
Text Prompt with Normality Guidance for Weakly Supervised Video Anomaly
Detection

Zhiwei Yang1, Jing Liu1*, Peng Wu2

1Guangzhou Institute of Technology, Xidian University, Guangzhou, China
2School of Computer Science, Northwestern Polytechnical University, Xi’an, China

{zwyang97, neouma}@163.com, xdwupeng@gmail.com

Abstract

Weakly supervised video anomaly detection (WSVAD) is
a challenging task. Generating fine-grained pseudo-labels
based on weak-label and then self-training a classifier is
currently a promising solution. However, since the exist-
ing methods use only RGB visual modality and the utiliza-
tion of category text information is neglected, thus limiting
the generation of more accurate pseudo-labels and affect-
ing the performance of self-training. Inspired by the manual
labeling process based on the event description, in this pa-
per, we propose a novel pseudo-label generation and self-
training framework based on Text Prompt with Normality
Guidance (TPWNG) for WSVAD. Our idea is to trans-
fer the rich language-visual knowledge of the contrastive
language-image pre-training (CLIP) model for aligning the
video event description text and corresponding video frames
to generate pseudo-labels. Specifically, We first fine-tune
the CLIP for domain adaptation by designing two rank-
ing losses and a distributional inconsistency loss. Fur-
ther, we propose a learnable text prompt mechanism with
the assist of a normality visual prompt to further improve
the matching accuracy of video event description text and
video frames. Then, we design a pseudo-label generation
module based on the normality guidance to infer reliable
frame-level pseudo-labels. Finally, we introduce a temporal
context self-adaptive learning module to learn the tempo-
ral dependencies of different video events more flexibly and
accurately. Extensive experiments show that our method
achieves state-of-the-art performance on two benchmark
datasets, UCF-Crime and XD-Violence, demonstrating the
effectiveness of our proposed method.

1. Introduction
Anomaly detection has been widely researched and applied

in various fields, such as computer vision [23, 35, 40, 43,

*Corresponding authors.

Two or more people fighting 
together, with violent actions 
such as punching and kicking.

“Fighting”

Figure 1. Illustration of the manual video frame labeling process.

49], natural language processing [1], and intelligent opti-

mization [29]. One of the most important research issues is

the video anomaly detection (VAD). The main purpose of

VAD is to automatically identify events or behaviors in the

video that are inconsistent with our expectations.

Due to the rarity of anomalous events and the diffi-

culty of frame-level labeling, current VAD methods fo-

cus on semi-supervised [14, 16, 18] and weakly supervised

[11, 26, 52] paradigms. Semi-supervised VAD methods aim

to learn normality patterns from normal data, and deviations

from this pattern are considered as anomalies. However,

due to the lack of discriminative anomaly information in

the training phase, these models are often prone to over-

fitting, leading to poor performance in complex scenarios.

Subsequently, weakly supervised video anomaly detection

(WSVAD) methods came into prominence. WSVAD in-

volves both normal and abnormal videos with video-level

labels in the training phase, but the exact location of abnor-

mal frames is unknown. Current WSVAD methods mainly

include one-stage methods based on multi-instance learning

(MIL) [17, 26, 27] and two-stage methods based on pseudo-

label self-training [6, 11, 51, 53]. While the one-stage meth-

ods based on MIL show promising results, this paradigm

tends to focus on video snippets with prominent anomalous

features and suboptimal attention to minor anomalies, thus

limiting its further performance improvement.

In contrast to the one-stage methods mentioned above,

two-stage methods based on pseudo-label self-training gen-

erally use an off-the-shelf classifier or MIL to obtain initial
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pseudo-labels, and then train the classifier with further re-

fined pseudo-labels. Because these methods train the classi-

fier directly with the generated fine-grained pseudo-labels,

they show great potential in performance. However, these

methods still have two aspects that have not been consid-

ered: first, the generation of pseudo-labels is based only on

visual modality and lacks the utilization of textual modality,

which limits the accuracy and completeness of the gener-

ated pseudo-labels. Second, the mining of temporal depen-

dencies among video frames is insufficient.

