thresholds 0.5, 0.7. For TVSum, Top-5

mAP is adopted.

4.2. Implementation Details

Feature representations. For OVHighlights, we em-

ploy the pre-trained SlowFast [12] and CLIP [39] back-

bones to extract video features, following [25, 32, 36] for

fairness. For Charedes-STA, we leverage the official re-

lease of VGG [42] and I3D [6] features as video embed-

dings. For TVSum, we extract video features by the I3D

[6] pre-trained on Kinetics 400 [21]. For QVHighlights and

TVSum, we use CLIP [39] to extract text features, while

using GloVe [38] text embeddings for Charades-STA.

Training settings. We leverage AdamW [24] optimizer

with 1e-4 learning rate and 1e-4 weight decay. We train

200, 100, and 2000 epochs with batch size 32, 32 and

2 for QVHighlights, Charades-STA and TVSum, respec-

tively. All Transformer layers follow the consistent con-

figuration, including sinusoidal positional encodings, 8 at-
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Index
MR-

expert

HD-

expert

MR HD

R1

@0.7

Avg.

mAP
mAP HIT@1

(a) Iden. Iden. 44.77 40.23 38.38 60.19

(b) Line. Line. 47.55 43.65 38.32 60.77

(c) CNN CNN 49.23 43.73 38.82 60.77

(d) Trans. Trans. 48.32 42.85 38.61 61.10

(e) Trans. Iden. 47.1 42.1 38.7 61.68

(f) CNN Iden. 49.29 45.12 38.96 62.0

Table 5. Flexibility validation (%) of the task-

decoupled unit. “Iden.”: identity mapping;

“Trans.”: Transformer; “Line.”: linear layer.

Type

MR HD

R1

@0.7

Avg.

mAP
mAP HIT@1

Sum 47.68 44.27 38.7 60.32

Weighted Sum 48.32 43.21 38.31 61.35

Ours 50.06 45.38 39.28 63.68

Table 6. Effectiveness justification (%) of

the task-dependent joint loss.

Type

MR HD

R1

@0.7

Avg.

mAP
mAP HIT@1

MR2HD 50.06 45.38 38.73 62.84

HD2MR 48.65 44.78 39.28 63.68

Bi-MRHD 48.84 45.1 38.36 61.81

MR-HD 50.0 45.3 38.96 62.45

HD-MR 49.1 44.87 39.03 59.94

Table 7. Comparing various inter-task

feedback combinations (%) on QVHigh-

lights val split.

tention heads, and a dropout rate of 0.1. Multi-modal

fusion employs a 2-layer Transformer with cross atten-

tion, where video features serve as the query and text

features serve as key and value. For Eq. (9), we de-

fine γmr, γhd as log δmr
2, log δhd

2, respectively. Therefore,

Eq. (9) can be rewritten as Ljoint = exp (−γmr)L (θmr) +
2 exp (−γhd)L (θhd) + γmr + γhd. γmr and γhd are learn-

able parameters. They are initialized to 0. To further sta-

bilize the training, the model EMA strategy has also under-

taken. All experiments are conducted with Pytorch v1.13.1

on a single NVIDIA RTX 3090.

4.3. Comparison with State­of­the­arts

Results on TVSum. In Tab. 1, we compare our

TaskWeave with existing state-of-the-arts (SOTA) meth-

ods, where the methods with † are incorporate with au-

dio features. UniVTG [29] follows pretrain-then-finetune

paradigm, therefore we use its non-pretrained results for

a fair comparison. We observe that: i) our methods out-

performs SOTA methods in 9 out of the 10 categories; ii)

TaskWeave significantly outperforms all methods in terms

of Avg. mAP, with a remarkable 2.71% improvement over

the previous SOTA method.

Results on Charades-STA. In Tab. 2, we utilize dif-

ferent backbones to demonstrate the effectiveness of our

TaskWeave. We compare our results with other methods for

MR only (white background) and methods for joint MR and

HD (gray background). It results in significant improve-

ments, i.e., +7.09% in R1@0.5 and +8.13% in R1@0.7.

Results on QVHighlights. As shown in Tab. 3, we

present the performance comparisons with existing meth-

ods. We report the MR results with the MR-guided feed-

back, while HD results with the HD-guided feedback. We

observe that: i) our TaskWeave surpasses SOTA methods

by a large margin in all moment retrieval metrics, with a re-

markable 8.72% improvement in Avg. mAP; ii) our method

achieves the second-best performance on the HD. However,

It’s worth noting that UMT [32] incorporates audio features,

while our method does not. When compared to other meth-

ods without audio features, our method outperforms them

all. In summary, these results validate the effectiveness of

our task-driven framework.

We provide visualization examples in Fig. 4 for the

qualitative analysis among our TaskWeave, Moment-DETR

[25], and QD-DETR [36]. Given diverse queries for a video,

TaskWeave precisely localizes moments for queries and

presents high IoU with the ground-truth. Moment-DETR

misses some instances, and QD-DETR exhibits lower re-

trieval accuracy. Moreover, our method obtains higher

saliency scores for relevant clips in response to the query.

