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Abstract

In the context of autonomous driving, the significance of
effective feature learning is widely acknowledged. While
conventional 3D self-supervised pre-training methods have
shown widespread success, most methods follow the ideas
originally designed for 2D images. In this paper, we present
UniPAD, a novel self-supervised learning paradigm apply-
ing 3D volumetric differentiable rendering. UniPAD im-
plicitly encodes 3D space, facilitating the reconstruction of
continuous 3D shape structures and the intricate appear-
ance characteristics of their 2D projections. The flexibil-
ity of our method enables seamless integration into both
2D and 3D frameworks, enabling a more holistic compre-
hension of the scenes. We manifest the feasibility and ef-
fectiveness of UniPAD by conducting extensive experiments
on various 3D perception tasks. Our method significantly
improves lidar-, camera-, and lidar-camera-based baseline
by 9.1, 7.7, and 6.9 NDS, respectively. Notably, our pre-
training pipeline achieves 73.2 NDS for 3D object detec-
tion and 79.4 mloU for 3D semantic segmentation on the
nuScenes validation set, achieving state-of-the-art results
in comparison with previous methods.

1. Introduction

Self-supervised learning for 3D point cloud data is of great
significance as it is able to use vast amounts of unlabeled
data efficiently, enhancing their utility for various down-
stream tasks like 3D object detection [20, 51, 63, 64, 89,
92] and semantic segmentation [16, 47, 48, 52, 76, 104].
Although significant advances have been made in self-
supervised learning for 2D images [9, 10, 26, 27], extending
these approaches to 3D point clouds have presented consid-
erably more significant challenges. This is partly caused
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Figure 1. Effect of our pre-training for 3D detection and segmen-
tation on the nuScenes [5] dataset, where C, L, and M denote cam-
era, LiDAR, and fusion modality, respectively.

by the inherent sparsity of the data, and the variability in
point distribution due to sensor placement and occlusions
by other scene elements. Previous pre-training paradigms
for 3D scene understanding adapted the idea from the 2D
image domain and can be roughly categorized into two
groups: contrastive-based and MAE-based.

Contrastive-based methods [12, 102] explore pulling
similar 3D points closer together while pushing dissimi-
lar points apart in feature space through a contrastive loss
function. For example, PointContrast [80] directly oper-
ates on each point and has demonstrated its effectiveness
on various downstream tasks. Nonetheless, the sensitivity
to positive/negative sample selection and the associated in-
creased latency often impose constraints on the practical
applications of these approaches. Masked AutoEncoding
(MAE) [27], which encourages the model to learn a holistic
understanding of the input beyond low-level statistics, has
been widely applied in the autonomous driving field. Yet,
such a pretext task has its challenges in 3D point clouds due
to the inherent irregularity and sparsity of the data. Voxel-
MAE [28] proposed to divide irregular points into discrete
voxels and predict the masked 3D structure using voxel-
wise supervision. The coarse supervision may lead to in-
sufficient representation capability.

In this paper, we come up with a novel pre-training
paradigm tailored for effective 3D representation learn-
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ing, which not only eliminates the need for complex pos-
itive/negative sample assignments but also implicitly pro-
vides continuous supervision signals to learn 3D shape
structures. The whole framework, as illustrated in Figure 2,
takes the masked point cloud as input and aims to recon-
struct the missing geometry on the projected 2D depth im-
age via 3D differentiable neural rendering.

Specifically, when provided with a masked LiDAR point
cloud, our approach employs a 3D encoder to extract hierar-
chical features. Then, the 3D features are transformed into
the voxel space via voxelization. We further apply a dif-
ferentiable volumetric rendering method to reconstruct the
complete geometric representation. The flexibility of our
approach facilitates its seamless integration for pre-training
2D backbones. Multi-view image features construct the 3D
volume via lift-split-shoot (LSS) [61]. To maintain effi-
ciency during the training phase, we propose a memory-
efficient ray sampling strategy designed specifically for
autonomous driving applications, which can greatly re-
duce training costs and memory consumption. Compared
with the conventional methods, the novel sampling strategy
boosts the accuracy significantly.