To further exploit the potential of pseudo-label-based

self-training on WSVAD, we dedicate to investigating the

two problems mentioned above in this paper. Our motiva-
tion for the first question is that we explore how the tex-

tual modal information can be effectively utilized to assist in

generating pseudo-labels. Recalling our manual process of

video frame labeling, we mainly based on textual definitions

of anomalous events, i.e., prior knowledge about anoma-

lous events, to accurately locate the video frames. As illus-

trated in Fig. 1, assuming that we need to annotate the ab-

normal video frames that contain “fighting” event, we will

first associate the textual definition of “fighting” and then

look for matching video frames, which is actually a process

of text-image matching based on prior knowledge. Inspired

by this process, we associate a highly popular and powerful

contrastive language-image pre-training (CLIP) [19] model

to assist us in achieving this goal. On the one hand, the

CLIP learns a large number of image-text pairs on the web,

and thus has a highly rich prior knowledge; on the other

hand, the CLIP is trained by comparative learning, which

empowers it with excellent image-text alignment capabili-

ties. For the second motivation, because different video

events have diverse durations, this leads to different ranges

of temporal dependencies. Existing methods either do not

consider temporal dependencies or only consider dependen-

cies within a fixed temporal range, leading to inadequate

modeling of temporal dependencies. Therefore, in order to

achieve more flexible and adequate modeling of temporal

dependencies, we should investigate methods that can adap-

tively learn temporal dependencies of different lengths.

Based on the above two motivations, we propose a novel

pseudo-label generation and self-training framework based

on Text Prompt with Normality Guidance (TPWNG) for

WSVAD. Our main idea is to utilize the CLIP model to

match the textual descriptions of video events with the cor-

responding video frames, and then infer the pseudo-labels

from match similarities. However, since the CLIP model

is trained at the image-text level, it may suffer from do-

main bias and lacks the ability to learn temporal dependen-

cies in videos. In order to better transfer the prior knowl-

edge of CLIP to the WSVAD task, we first construct a con-

trastive learning framework by designing two ranking losses

and a distributional inconsistency loss to fine-tune the CLIP

model for domain adaptation under the weakly-supervised

setting. To further improve the accuracy of aligning the de-

scriptive text of video events with video frames, we employ

learnable textual prompts to facilitate the text encoder of

CLIP to generate more generalized textual embedding fea-

tures. On this basis, we propose a normality visual prompt

(NVP) mechanism to aid this process. In addition, be-

cause abnormal videos contain normal video frames as well,

we design a pseudo-label generation (PLG) module based

on normality guidance, which can reduce the interference

caused by individual normal video frames to the alignment

of abnormal video frames, thus facilitating the obtaining of

more accurate frame-level labels.

Furthermore, to compensate for the lack of temporal re-

lationship modeling in CLIP as well as to more flexible and

adequately mine the temporal dependencies between video

frames, we introduce a temporal context self-adaptive learn-

ing (TCSAL) module for temporal dependency modeling,

inspired by the work [25]. TCSAL allows the attention

module in the Transformer to adaptively adjust the atten-

tion span according to the inputs by designing a temporal

span adaptive learning mechanism. This can facilitate the

model to capture the temporal dependencies of video events

of different durations more accurately and flexibly.

Overall, our main contributions are summarized below:

• We propose a novel framework, i.e., TPWNG, to per-

form pseudo-label generation and self-training for WS-

VAD. TPWNG fine-tunes CLIP with the designed rank-

ing loss and distributional inconsistency loss to trans-

fer its strong text-image alignment capability to assist

pseudo-label generation by means of the PLG module.

• We design a learnable text prompt and normality visual

prompt mechanism to further improve the alignment ac-

curacy of video events description text and video frames.

• We introduce a TCSAL module to learn the temporal de-

pendencies of different video events more flexibly and ac-

curately. To the best of our knowledge, we are the first to

introduce the idea of self-adaptive learning of temporal

context dependencies for VAD.

• Extensive experiments have been conducted on two

benchmark datasets, UCF-Crime and XD-Violence,

where the excellent performance demonstrates the effec-

tiveness of our method.

2. Related Work

2.1. Video Anomaly Detection

The VAD task has been widely focused and researched, and

many methods have been proposed to solve this problem.

According to different supervision modes, these methods

can be mainly categorized into semi-supervised-based and

weakly supervised-based VAD.

