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Figure 1. The sample try-on images synthesized by our Texture-Preserving Diffusion (TPD) model. In each triplet, the two left images are
the original person and garment images from VITON-HD [13] database. The right one depicts the synthesized image.

Abstract

Image-based virtual try-on is an increasingly important
task for online shopping. It aims to synthesize images of
a specific person wearing a specified garment. Diffusion
model-based approaches have recently become popular, as
they are excellent at image synthesis tasks. However, these
approaches usually employ additional image encoders and
rely on the cross-attention mechanism for texture transfer
from the garment to the person image, which affects the
try-on’s efficiency and fidelity. To address these issues,
we propose an Texture-Preserving Diffusion (TPD) model
for virtual try-on, which enhances the fidelity of the re-
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sults and introduces no additional image encoders. Ac-
cordingly, we make contributions from two aspects. First,
we propose to concatenate the masked person and refer-
ence garment images along the spatial dimension and uti-
lize the resulting image as the input for the diffusion model’s
denoising UNet. This enables the original self-attention
layers contained in the diffusion model to achieve efficient
and accurate texture transfer. Second, we propose a novel
diffusion-based method that predicts a precise inpainting
mask based on the person and reference garment images,
further enhancing the reliability of the try-on results. In
addition, we integrate mask prediction and image synthesis
into a single compact model. The experimental results show
that our approach can be applied to various try-on tasks,
e.g., garment-to-person and person-to-person try-ons, and
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significantly outperforms state-of-the-art methods on pop-
ular VITON, VITON-HD databases. Code is available at
https://github.com/Gal4way/TPD.

1. Introduction
Image-based virtual try-on has recently attracted significant
interest in the research community as online shopping in-
creases in popularity [1, 11, 12, 14, 18, 46, 59, 60]. The
goal of image-based virtual try-on is to replace the clothes
in a person image with a specified garment in a photo-
realistic manner. It can potentially enhance the customers’
online shopping experience significantly; however, this task
remains challenging. A key problem is that the reference
garment must be naturally deformed to fit the specified per-
son’s body shape and pose. Moreover, the patterns and tex-
ture details on the reference garment should be preserved
and distorted realistically during the virtual try-on process.

To overcome this challenge, existing methods [1, 8, 12–
14, 16, 18, 22, 23, 46, 53, 55, 56] generally perform gar-
ment warping before image synthesis, as illustrated in Fig-
ure 2(a). However, garment warping produces artifacts
that are difficult to correct in the synthesis stage [46, 58].
Hence, recent works [46, 54, 57, 58] have begun explor-
ing warping-free methods based on the powerful diffu-
sion models [17, 20, 39]. They typically utilize the cross-
attention mechanism [4] in the denoising UNet to transfer
the textures in the reference garment to the correspond-
ing areas of the person image, as shown in Figure 2(b).
To extract the reference garment’s texture features, DCI-
VTON [46] and MGD [47] directly utilize the original CLIP
encoder [32], while LaDI-VTON [57] and TryOnDiffu-
sion [58] adopt additional image encoders, e.g., a Vision
Transformer (VIT) [49] or an additional UNet [43] model.

However, the subject of efficiently generating high-
fidelity try-on images remains underexplored. First, ex-
tracting features using the CLIP image encoder [21, 46]
results in the loss of fine-grained textures, as this encoder
was initially trained to align with the holistic features of
coarse captions. In addition, utilizing specialized image en-
coders [57, 58] increases computational costs. Second, ex-
isting methods [8, 13, 46, 53, 55, 56, 58] generally remove
the original garment in the person image through a roughly
estimated inpainting mask. While it may not cover every
texture in the original person image’s garment, it often re-
moves garment-irrelevant textures, such as tattoos and mus-
cle structures [58], as shown in the experimentation section.
This issue further impacts the try-on results’ fidelity.