4.4. Ablation Studies and Discussions

We present some ablation studies and discussions about

TaskWeave, with all experiments are conducted on the

QVHighlights val split [25].

Ablation of components. We conduct ablation studies

on each component of TaskWeave, as shown in Tab. 4. Se-

quentially employing the task-decoupled unit and our pro-

posed joint loss contributes a 5.5% improvement in average

mAP and a 6.5% increase in R1@0.7 for MR. Utilizing all

components, we observe that a significant 10.7% improve-

ment in average mAP of MR and a 1.3% enhancement in

HIT@1 of HD. These results indicate the effectiveness of

the proposed components in out TaskWeave.

Flexibility of the task-decoupled unit. To demonstrate

the flexibility of the task-decoupled unit, we investigate the

performance of applying different networks within various

experts, as shown in Tab. 5. The shared expert utilize a fixed

configuration with 2 Transformer layers. We provide 4 dif-

ferent methods for each task-specific expert, including the

feed-forward network (one layer Linear), the identity map-

ping, CNN (composed of one depthwise convolution layer

with the kernel/stride/padding of 5/1/2 and 1D convolution),

and the Transformer. Due to space constraints, we present
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Ground-Truth 

Temporal Windows
(66, 90)

(114, 140)

Query2

Query1

Query1: A guy with grey top is showing a box filled with rubbish. Query2: A man shaves his beard looks in a mirror and talks to the camera. 

Moment

-DETR (78, 116)

Query2(24, 60)
Query1

Ours
(114, 134)

Query2(66, 92)
Query1

(120, 142)

Query2

(40, 124)
Query1

QD-DETR

0.0
0.2
0.4
0.6
0.8
1.0

Moment-DETRGround-Truth QD-DETR OursMoment-DETRGround-Truth QD-DETR Ours

tIoU: 0.286

tIoU: 0.923

tIoU: 0.714

tIoU: 0.769

Figure 4. Qualitative results on the QVHighlights for Ground-Truth, Moment-DETR, QD-DETR and our method. The predicted moments

and saliency scores are illustrated through intervals and lines.

results of 6 out of 16 combinations. The results in Tab. 5

are obtained by TaskWeave without inter-task feedback.

From this table, we can observe several interesting facts.

First, different task-specific experts have different perfor-

mance. The need for experts is reflected in (a). Second,

although Transformer has made significant progress in vi-

sual, it’s not a panacea. Results in (d) are lower compared

to (b) and (c), we believe that the high computational com-

plexity of Transformer decrease the performance. Third, the

task-specific expert should be designed based on the task

objective. For instance, (c) and (f) perform well on the MR

because they focus on local features, which is important for

localizing moments. Finally, we also find evidence that MR

and HD are highly related. Improvement in one task en-

hances the other (compare (c) and (f)), while a decline in

one limits the other’s performance (compare (d) and (e)).

In this paper, our mr-specific expert utilizes CNN and hd-

specific expert is implemented by identity mapping.

Task-dependent joint loss. Tab. 6 shows the perfor-

mance of TaskWeave with different losses. “Sum” and

“Weighted Sum” refer to the fusion manner of loss for

different tasks, respectively. Weights in “Weighted Sum”

are consistent with the existing methods [25, 36] for fair-

ness. Comparing “Sum” and “Weighted Sum”, we find that

“Weighted Sum” can better balance the performance of the

two tasks. However, it is obvious that the proposed task-

dependent joint loss is optimal.

Inter-task interactions. We believe that each task re-

quires learning before providing effective feedback. There-

fore, in our inter-task feedback mechanism, the feedback

process starts when the model is trained to half of the

max epoch. For brevity, we write Moment/Highlightness-

guided feedback as MgF/HgF. In Tab. 7, we explore five

feedback manners as follows: “MR2HD” (with MgF only),

“HD2MR” (with HgF only), “Bi-MRHD” (with MgF and

HgF simultaneously), “MR-HD” (MgF first, then HgF), and

“HD-MR” (HgF first, then MgF).

We find that the inter-task feedback makes both tasks

gain simultaneously. The performance of the model with

“HD2MR” is slightly worse, this is because HD focuses

on more refined moments than MR. Ground-truth annota-

tions and the results of “MR-HD” and “HD-MR” also illus-

trate this fact. The gain brought by “Bi-MRHD” is limited,

which we believe that it’s a natural result of feedback not

always being effective. In general, the inter-task feedback

not only contributes to bring gains for both tasks but also

helps to understand the characteristics of each task.

5. Conclusion

This paper proposes a novel task-driven paradigm for

addressing joint moment retrieval and highlight detection.

Different from existing data-driven methods, we utilize the

task-decoupled unit to capture the task-specific and com-

mon features, respectively. We also explore different net-

work architecture for moment retrieval and highlight de-

tection. We design the inter-task feedback mechanism to

in-depth investigate the interplay between both tasks. Dif-

ferent from prior methods, we introduce the principled joint

loss to optimize the model. The effectiveness, flexibility,

and superiority of the proposed method have been demon-

strated on three benchmark datasets.
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