Extensive experiments conducted on the competitive
nuScenes [5] dataset demonstrate the superiority and gen-
eralization of the proposed method. For pre-training on the
3D backbone, our method yields significant improvements
over the baseline, as shown in Figure 1, achieving enhance-
ments of 9.1 NDS for 3D object detection and 6.1 mloU
for 3D semantic segmentation, surpassing the performance
of both contrastive- and MAE-based methods. Notably,
our method achieves the state-of-the-art mloU of 79.4 for
segmentation on nuScenes dataset. Furthermore, our pre-
training framework can be seamlessly applied to 2D im-
age backbones, resulting in a remarkable improvement of
7.7 NDS for multi-view camera-based 3D detectors. We
directly utilize the pre-trained 2D and 3D backbones to a
multi-modal framework. Our method achieves 73.2 NDS
for detection, reaching the level of existing state-of-the-art
methods. Our contributions can be summarized as follows:

* To the best of our knowledge, we are the first to explore
the 3D differentiable rendering for self-supervised
learning in the context of autonomous driving.

* The flexibility of the method makes it easy to be ex-
tended to pre-train a 2D backbone. With a novel
sampling strategy, our approach exhibits superiority in
both effectiveness and efficiency.

* We conduct comprehensive experiments on the
nuScenes dataset, wherein our method surpasses the
performance of six pre-training strategies. Experimen-
tation involving seven backbones and two perception
tasks provides convincing evidence for the effective-
ness of our approach.

2. Related Work

Self-supervised learning in point clouds has gained re-
markable progress in recent years [12, 28, 30, 37, 42, 45,
57, 59, 68, 77, 85, 96, 102, 106]. PointContrast [80] con-
trasts point-level features from two transformed views to
learn discriminative 3D representations. Point-BERT [99]
introduces a BERT-style pre-training strategy with stan-
dard transformer networks. OcCo [71] occludes point
clouds based on different viewpoints and learns to com-
plete them. PointContrast [80] contrasts point-level fea-
tures from two transformed views to learn discrimina-
tive 3D representations. MSC [78] incorporates a mask
point modeling strategy into a contrastive learning frame-
work. PointM2AE [101] utilizes a multiscale strategy to
capture both high-level semantic and fine-grained details.
STRL [32] explores the rich spatial-temporal cues to learn
invariant representation in point clouds. GD-MAE [90] ap-
plies a generative decoder for hierarchical MAE-style pre-
training. ALSO [4] regards the surface reconstruction as
the pretext task for representation learning. Unlike pre-
vious works primarily designed for point clouds, our pre-
training framework is applicable to both image-based and
point-based models.

Representation learning in image has been well-
developed [1, 3, 8, 69, 74, 75], and has shown its capabil-
ities in all kinds of downstream tasks as the backbone ini-
tialization. Contrastive-based methods, such as MoCo [26]
and MoCov2 [11], learn the representations of images by
discriminating the similarities between different augmented
samples. MAE-based methods [24, 67] obtain the promis-
ing generalization ability by recovering masked patches. In
autonomous driving, models pre-trained on ImageNet [19]
are widely utilized in image-related tasks [29, 38, 40, 43,
46, 50, 86]. For example, to compensate for the insuffi-
ciency of 3D priors in tasks like 3D object detection, depth
estimation [60] and monocular 3D detection [73] are usu-
ally exploited as the additional pre-training techniques.