Semi-supervised VAD. Early researchers mainly used
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semi-supervised approaches to solve the VAD problem

[2, 7, 8, 10, 14, 15, 20, 24, 31, 33, 41–44, 46, 50]. In the

semi-supervised setting, only normal data can be acquired

in the training phase, which aims to build a model that can

characterize normal behavioral patterns by learning normal

data. During the testing phase, data that contradict with

the normal patterns are considered anomalies. Common

semi-supervised VAD methods mainly include one-class

classifier-based [21, 33, 37] and reconstruction [8, 38] or

prediction errors-based methods [14, 42]. For example, Xu

et al. [38] used multiple one-classifiers to predict anomaly

scores based on appearance and motion features. Hasan et

al. [8] built a fully convolutional auto-encoder to learn reg-

ular patterns in the video. Liu et al. in [14] proposed a novel

video anomaly detection method that utilizes the U-Net ar-

chitecture to predict future frames, where frames with large

prediction errors are considered as anomalous.

Weakly Supervised VAD. Compared to semi-

supervised VAD methods, WSVAD can utilize both

normal and anomalous data with video-level labels

in the training phase, but the exact frame location

where the abnormal event occurred is unknown. In

such a setting, the one-stage approaches based on MIL

[3–5, 13, 17, 22, 26, 27, 32, 34, 45, 54] and the two-

stage approaches based on pseudo-labels self-training

[6, 11, 51, 53] are the two prevailing approaches. For ex-

ample, Sultani et al. [26] first proposed a deep MIL ranking

framework for VAD, where they considered anomalous and

normal videos as positive and negative bags, respectively,

and the snippets in the videos are considered as instances.

Then a ranking loss is used to constrain the snippets with

the highest anomaly scores in the positive and negative

bags to stay away from each other. Later, many variants of

the method were proposed on this basis. For example, Tian

et al. [27] proposed a top-k MIL based VAD method with

robust temporal feature magnitude learning.

However, these one-stage methods generally use a MIL

framework, which leads to models that tend to focus only

on the most significant anomalous snippets while ignor-

ing nontrivial anomalous snippets. A two-stage approach

based on pseudo-label self-training provides a relatively

more promising solution. The two-stage approach first gen-

erates initial pseudo-labels using MIL or an off-the-shelf

classifier and then refines the labels before using them for

supervised training of the classifier. For example, Zhong

et al. in [53] reformulated the WSVAD problem as a su-

pervised learning task under noisy labels obtained by an

off-the-shelf video classifier. Feng et al. in [6] introduced

a multiple instance pseudo label generator that produces

more reliable pseudo labels for fine-tuning a task-specific

feature encoder with self-training mechanism. Zhang et al.

in [51] exploited completeness and uncertainty properties

to enhance pseudo labels for effective self-training. How-

ever, all these existing methods only generate pseudo-labels

based on visual unimodal information and lack the utiliza-

tion of textual modal. Therefore, in this paper, we endeavor

to combine both visual and textual modal information in or-

der to generate more accurate and complete pseudo-labels

for self-training of the classifier.

2.2. Large Vision-Language Models

Recently, there has been an emergence of large vision-

language models that learn the interconnections between

visual and textual modalities by pre-training on large-scale

datasets. Among these methods, the CLIP demonstrates un-

precedented performance in many visual-language down-

stream tasks, e.g. image classification [55], object detec-

tion [56], semantic segmentation [12] and so on. The CLIP

model has recently been successfully extended to the video

domain as well. VideoCLIP [39] is proposed to align video

and textual representations by contrasting temporally over-

lapping video-text pairs with mined hard negatives. Action-

CLIP [30] formulated the action recognition task as a mul-

timodal learning problem rather than a traditional unimodal

classification task. However, there are fewer attempts to

utilize CLIP models to solve VAD tasks. Joo et al. in [9]

simply utilizes CLIP’s image encoder for extracting more

discriminative visual features and does not use textual in-

formation. Wu et al. [36], Zanella et al. [48] mainly use

textual features from CLIP to enhance the expressiveness of

the overall features, followed by MIL-based anomaly clas-

sifier learning. The major difference with the above works

is that our method is the first to utilize the textual features

encoded by the CLIP text encoder in conjunction with the

visual features to generate pseudo-labels, and then employ

a supervised approach to train an anomaly classifier.

3. Method
In this section, we first present the definition of the WSVAD

task, then introduce the overall architecture of our proposed

method, and subsequently elaborate on the details of each

module and the execution process.