Therefore, we propose a Texture-Preserving Diffusion
(TPD) model for high-fidelity virtual try-on to address these
challenges. First, we propose a Self-Attention-based Tex-
ture Transfer (SATT) method. In contrast to existing ap-
proaches, we discard garment warping and specialized gar-
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Figure 2. Comparisons between different virtual try-on mech-
anisms. (a) The warping-based mechanism. (b) The cross-
attention-based warping-free mechanism. (c) Our self-attention-
based mechanism. A represents the attention weight of a specific
query-key pair.

ment image encoders in our method. Instead, we discover
that the original self-attention blocks within the diffusion
model are more effective and efficient for garment texture
transfer. Specifically, as illustrated in Figure 2(c), we con-
catenate the masked person and the reference garment im-
ages along the spatial dimension, and the resulting image
is fed into the diffusion model. Then, we leverage the
powerful self-attention blocks in the Stable Diffusion (SD)
model’s [20] denoising UNet [43] to capture the long-range
correlations among pixels in the combined image. This
strategy regards the reference garment as the context for
the masked person in the same image and enables efficient
texture transfer from the garment to the person image in
the forward pass of the diffusion model. Moreover, since
the UNet contains self-attention blocks with multiple reso-
lutions, it facilitates more effective texture transfer across
different feature scales. In the experimentation section,
we demonstrate the capability of SATT in generating high-
fidelity try-on images with complex textures, patterns, and
challenging body pose variations.

Second, we propose a Decoupled Mask Prediction
(DMP) method that automatically determines an accurate
inpainting area for each person-garment image pair. Since
an accurate mask is determined by the original person and
the reference garment images, we predict this mask in a de-
coupled manner. Specifically, DMP iteratively denoises the
mask from an initial random noise to an inpainting area de-
termined by the reference garment. We also obtain the area
of the original garment in the person image using a human
parsing tool. Finally, we use the union of both areas as the
final inpainting mask. Unlike existing approaches that adopt
mask solely determined by the original person image, the
mask predicted by DMP adapts to the garment it encoun-
ters, enabling us to preserve as much identity information
as possible. In the experimentation section, we demonstrate
that DMP preserves fingers, arms and tattoos compared to
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existing methods, enhancing synthesized images’ fidelity.
Our key contributions are summarized as follows. First,

we propose a novel diffusion-based and warping-free
method that achieves a more efficient and accurate virtual
try-on. Second, we explore the coarse inpainting masks’ ef-
fect on the fidelity of the synthesized images and propose
a novel method for accurate mask prediction. Third, our
approach consistently outperforms state-of-the-art methods
in the realism and coherence of the synthesized images on
popular VITON and VITON-HD databases.

2. Related Work
Image-based Virtual Try-On. The existing image-based
virtual try-on methods can be divided into warping-based
and warping-free approaches.

The warping-based approaches [1, 8, 12–14, 16, 18, 22,
23, 46, 53, 55, 56] perform garment warping before im-
age synthesis. They typically adopt a two-stage frame-
work: the first stage warps the garment image to the body
in the person image, while the second synthesizes the fi-
nal image by fusing the warped garment and the person
images. Thin Plate Spline (TPS) [3, 14, 31, 35, 36], flow
map [2, 9, 10, 23, 24, 37], and landmark [6, 7, 53, 56]
facilitate garment warping. Regarding the image synthe-
sis stage, one method group promotes the fidelity of syn-
thesized images by providing extra cues like human pars-
ing maps [3, 13, 22], while the other [1, 13, 48] im-
proves the image quality by modifying the generative mod-
els’ structure, like introducing additional normalization lay-
ers. Recently, researchers have begun leveraging diffusion
models [20] instead of Generative Adversarial Networks
(GANs) [25] in the image synthesis stage due to their pow-
erful image generation capabilities [46, 54]. As a result,
they have obtained try-on images of higher quality and re-
alism. The main disadvantage of warping-based methods is
the artifacts produced by garment warping, which are diffi-
cult to correct in the image synthesis stage.