Neural rendering for autonomous driving utilizes neu-
ral networks to differentially render images from 3D scene
representation [7, 56, 58, 82, 84, 94]. Those methods can
be roughly divided into two categories: perception and sim-
ulation. Being capable of capturing semantic and accurate
geometry, NeRFs are gradually utilized to do different per-
ception tasks including panoptic segmentation [23], object
detection [82, 83], segmentation [35], and instance segmen-
tation [103]. For simulation, MARS [79] models the fore-
ground objects and background environments separately
based on NeRF, making it flexible for scene controlling in
autonomous driving simulation. Considering the limited la-
beled LiDAR point clouds data, NeRF-LiDAR [100] pro-
poses to generate realistic point clouds along with semantic

15239



! (a) Point Encoder _ EE

Padding

(b) Image Encoder =E

Maski
asking Mask Generator

Padding

'
i
i
I
|
i
!
| .~ Ray Points B Feature Vectors
i
i
|
|
i
i
i
|
i
i

@ Voxel Features

Rendered Depth Images

SDF Network
%

7

Volumetric Representation

\ % Rendered RGB Images
RGB Network\_.

4

\
1
1
1
1
1
1
1
|
1
1
1
|
1
1
|
1
1
1
|
1
|
1
|
|
|
|
|
|
1
|
1
|
|
|
|
|
|
|
|

’

Figure 2. The overall architecture. Our framework takes LiDAR point clouds or multi-view images as input. We first propose the mask
generator to partially mask the input. Next, the modal-specific encoder is adapted to extract sparse visible features, which are then converted
to dense features with masked regions padded as zeros. The modality-specific features are subsequently transformed into the voxel space,
followed by a projection layer to enhance voxel features. Finally, volume-based neural rendering produces RGB or depth prediction for

both visible and masked regions.

labels for the LiDAR simulation. Besides, READ [41] ex-
plores multiple sampling strategies to make it possible to
synthesize large-scale driving scenarios. Inspired by them,
we make novel use of NeRF, with the purpose of universal
pre-training, rather than of novel view synthesis.

3. Methodology

The UniPAD framework is a universal pre-training
paradigm that can be easily adapted to different modalities,
e.g., 3D LiDAR point and multi-view images. Our frame-
work is shown in Figure 2, which contains two parts, i.e.,
a modality-specific encoder and a volumetric rendering de-
coder. For processing point cloud data, we employ a 3D
backbone for feature extraction. In the case of multi-view
image data, we leverage a 2D backbone to extract image
features, which are then mapped into 3D space to form the
voxel representation. Similar to MAE [27], a masking strat-
egy is applied for the input data to learn effective represen-
tation. For decoders, we propose to leverage off-the-shelf
neural rendering with a well-designed memory-efficient ray
sampling. By minimizing the discrepancy between ren-
dered 2D projections and the input, our approach encour-
ages the model to learn a continuous representation of the
geometric or appearance characteristics of the input data.

3.1. Modal-specific Encoder

UniPAD takes LiDAR point clouds P or multi-view images
7 as input. The input is first masked out by the mask gener-
ator (detailed in the following) and the visible parts are then
fed into the modal-specific encoder. For the point cloud P,
a point encoder, e.g., VoxelNet [87], is adopted to extract
hierarchical features F},, as shown in Figure 2(a). For im-
ages, features F, are extracted from 7 with a classic con-
volutional network, as illustrated in Figure 2(b). To capture

both high-level information and fine-grained details in data,
we employ additional modality-specific FPN [44] to effi-
ciently aggregate multi-scale features in practice.

Mask Generator Prior self-supervised approaches, as ex-
emplified by He et al. [27], have demonstrated that strategi-
cally increasing training difficulty can enhance model rep-
resentation and generalization. Motivated by this, we in-
troduce a mask generator as a means of data augmentation,
selectively removing portions of the input. Given points P
or images Z, we adopt block-wise masking [90] to obscure
certain regions. Specifically, we first generate the mask ac-
cording to the size of the output feature map, which is sub-
sequently upsampled to the original input resolution. For
points, the visible areas are obtained by removing the infor-
mation within the masked regions. For images, we replace
the traditional convolution with the sparse convolution as in
[67], which only computes at visible places. After the en-
coder, masked regions are padded with zeros and combined
with visible features to form regular dense feature maps.