3.1. Overall Architecture

Formally, we first define sets Da = {(vai , yi)}Mi=1 and

Dn = {(vni , yi)}Mi=1 containing M abnormal and normal

videos with ground-truth labels, respectively. For each vai ,

it is labeled yi = 1, indicating that this video contains at

least one anomalous video frame, but the exact location of

the anomalous frame is unknown. For each vni , it is labeled

yi = 0, indicating that this video consists entirely of normal

frames. With this setting, WSVAD task is to utilize coarse-

grained video-level labels to enable a classifier to learn to

predict fine-grained frame-level anomaly scores.

Fig. 2 illustrates the overall pipeline of our approach.

Normal and abnormal video along with learnable category
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Figure 2. The overall architecture of our proposed TPWNG.

prompt text are encoded as feature embedding by the image

encoder and text encoder of CLIP, respectively. Then, the

text encoder of CLIP is encouraged by fine-tuning it to pro-

duce textual feature embedding of video event categories

that accurately match anomalous or normal video frames,

and the NVP assists in this process. Meanwhile, the image

features feed the TCSAL module to perform self-adaptive

learning of temporal dependencies. Finally, a video frame

classifier is trained to predict anomaly scores under the su-

pervision of pseudo-labels obtained by the PLG module.

3.2. Text and Normality Visual Prompt

Learnable Text Prompt. Constructing textual prompts

that can accurately describe various video event categories

is a prerequisite for realizing the alignment of text and

corresponding video frames. However, it is impractical

to manually define description texts that can completely

characterize anomalous events in all different scenarios.

Therefore, inspired by CoOp [55], we employ a learnable

text prompt mechanism to adaptively learn representative

video event text prompts to align the corresponding video

frames. Specifically, we construct a learnable prompt tem-

plate, which adds l learnable prompt vectors in front of the

tokenized category name, as follows:

plabel = (∂1, ..., ∂l, T okenizer(label)), (1)

where ∂l denotes the l−th prompt vector. Tokenizer is

converting original category labels, i.e., “fighting”, “acci-

dent”, . . . , “normal”, etc., into class tokens by means of

CLIP tokenizer. Then, we add the corresponding location

information pos to the learnable prompts and then feed it

to the CLIP text encoder ζtext to get the feature embedding

Tlabel ∈ R
D of the video event description text as follows:

Tlabel = ζtext(plabel ⊕ pos), (2)

Finally, we compute all video event categories according to

Eqs. (1) and (2) to obtain the video event description text

embedding set E = {T a
1 , T a

2 , ..., T a
k−1, Tn

k }, where

{T a
i }k−1

i=1 denotes the description text embedding of preced-

ing k − 1 abnormal events and Tn
k denotes the description

text embedding of normal events.

Normality Visual Prompt. For an anomalous video,

which contains both anomalous and normal frames, our

core task is to infer pseudo-labels from the match similar-

ities between the description text of the anomalous events

and the video frames. However, this process is susceptible

to interference from normal frames in the anomalous video

because they have a similar background to the anomalous

frames. To minimize this interference, we propose a NVP

mechanism. NVP is used to assist the normal event descrip-

tion text to more accurately align normal frames in the ab-

normal video, and thus indirectly assist the description text

of abnormal event to align abnormal video frames in the

abnormal video by means of the distribution inconsistency

loss that will be introduced in Sec. 3.5. Specifically, we

first compute the match similarities Snn
i, k ∈ R

F between the

description text embedding of normal event and the video

frame features in the normal video. Then, the match simi-

larities after softmax operation are used as weights to aggre-
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gate normal video frame features to obtain NVP Qi ∈ R
D.

The formulas are represented as follows:

Snn
i, k = Xn

i (T
n
k )

�, Qi = softmax((Snn
i, k)

�)Xn
i , (3)

where Xn
i ∈ R

F×D denotes the visual features of the nor-

mal video vni obtained by the CLIP image encoder, where

F and D denote the number of video frames and feature di-

mensions, respectively. Then, we concatenate Qi and Tn
k in

the feature dimension and feed an FFN layer with skip con-

nections to obtain the enhanced description text embedding

Ṫn
k of normal events. The formula is represented as follows:

Ṫn
k = FFN((Tn

k ∪Qi)) + Tn
k . (4)

3.3. Pseudo Label Generation Module

In this subsection, we detail how to generate frame-level

pseudo labels. For a normal video, we can directly get

the frame-level pseudo-labels, i.e., for a vni = {Ij}Fj=1

containing F normal frames, it corresponds to a label set

{γn
i, j = 0}Fj=1. Our main goal is to infer the pseudo-labels

for anomalous videos that contain both anomalous and nor-

mal frames. To this end, we propose a PLG module for in-

ferring accurate pseudo-labels based on the normality guid-

ance. PLG module infers frame-level pseudo-labels by in-

corporating the match similarities between the description

text of the normal event and the abnormal video as a guide

into the match similarities between the description text of

the corresponding abnormal event and the abnormal video.