In contrast, warping-free methods [47, 57, 58] are usu-
ally diffusion model-based [17, 20]. They bypass garment
warping to avoid generating artifacts. They typically mask
the original garment in the person image and transfer the
garment textures to the masked area using an additional
image encoder and cross-attention blocks in the diffusion
model’s denoising UNet. To achieve this goal, Baldrati et
al. [47] adopted the original CLIP text encoder in the SD
model to achieve a multi-modal virtual try-on. Similar to
Paint-by-Example [21], Gou et al. [46] replaced the CLIP
text encoder with the CLIP image encoder to extract image
features as a condition. Additionally, Morelli et al. [57] in-
troduced an additional VIT [49] model to supplement the
CLIP encoder. However, the CLIP image encoder was pre-
trained to align with the holistic features of coarse textual
captions; therefore, the extracted features are also coarse

and bring in texture loss in the resulting try-on images. In-
stead of using the off-the-shelf SD model, Zhu et al. [58]
trained a new diffusion model from scratch based on their
private large-scale database. They also introduced an ad-
ditional U-Net model to replace the CLIP image encoder
that facilitates multi-scale feature extraction from the gar-
ment image. However, the enlarged model architecture also
incurs additional computational costs.

This paper addresses the fidelity issues in existing
warping-free virtual try-on methods. We propose to utilize
the original self-attention blocks within the diffusion model
to achieve a more powerful and efficient garment texture
transfer. We also introduce an approach that automatically
determines an accurate inpainting area according to the spe-
cific person-garment pair, which enables the model to gen-
erate high-fidelity images.

Diffusion Models. Diffusion models [17, 20, 38, 39] have
attracted significant research attention, as they generate
high-quality images and enable stable training convergence.
The Denoising Diffusion Probabilistic Model (DDPM) was
first proposed to model image generation as a diffusion
process [17]. Then, Denoising Diffusion Implicit Models
(DDIM) [15] and Pseudo Numerical methods for Diffusion
Models (PNDM) [19] were proposed to accelerate the gen-
eration process by developing new noise schedulers. More
recently, latent diffusion models [20] have been introduced
to perform the diffusion process in the latent space of a
pre-trained Variational Autoencoder (VAE) [42], which en-
ables higher computational efficiency and synthesized im-
age quality.

Latent diffusion models have been applied in various im-
age generation tasks [26, 33, 40, 41], and many studies are
aimed at improving the controllability of the generation pro-
cess. For example, Yang et al. [21] replaced the CLIP text
encoder in the SD model with a CLIP image encoder, en-
abling the model to generate images according to the image
condition. Karras et al. [41] adopted a pre-trained VAE en-
coder to supplement the CLIP image encoder, improving
the generation of high-fidelity images. Recently, Zhang et
al. [33] proposed the ControlNet model, which introduces
an additional network that injects image conditions into the
frozen SD model as explicit guidance. ControlNet performs
adequately for tasks where the input and output are aligned
in the structures, but it may struggle with virtual try-on due
to the significant pose differences between the person and
garment images.

This study addresses the virtual try-on’s challenges
based on the SD model. Compared to the above studies,
we generate high fidelity try-on images without using spe-
cialized image encoders. Moreover, our approach is robust
and can manage significant pose differences.
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Figure 3. An overview of our framework. (a) In the training phase, we begin with the original person image S and a randomly augmented
mask cm. cm is obtained by interpolating between the original clothing area Ms and the bounding box bs. The augmented mask cm, the
masked person image cm ⊙ S, the pose map cp, and the dense pose cd serve as the auxiliary input for the denoising UNet. Furthermore,
the reference garment C is concatenated with each of the auxiliary input along the spatial dimension as the context of the self-attention
mechanism. (b) The inference phase is divided into two stages. In the first stage, we predict the clothing area ms1

0 for the new garment
C∗ on the person. We obtain cs2m via element-wise multiplication between ms1

0 and Ms. In the second stage, cs2m is utilized as an accurate
inpainting mask, enabling the diffusion model to produce high-fidelity try-on images. For clarity, we omit the predicted concatenated
garments from the results of both stages.