3.2. Unified 3D Volumetric Representation

To make the pre-training method suitable for various modal-
ities, it is crucial to find a unified representation. Transpos-
ing 3D points into the image plane would result in a loss
of depth information, whereas merging them into the bird’s
eye view would lead to the omission of height-related de-
tails. In this paper, we propose to convert both modalities
into the 3D volumetric space, as shown in Figure 2(c), pre-
serving as much of the original information from their cor-
responding views as possible. For multi-view images, the
view transformation [61] is adopted to transform 2D fea-
tures into the 3D ego-car coordinate system to obtain the
volume features. Specifically, we first predefine the 3D
voxel coordinates X, € RX*Y*Z>3 where X x Y x Z is
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Image and Point Cloud !
Figure 3. Illustration of the rendering results, where the ground truth RGB and projected point clouds, rendered RGB, and rendered depth
are shown on the left, middle, and right, respectively.

the voxel resolution. Subsequently, the X, is projected on
multi-view images to index the corresponding 2D features,
which are then multiplied by a learnable scaling factor. The
process can be calculated by:

X, = TeaiTie Xp, V= B(X,, F)T(X,, 6(Fe)), (1)
where X; is the projected coordinates in the image plane,
and Tjo. and To; denote the transformation matrices from
the LiDAR coordinate system to the camera frame and from
the camera frame to image coordinates, respectively. V is
the constructed volumetric feature, F, is the image features,
and ¢ is determined by a convolutional layer with a Soft-
max function. 5 and 7 represent the bilinear and trilinear
interpolation to retrieve the corresponding 2D features and
scaling factor, respectively. For the 3D point modality, we
follow [38] to directly retain the height dimension in the
point encoder. Finally, we leverage a projection layer in-
volving L conv-layers to enhance the voxel representation.

3.3. Neural Rendering Decoder

Differentiable Rendering We represent a novel use of
neural rendering to flexibly incorporate geometry or tex-
tural clues into learned voxel features with a unified pre-
training architecture, as shown in Figure 2(c). Specifically,
when provided the volumetric features, we sample some
rays {r;}X, from multi-view images or point clouds and
use differentiable volume rendering to render the color or
depth for each ray. The flexibility further facilitates the in-
corporation of 3D priors into the acquired image features,
achieved via supplementary depth rendering supervision.
This capability ensures effortless integration into both 2D

Rendered Image

Rendered Depth

and 3D frameworks. Figure 3 shows the rendered RGB im-
ages and depth images based on our rendering decoder.

Inspired by [72], we represent a scene as an implicit
signed distance function (SDF) field to be capable of repre-
senting high-quality geometry details. The SDF symbolizes
the 3D distance between a query point and the nearest sur-
face, thereby implicitly portraying the 3D geometry. For ray
r; with camera origin o and viewing direction d;, we sam-
ple D ray points {p; =0 +t;d; | j =1,...,D,t; <tjy1},
where p; is the 3D coordinates of sampled points, and ¢; is
the corresponding depth along the ray. For each ray point
P, the feature embedding f; can be extracted from the vol-
umetric representation by trilinear interpolation. Then, the
SDF value s; is predicted by qbspp(pj .f;), where ¢spr rep-
resents a shallow MLP. For the color value, we follow [58]
to condition the color field on the surface normal n; (i.e., the
gradient of the SDF value at ray point p;) and a geometry
feature vector h; from ¢gpr. Thus, the color representation
is denoted as ¢; = qSRGB(pj,fj,di,nj,hj), where ¢ragB
is parameterized by a MLP. Finally, we render RGB value
YRGB and depth Y;*P*" by integrating predicted colors and
sampled depth along rays:

D
-RGB __
Y; —E wjcj,

Jj=1

D
=Y @)
j=1

where w; represents an unbiased and occlusion-aware
weight [72] given by w; = Tjay. Tj = [[A_1 (1 — o) is
the accumulated transmittance, and «; is the opacity value

computed by:

Os (sj) — 05 (5j+1) 0) 3)

; = 1max
! < s (s5) ’
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i) )
Figure 4. Illustration of ray sampling strategies: i) dilation, ii)
random, and iii) depth-aware sampling.

where o5(z) = (1 4+ e~*%)~! is a Sigmoid function modu-
lated by a learnable parameter s.