Specifically, we first compute the match similarities

San
i, k = Xa

i (Ṫ
n
k )

� between normal event description text

embedding enhanced with NVP and anomalous video fea-

tures, where Xa
i ∈ R

F×D denotes the visual features of

the anomalous video vai obtained by the CLIP image en-

coder. Similarly, we compute the match similarities Saa
i, τ =

Xa
i (T

a
τ )

� between the description text embedding T a
τ of

the corresponding τ -th (1 � τ � k− 1) real anomaly cate-

gory and the anomaly video features Xa
i .

Theoretically, for Saa
i, τ , it should have high match sim-

ilarities corresponding to abnormal frames and low match

similarities for normal frames. But it may be interfered by

normal frames from the same video having the same back-

ground. To reduce the interference of normal frames, we

infer pseudo-labels by incorporating the matching similar-

ity corresponding to the description text of normal events

with certain weights as a guide into the matching similar-

ity of the description text of corresponding real abnormal

events. Specifically, we first perform a normalization and

fusion operation on Saa
i, τ and San

i, k as follows:

ψi = αS̃an
i, k + (1− α)(1− S̃aa

i, τ ), (5)

where ∗̃ denotes the normalization operation and α denotes

the guidance weight. After obtaining ψi, we similarly per-

form a normalization operation on it to obtain ψ̃i. Then,

we set a threshold θ on ψ̃i to obtain the frame-level pseudo-

labels in the anomalous video as follows:

γa
i, j =

{
1, ψ̃i,j ≥ θ;

0, ψ̃i,j < θ,
i = 1, 2, ...,M ; j = 1, 2, ..., F

(6)

where γa
i, j denotes the pseudo-label of the j-th frame in

the i-th anomaly video. Finally, we combine the frame-

level pseudo-labels γn
i, j and γa

i, j of normal and anomalous

videos to get the total pseudo-label set {γi, j}Fj=1.

3.4. Temporal Context Self-adaptive Learning

To adaptively adjust the learning range of temporal relation-

ship based on the input video data, inspired by the work

[25], we introduce a TCSAL module. The backbone of

TCSAL is the transformer-encoder, but unlike the original

transformer, the spanning range of attention is controlled by

a soft mask function χz for each self-attention head at each

layer. χz is a piecewise function mapping a distance to a

value between [0, 1] as follows:

χz(h) = min

[
max

[
1

R
(R+ z − h), 0

]
, 1

]
, (7)

where h represents the distance between the current t-th
frame in a video and the r−th (r ∈ [1, t − 1]) frame in the

past temporal range. R is a hyperparameter used to control

the softness. z is a learnable parameter that is adaptively

tuned with the input as follows:

z = Fσ(C�X + b), (8)

here σ represents the sigmoid operation, C and b are learn-

able parameters during model training. With the soft mask

function χz , the corresponding attention weights ωt, r is

computed within this mask, i.e.,

ωt, r =
χz(t− r) exp(βt,r)∑t−1
q=1 χz(t− q) exp(βt,q)

, (9)

here βt,r denotes the dot product output of the Query cor-

responding to the t-th frame in a video with the Key corre-

sponding to the r−th frame in the past. Under the control of

χz , the self-attention heads will be able to adaptively adjust

the self-attention span range according to the input.

Finally, the video features after temporal context adap-

tive learning are fed into a classifier to predict the frame-

level abnormality scores {ηi, j}Fj=1.