3. Method
3.1. Preliminary: Diffusion Models

DDPMs [17] iteratively recover images from normally dis-
tributed random noise. To improve training and infer-
ence speed, recent diffusion models, e.g., SD model [20],
operate in the encoded latent space of a pre-trained au-
toencoder [42]. SD consists of two core components: a
VAE [42] and a denoising UNet [43]. Specifically, the VAE
encoder E first encodes the input image x ∈ R3×H×W into
a latent representation z = E(x) ∈ R4×h×w. After T diffu-
sion steps, z generally develops into an isotropic Gaussian
noise zT . Then, the text-conditioned denoising UNet ϵθ is
applied to iteratively predict the noise added during each
timestep t = 1, ..., T and to finally recover the z′. The VAE
decoder D reconstructs the original image using z′ as its in-
put, i.e., x′ = D(z′). For the inpainting task [21], U-Net
uses two more inputs in addition to z, i.e., the inpainting
mask m and the inpainting background E((m ⊙ x). The

objective is defined as follows:

LSD = Ez,ϵ∼N (0,1),t[∥ϵ− ϵθ(zt, E(m⊙ x),m, t, e)∥22],
(1)

where ϵ represents the ground-truth noise added in this step,
⊙ denotes the element-wise multiplication, and e signifies
the embeddings obtained using a CLIP encoder.

3.2. Overview

The overview of our TPD model is presented in Figure 3. In
this instance, we adopt the SD model [20] as the backbone.
We denote the original person image as S ∈ R3×H×W ,
the reference garment image as C∗ ∈ R3×H×W , and the
synthesized person image wearing the reference garment as
I∗ ∈ R3×H×W . In practice, collecting triplet data in the
form of < S,C∗, I∗ > is challenging. To solve this prob-
lem, existing databases [13, 14] usually adopt paired data in
the form of < S,C >, where C refers to a garment image
that contains the same garment worn by the person in S, as
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illustrated in Figure 3.
In the following sections, we introduce the Self-

Attention-based Texture Transfer (SATT) method in Sec-
tion 3.3 and the Decoupled Mask Prediction (DMP) method
in Section 3.4, respectively.

3.3. Self-Attention-based Texture Transfer

The SD model’s denoising UNet contains convolu-
tional [30], self-attention, and cross-attention blocks in
each resolution level. Existing methods typically utilize
the cross-attention blocks to achieve garment-to-person tex-
ture transfer. Therefore, they focus on promoting the fea-
ture extraction power of the specialized garment image en-
coders [21, 47, 57, 58], whose outputs serve as the key and
value for cross-attention operations. However, enhancing
the power of specialized garment image encoders usually
incurs additional computational costs [58]. We argue that
existing works overlook the potential benefits of the self-
attention blocks.

This section proposes to utilize the inherent self-
attention blocks in the denoising UNet for more accurate
and efficient virtual try-on. Fundamentally, we regard both
the reference garment and the unmasked area in the person
image as the context for the inpainting task. Specifically,
we first concatenate the garment image C and the masked
person image cm ⊙ S along the spatial dimension. Then,
we feed the resulting image into the UNet. This makes C
part of the context in the combined image. Accordingly, the
task of the diffusion model becomes reconstructing both the
person and garment images from random Gaussian noise, as
illustrated in Figure 3. As a result, the UNet’s convolutional
blocks extract the garment’s textures, and the self-attention
blocks efficiently transfer textures from the garment to the
person image. As illustrated in Figure 2, the self-attention
operation can be represented as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V, (2)

where Q,K, V ∈ Rp×d are stacked vectors reshaped from
the same latent feature map, p is the number of pixels in the
feature map, and d represents the vector dimension. In this
way, the correlation between each pixel pair in the feature
map is considered, naturally achieving texture transfer from
the garment area to the person area within the same image.

Alternatively, C and cm ⊙ S can be concatenated along
the channel dimension. However, as mentioned in [58], the
pixels in C and cm ⊙ S are not spatially aligned; therefore,
the textures in C can hardly be transferred to the masked
area in cm ⊙ S using convolution or self-attention opera-
tions. Section 4 demonstrates that our strategy performs
significantly better than the concatenation operation along
the channel dimension.

3.4. Decoupled Mask Prediction

Existing methods [12–14, 22, 46] generally employ a mask
to remove the original garment in the person image. There-
fore, the accuracy of this mask is vital to the virtual try-
on task’s performance. However, existing methods tend to
roughly estimate one mask for each person image and apply
it to all reference garments [13]. As illustrated in Figure 8,
this rough mask may cover some background and body-part
areas, resulting in unnecessary loss of information. These
issues affect the fidelity of the synthesized try-on image I∗.