3.5. Objective Function

First, we fine-tune the CLIP text encoder. For a normal

video, we further compute the match similarities set ϕna
i =

{Sna
i, τ = Xn

i (T
a
τ )

� |1 � τ � k − 1} between the descrip-

tion texts of the other k−1 anomalous events and the normal

frames. We expect that the maximum in the similarity set
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ϕna
i should be as small as possible while the maximum in

Snn
i, k should be as large as possible. Thus, we design the

following ranking loss for constraints:

Ln
rank = max(0, 1−max(Snn

i, k)+max(max(ϕna
i )). (10)

For an anomalous video, we first calculate the similarities

San
i, k = Xa

i (Ṫ
n
k )

� between the description text embedding

of normal event and the anomalous video features, the sim-

ilarity Saa
i, τ = Xa

i (T
a
τ )

� between the description text em-

bedding of the τ -th (1 � τ � k − 1) real anomalous event

category and the anomalous video features, and the similar-

ity set ϕaa
i = {Saa

i, g = Xa
i (T

a
g )

� |1 � g � k − 1, g �= τ }
between the description text embedding of other k − 2
anomalous event categories and the anomalous video fea-

tures, respectively. We expect that the maximum value in

San
i, k should be greater than the maximum value in ϕaa

i .

Similarly, the maximum value in Saa
i, τ should be greater

than the maximum value in ϕaa
i . In short, it means that we

expect that the description texts of real abnormal and nor-

mal events should match the abnormal and normal frames

in the abnormal video with the highest possible similarity,

respectively. Thus, the ranking loss for anomalous videos is

designed as follows:

La
rank = max(0, 1−max(San

i, k) + max(max(ϕaa
i )))+

max(0, 1−max(Saa
i, τ ) + max(max(ϕaa

i ))).
(11)

In addition, to further ensure that the description texts of

real abnormal events and normal events can accurately align

the abnormal and normal video frames in the abnormal

video, respectively, we design a distribution inconsistency

loss (DIL). DIL is used to constrain the similarities between

the description text of the real abnormal event and the video

frames to be inconsistent with the similarity distribution be-

tween the description text of the normal event and the video

frames. We use cosine similarity to perform this loss:

Ldil =
1

MF

M∑
i=1

F∑
j=1

S̃aa
i, j, τ · S̃an

i, j, k∥∥∥S̃aa
i, j, τ

∥∥∥
2
·
∥∥∥S̃an

i, j, k

∥∥∥
2

. (12)

Then, following the work [26], in order to make the gen-

erated pseudo-labels satisfy sparsity and smoothing in tem-

poral order, we impose sparsity and smoothing constraints,

Lsp =
∑F

j=1 (S̃
aa
i, j, τ − S̃aa

i, j+1, τ )
2
, Lsm =

∑F
j=1 S̃

aa
i, j, τ ,

on the similarity vectors S̃aa
i, τ .

Then, we calculate the binary cross-entropy between

the anomaly score ηi,j predicted by the classifier and the

pseudo-label γi, j as the classification loss:

Lcl = − 1

MF

M∑
i=1

F∑
j=1

[ηi,j log(γi,j)

+(1− ηi,j) log(1− γi,j)].

(13)

The final overall objective function balanced by λ1 and

λ2 is designed as follows:

Lall = Ln
rank+La

rank+Ldil+Lcl+λ1Lsp+λ2Lsm. (14)

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets. We conduct extensive experiments on two bench-

mark datasets, UCF-Crime [26] and XD-Violence [34].

UCF-Crime is a large-scale real scene dataset for WSVAD.

UCF-Crime duration is 128 hours in total and contains 1900

surveillance videos covering 13 anomaly event categories,

of which 1610 videos with video-level labels are used for

training and 290 videos with frame-level labels are used

for testing. XD-Violence is a large-scale violence detection

dataset collected from movies, online videos, surveillance

videos, CCTVS, etc. XD-Violence lasts 217 hours and con-

tains 4754 videos covering 6 anomaly event categories, of

which 3954 training videos with video-level labels and 800

test videos with frame-level labels.

Evaluation Metrics. Following the previous methods

[6, 26], for the UCF-Crime dataset, we measure the perfor-

mance of our method using the area under the curve (AUC)

of the frame-level receiver operating characteristics (ROC).

Similarly, for the XD-Violence dataset, we follow the eval-

uation criterion of average precision (AP) suggested by the

work [34] to measure the effectiveness of our method.

4.2. Implementation Details

The image and text encoders in our method use a pre-trained

CLIP (VIT-B/16), in which both the image and text en-

coders are kept frozen, except for the text encoder where

the final projection layer is unfrozen for fine-tuning. The

feature dimension D is 512. FFN is a standard block

from Transformer. The length l of the learnable sequence

in the text prompt is set to 8. The normality guidance

weight α is set to 0.2 for both the UCF-Crime and XD-

Violence datasets. The pseudo-labels generation threshold θ
is set to 0.55 and 0.35 for the UCF-Crime and XD-Violence

datasets, respectively. The parameter R used to control the

softness of the soft mask function is set to 256. The sparse

loss and smoothing loss weights are set to λ1 = 0.1 and

λ2 = 0.01. Please refer to the supplementary materials for

more details on implementation.

4.3. Comparison with State-of-the-art Methods

We compare the performance on the UCF-Crime and XD-

Violence datasets with the current state-of-the-art (SOTA)

methods in Tab. 1. As can be observed from the table,

our method achieves a new SOTA on both the UCF-Crime

and XD-Violence datasets. Specifically, for the UCF-Crime

dataset, our method outperforms the current SOTA method
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Methods UCF (AUC) XD (AP)

Weakly

Sultani et al.[26] 77.92% 73.20%

GCN [53] 82.12% -

HL-Net [34] 82.44% 73.67%

CLAWS [45] 82.30% -

MIST [6] 82.30% -

RTFM [27] 84.30% 77.81%

CRFD [32] 84.89% 75.90%

GCL [47] 79.84% -

MSL [11] 85.62% 78.58%

MGFN [3] 86.67% 80.11%

Zhang et al.[51] 86.22% 78.74%

UR-DMU [54] 86.97% 81.66%

CLIP-TSA [9] 87.58% 82.17%

Ours 87.79% 83.68%

Table 1. AUC and AP on UCF-Crime and XD-Violence dataset.

CLIP-TSA [9] by 0.21%, which is not a trivial improve-

ment for the challenging WSVAD task. Most importantly,

compared to methods MIST [6] and Zhang et al. [51] sim-

ilar to ours that also use pseudo-label-based self-training,

our method significantly outperforms them by 5.49% and

1.57%, respectively. This fully demonstrates that our pro-

posed pseudo-label generation and self-training framework

is vastly superior to the above two approaches. This also

indicates that transferring visual language multimodal as-

sociations through CLIP is conducive to generating more

accurate pseudo-labels compared to merely utilizing uni-

modal visual information. For the XD-Violence dataset, our

method also surpasses the current optimal method CLIP-

TSA [9] by 1.52%. Compared to a similar pseudo-label-

based self-training method Zhang et al. [51], our method

also outperforms it by 4.94%. The consistent superior per-

formance on two large-scale real datasets strongly demon-

strates the effectiveness of our method. This also shows

the extraordinary potential of the pseudo-label based self-

training scheme, if accurate pseudo-labels can be generated

utilizing multiple modality information.

4.4. Ablation Studies

We conduct ablation experiments in this subsection to ana-

lyze the effectiveness of each component of our framework.

Effectiveness of Normal Visual Prompt. To verify the

validity of NVP, we execute three comparison experiments:

without NVP, with NVP based on frame averaging (NVP-

FA), and with NVP based on match similarities aggregation

(NVP-AS). As can be seen from the results in Tab. 2, in

the absence of NVP, the performance of our method on the

UCF-Crime and XD-Violence datasets decreases by 2.54%

and 2.10% compared to with an NVP-AS, respectively.

NVP-AS boosts the performance of the method by 0.47%

and 0.55% more compared to NVP-FA on UCF-Crime and

UCF-Crime (AUC) XD-Violence (AP)

w/o NVP 85.25% 81.58%

w NVP-FA 87.32% 83.13%

w NVP-AS 87.79% 83.68%

Table 2. The AUC and AP of our method on the UCF and XD

datasets without NVP, with NVP-FA, and with NVP-AS.

UCF-Crime (AUC) XD-Violence (AP)

w/o NG 85.83% 81.32%

w NG 87.79% 83.68%

Table 3. The AUC and AP of our method on the UCF and XD

datasets with NG and without NG.

XD-Violence datasets, respectively. This reveals two facts:

first, NVP can help the text embedding to better match nor-

mal frames in anomalous videos, which indirectly aids in

generating more accurate pseudo-labels in cooperation with

the DIL and the normality guidance mechanism. Second,

the NVP-AS can effectively reduce the interference of some

noise snippets (e.g., prologue, perspective switching, etc.)

in normal videos compared to the NVP-FA approach, thus

obtaining a purer NVP.