We propose a method to predict an accurate mask for
each specific < S,C∗ > pair to solve this problem. Assum-
ing that the person is simultaneously wearing the original
and new garments, the accurate inpainting mask is equal to
the union of both clothing areas. Since the original clothing
area Ms can be obtained from S using human parsing, our
approach aims to predict the new garment’s clothing area.

In addition to predicting the latent z for the image syn-
thesis task, our method incorporates an additional channel
m dedicated to predicting the clothing area of the new gar-
ment on the target person, as illustrated in Figure 3. No-
tably, the training data is in the form of < S,C >, and the
predicted mask in the training phase is precisely the clothing
area of the original garment in S. In comparison, the data
in the inference phase is in the form of < S,C∗ >. There-
fore, we adopt the following two-stage prediction pipeline
during testing. As illustrated in Figure 3, in the first stage,
we utilize a bounding box as the initial inpainting mask cs1m .
Our model iteratively predicts a coarse try-on image and the
clothing area ms1

0 for the new garment C∗ iteratively from
random Gaussian noise. In the second stage, we utilize the
union of ms1

0 and Ms, resulting in an accurate inpainting
mask cs2m for the current person-garment image pair. This
accurate mask enables us to preserve the pixels in the back-
ground and body-part areas irrelevant to the new garment.
Our model produces high-fidelity images with this mask, as
shown in the third and last columns in Figure 8.

Moreover, we introduce the following two strategies to
enhance our model’s robustness. First, we adopt the pose
map cp [29] and dense pose cd [28] of S as auxiliary input
along with cm and cm⊙S. cp and cd provide the body pose
and shape information in the masked area. Each of them is
also concatenated with the reference garment image along
the spatial dimension. Second, we augment the initial mask
in the training phase by randomly interpolating between Ms

and the bounding box bs. This is because our model en-
counters coarse and accurate masks in the first and second
inference stages, respectively. This augmentation strategy
makes our model robust and enables it to tackle the varied
shapes of inpainting masks observed in the testing phase.

In summary, we obtain accurate inpainting masks via
DMP, allowing us to achieve warping-free virtual try-on
with minimal modification to the original person image.
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Table 1. The quantitative comparisons between our method and
state-of-the-art methods on VITON [14] and VITON-HD [13]
databases.

Database Method SSIM↑ FID↓ LPIPS↓
CP-VTON [12] 0.78 24.43 -
ClothFlow [2] 0.84 14.43 -
ACGPN [3] 0.84 15.67 0.11

VITON SDAFN [9] 0.85 10.55 0.09
PF-AFN [24] 0.87 10.09 0.08
Paint-by-Example [21] 0.83 12.56 0.12
Ours 0.89 9.58 0.07

CP-VTON [12] 0.79 30.25 0.14
PF-AFN [24] 0.85 11.30 0.08
VITON-HD [13] 0.84 11.65 0.11

VITON-HD HR-VITON [8] 0.87 10.91 0.10
LaDI-VTON [57] 0.87 9.41 0.09
DCI-VTON [46] 0.88 8.78 0.08
Paint-by-Example [21] 0.84 12.15 0.13
Ours 0.90 8.54 0.07

4. Experiments

Databases and Metrics. Experiments are conducted on
three virtual try-on benchmarks: VITON [14], VITON-
HD [13], and DeepFashion [51]. VITON contains training
and testing sets of 14,221 and 2,032 image pairs, respec-
tively. Each image pair has a front-view photo of a female
and a reference garment. The image resolution is 256 × 192
pixels. VITON-HD is similar to VITON except that its im-
age resolution is 1024 × 768 pixels. In our experiments, we
resize all images to 512 × 384 pixels for comparison. More-
over, we conduct additional experiments on DeepFashion
for the person-to-person virtual try-on task, which involves
fitting the garment on a person to another person’s body.
This is significantly more challenging and the experimental
results are illustrated in Figure 6 and Figure 8.