Effectiveness of the Normality Guidance. In the

pseudo-label generation module, instead of inferring

pseudo-labels directly based on the similarity between the

corresponding abnormal event description text and the ab-

normal video, we incorporate guidance from the match sim-

ilarities of the normal event description text counterparts,

aiming to reduce the interference of partially noisy video

frames and generate more accurate pseudo-labels. To verify

the contribution of the normality guidance, we compare the

impact of the pseudo-label generation module on the per-

formance of our method with and without normal guidance

(NG), respectively. As can be observed from Tab. 3, when

our method is equipped with normal guidance, the perfor-

mance rises by 1.96% and 2.36% on the UCF-Crime and

XD-Violence datasets, respectively. This validates the ef-

fectiveness of the normality guidance.

Effectiveness of TCSAL. To analyze the effectiveness

of TCSAL module, we conduct comparative experiments

with the Transformer-encoder (TF-encoder) module in [28],

MTN module in [27], and GL-MHSA module in [54] by

replacing the temporal learning module in our framework

with each of these three modules. From Tab. 4, it can be

observed that the TF-encoder module has the lowest per-

formance, which is understandable since the global self-

attention computation way makes it neglect to pay atten-

tion to the local temporal information. Both MTN and GL-

MHSA outperform TF-encoder with comparable perfor-

mance. Our introduced TCSAL module achieved the best

performance on both datasets. This indicates that adopting
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Figure 3. Anomaly score curves of several test samples on the UCF-Crime and XD-Violence dataset.

UCF (AUC) XD (AP)

w TF-encoder 85.12% 80.02%

w MTN 86.22% 81.02%

w GL-MHSA 86.43% 81.23%

w TCSAL 87.79% 83.68%

Table 4. The AUC and AP of our method on the UCF and XD

datasets with different temporal modules.

Loss term Dataset

bs Ln
rank La

rank Ldil UCF (AUC) XD (AP)

� 77.12% 73.32%

� � 81.34% 78.67%

� � 84.45% 81.56%

� � 82.47% 79.96%

� � � � 87.79% 83.68%

Table 5. Comparison of the AUC and AP of our method with

different loss terms on the UCF-Crime and XD-Violence datasets.

”bs” indicates that Lcl, Lsp, Lsm three loss functions are used.

the mechanism of self-attention span range adaptive learn-

ing enables the temporal learning module to self-adapt to

the inputs of videos with different event lengths, achieving

more accurate modeling of temporal dependencies while

weakening the interference of other non-relevant temporal

information in the non-event span range.

4.5. Qualitative Results

We show the anomalous scores of our method on several

test videos in Fig. 3. It can be obviously noticed that there

is a steep rise in the anomaly scores when various anoma-

lous events occur, and as the anomalous events end, the

anomaly scores fall back to the lower range rapidly. For nor-

mal events, our method gives a lower abnormal score. This

intuitively demonstrates that our method has good sensitiv-

ity to abnormal events and can accurately and timely detect

the occurrence of abnormal events while maintaining a low

abnormal score prediction for normal events.

4.6. Analysis of Losses

To analyze the impact of the three loss functions Ln
rank,

La
rank, and Ldil, we perform ablation experiments on the

UCF-Crime and XD-Violence datasets. As shown in Tab. 5,

when all three loss functions are absent, the performance of

our method is unsatisfactory. This reveals that the original

CLIP suffers from domain bias and is not directly applica-

ble to the VAD domain. When three loss functions are avail-

able individually, the performance of our method is clearly

improved, where the La
rank gives the biggest boost to the

performance. When all three losses are combined and co-

operate with each other, our method achieves the best per-

formance. This demonstrates the effectiveness of the three

loss functions we have designed, and they can effectively

assist CLIP in domain adaptation for WSVAD.

5. Conclusions
In this paper, we propose a novel framework, TPWNG, to

perform pseudo-label generation and self-training for WS-

VAD. TPWNG finetunes CLIP with the designed ranking

loss and distributional inconsistency loss to transfer its text-

image alignment capability to assist pseudo-label genera-

tion with the PLG module. Further, we design a learnable

text prompt and normality visual prompt mechanisms to

further improve the alignment accuracy of video events de-

scription text and video frames. Finally, we introduce a TC-

SAL module to learn the temporal dependencies of differ-

ent video events more flexibly and accurately. We perform

extensive experiments on the UCF-Crime and XD-Violence

datasets, and the superior performance compared to existing

methods demonstrates the effectiveness of our method.
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