We compare our model’s performance with state-of-the-
art methods in paired and unpaired settings. In the paired
setting, the person in S wears the same garment as the ref-
erence image. In the unpaired setting, the reference garment
is different from the original one in S. Structural Similar-
ity (SSIM) [44], Learned Perceptual Image Patch Similarity
(LPIPS) [34], and Frechet Inception Distance (FID) [45] are
utilized to measure the accuracy and realism of the synthe-
sized images. Similar to existing studies [3, 8, 9, 13, 24],
the SSIM score and LPIPS are used for the paired setting,
while the FID score is used for the unpaired.

Implementation Details. Similar to existing virtual try-
on studies [13, 57], we employ OpenPose [29], Graphon-
omy [52], and Detectron2 [50] to extract the pose map,
human-parsing maps, and dense pose of the person, respec-
tively. We train our model with the Adam optimizer [27],
and the learning rate is set to 1e-5.

Table 2. The ablation study on each key TPD component on
VITON-HD [13] database.

Method SSIM↑ FID↓ LPIPS↓
w/o SATT 0.85 11.34 0.12
Channel-dim Transfer 0.85 10.95 0.11
w/o DMP 0.88 9.08 0.08
w/o Mask Augmentation 0.80 27.24 0.19

Ours 0.90 8.54 0.07

4.1. Qualitative Comparisons

Figure 4 and Figure 5 depict the qualitative compar-
isons between TPD and state-of-the-art methods including
ACGPN [3], PF-AFN [24], SDAFN [9], VITON-HD [13],
HR-VITON [8], LaDI-VTON [57], and the diffusion-based
inpainting method Paint-by-Example [21]. Try-On Diffu-
sion [58] is excluded from the comparisons as it is not open
sourced and it was trained on a large-scale private database
in a person-to-person try-on setting. This makes fair com-
parisons with this method infeasible.

We observe that TPD generates higher quality and fi-
delity images than other methods. First, existing methods
tend to produce artifacts for garments with complex tex-
tures, e.g., texts and logos in the first row of Figure 4.
There are two main reasons for these artifacts: (1) the warp-
ing operations tend to generate artifacts, and (2) the image
encoders used by these methods lose the fine-grained tex-
tures in the reference garment. Second, the performance
of existing methods decreases for person images with chal-
lenging poses. As illustrated in the third row of Figure 4,
these methods generate distorted fingers or arms because
they adopt inaccurate masks when removing the original
garment in the person image, resulting in the loss of human
body part information.

In comparison, TPD can generate high-quality try-on im-
ages with fewer artifacts. One main reason is that our self-
attention-based texture transfer method is warping-free and
enables efficient multi-scale feature extraction from the gar-
ment image. Another reason is that we utilize DMP to deter-
mine the precise inpainting area based on the person image
and the reference garment, as illustrated in Figure 8. This
enables us to modify the original person image within min-
imal pixels, leading to high-fidelity results for images with
challenging poses.

4.2. Quantitative Results

Table 1 presents the quantitative comparisons between TPD
and state-of-the-art methods, including CP-VTON [12],
ClothFlow [2], ACGPN [3], SDAFN [9], PF-AFN [24],
VITON-HD [13], HR-VITON [8], Dci-VTON [46], LaDI-
VTON [57], and the diffusion-based inpainting method
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VITON-HD HR-VITON LaDI-VTON Paint-by-Example Ours VITON-HD HR-VITON LaDI-VTON Paint-by-Example Ours

Figure 4. The qualitative comparisons between our method and state-of-the-art methods on VITON-HD [13] database.

ACGPN PFAFN SDAFN OursPerson Garment ACGPN PFAFN SDAFN OursPerson Garment

Figure 5. The qualitative comparisons between our method and state-of-the-art methods on VITON [14] database.

Paint-by-Example [21]. This table shows that TPD consis-
tently achieves the best performance on both VITON [14]
and VITON-HD [13] databases. Specifically, it achieves the
leading FID scores, demonstrating that the images it gener-
ates are of higher-quality. Moreover, it achieves the best
SSIM and LPIPS scores, indicating that it generates try-on
images with the correct semantics.

4.3. Ablation Study

We perform an ablation study in Table 2, Figure 7 and Fig-
ure 8 to justify each key TPD component’s effectiveness.

First, we validate SATT’s effectiveness. Instead of us-
ing SATT, we extract garment features via the CLIP image
encoder, as introduced in Section 2. Accordingly, texture
transfer is accomplished using the cross-attention blocks in
the denoising UNet. This method is denoted as ‘w/o SATT’
in Table 2 and Figure 7. We demonstrate that the perfor-
mance of this method is notably poorer than that of SATT.

This is because it is difficult for the CLIP image encoder to
extract fine-grained texture features from the reference gar-
ment image, as this encoder was pre-trained to align with
the holistic features of coarse captions [32].

Second, we further validate the importance of concate-
nating the garment and masked person images along the
spatial dimension to SATT. Specifically, we adopt the al-
ternative strategy mentioned in Section 3.3, which concate-
nates the two images along the channel dimension. This
method is denoted as ‘Channel-dim Transfer’ in Table 2 and
Figure 7. Both qualitative and quantitative results show that
SATT leads to results of higher-fidelity. This is because
the pixels in the garment and masked person images are
not spatially aligned, which makes texture transfer across
channels difficult. In contrast, spatial concatenation makes
the garment a part of the context in the masked person im-
age, enabling easier and more accurate texture transfer to
the masked area.
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Paint-by-Example Ours Paint-by-Example Ours

Figure 6. The qualitative comparisons between our method and
Paint-by-Example [21] on DeepFashion [5] database.

Third, we demonstrate DMP’s effectiveness. Specifi-
cally, we remove DMP from the TPD framework and use
traditional masks instead [13]. This method is named ‘w/o
DMP’ in Table 2 and Figure 7. Figure 7 and Figure 8 show
that compared with traditional masks, those predicted by
DMP enable us to obtain improved try-on results, including
preserving body details, e.g., arms or tattoos. This is be-
cause DMP predicts accurate masks, which minimizes the
loss of irrelevant textures to the try-on task in the synthe-
sized image results.

Ours w/o SATT
Channel-dim 

Transfer w/o DMP
w/o Mask 

Augmentation

Figure 7. The ablation study on each TPD key component on
VITON-HD [13] database.

Finally, we verify the effectiveness of DMP’s mask aug-
mentation strategy. This experiment is represented as ‘w/o
Mask Augmentation’ in Table 2 and Figure 7. It is shown
that the model produces notable artifacts in the try-on re-
sults without the mask augmentation strategy. This is be-
cause the model only encounters coarse masks during the
training stage. Hence, it cannot handle the accurate masks
viewed in the second stage during inference. As illustrated
in the second column of Figure 7, mask augmentation ef-
fectively removes these artifacts in the synthesized images.

5. Conclusion and Limitations
In this paper, we propose a Texture-Preserving Diffusion
(TPD) model for high-fidelity virtual try-on without using
specialized garment image encoders. Our approach con-

Traditional Masks Results Our Predicted Masks Results

Figure 8. The comparisons between synthesized try-on images
with the traditional masks and our predicted masks on DeepFash-
ion [5] database.

catenates the person and reference garment images along
the spatial dimension and uses the combined image as the
input for the Stable Diffusion model’s denoising UNet. This
enables accurate feature transfer from the garment to the
person image using the inherent self-attention blocks in
the diffusion model. To preserve the background and hu-
man body-part details as much as possible, our model also
predicts a precise inpainting mask based on the reference
garment and the original person images, further enhancing
the fidelity of the synthesized results. Furthermore, TPD
can be widely applied to garment-to-person and person-to-
person virtual try-on tasks. The extensive experiments show
that our approach achieves state-of-the-art performance on
VITON [14] and VITON-HD [13] databases. This work
also has certain limitations. For example, images in nearly
all databases for this task have single-color background.
Therefore, our model’s performance on images with more
complex backgrounds is to be explored in the future. De-
tails can be found in the supplementary materials.

Broader Impacts Virtual try-on methods can generate
try-on images based on the person and reference garment
images, which means it is significant for real-world applica-
tions like online shopping and e-commerce. Moreover, our
approach may be applied to other diffusion model-based im-
age editing tasks, such as image inpainting, image-to-image
translation. This adaptability broadens its utility to the com-
munity, paving the way for more advanced image synthesis
and editing works. To the best of our knowledge, this work
does not have obvious negative social impacts.
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