Memory-friendly Ray Sampling Previous novel view
synthesis methods prioritize dense supervision to enhance
image quality. However, rendering a complete set of S x
H x W rays — where S represents the number of camera
views and H x W is the image resolution — presents sub-
stantial computational challenges, especially in the context
of autonomous driving scenes.

To alleviate computational challenges, we devise three
memory-friendly ray sampling strategies to render a re-
duced subset of rays: Dilation Sampling, Random Sam-
pling, and Depth-aware Sampling, illustrated in Figure 4.
1) Dilation Sampling traverses the image at intervals of I,
thereby reducing the ray count to SXII{%W 2) In contrast,
Random Sampling selects K rays indiscriminately from all
available pixels. 3) Although both dilation and random
sampling are straightforward and significantly cut compu-
tation, they overlook the subtle prior information that is in-
herent to the 3D environment. For example, instances on
the road generally contain more relevant information over
distant backgrounds like sky and buildings. Therefore, we
introduce depth-aware sampling to selectively sample rays
informed by available LiDAR information, bypassing the
need for a full pixel set. To implement this, we project
point clouds onto the multi-view images and acquire the set
of projection pixels with a depth less than the 7 threshold.
Subsequently, rays are selectively sampled from this refined
pixel set as opposed to the entire array of image pixels. In
doing so, our approach not only alleviates the computational
burden but also enhances the learned representation by con-
centrating on the most relevant segments within the scene.

Pre-training Loss The overall pre-training loss consists
of the color loss and depth loss:

K
ARGB RGB RGB
L= Y. Y.
e Do e

K+
)\depth }}depth Ydepth
K+ | [ -4 |

“4)

_|_

)
i=1

where Y;RB and Y,*P"™" are the ground-truth color and
depth for each ray, respectively. ;X6 and Y;*""™" are the
corresponding rendered ones in Eq. 2. K™ is the count of

rays with available depth.

4. Experiments
4.1. Datasets and Evaluation Metrics

We conduct the experiments on the NuScenes [5] dataset,
which is a challenging dataset for autonomous driving. It
consists of 700 scenes for training, 150 scenes for valida-
tion, and 150 scenes for testing. Each scene is captured
through six different cameras, providing images with sur-
rounding views, and is accompanied by a point cloud from
LiDAR. The dataset comes with diverse annotations, sup-
porting tasks like 3D object detection and 3D semantic seg-
mentation. For detection evaluation, we employ nuScenes
detection score (NDS) and mean average precision (mAP),
and for segmentation assessment, we use mean intersection-
over-union (mloU).

4.2. Implementation Details

We base our code on the MMDetection3D [17] toolkit and
train all models on 4 NVIDIA A100 GPUs. The input image
is configured to 1600 x 900 pixels, while the voxel dimen-
sions for point cloud voxelization are [0.075,0.075,0.2].
During the pre-training phase, we implemented several data
augmentation strategies, such as random scaling and rota-
tion. Additionally, we partially mask the inputs, focusing
only on visible regions for feature extraction. The masking
size and ratio for images are configured to 32 and 0.3, and
for points to 8 and 0.8, respectively. ConvNeXt-small [53]
and VoxelNet [87] are adopted as the default image and
point encoders, respectively. A uniform voxel representa-
tion with the shape of 180 x 180 x 5 is constructed across
modalities. The feature projection layer reduces the voxel
feature dimensions to 32 via a 3-kernel size convolution.
For the decoders, we utilize a 6-layer MLP for SDF and a
4-layer MLP for RGB. In the rendering phase, 512 rays per
image view and 96 points per ray are randomly selected.
We maintain the loss scale factors for Argp and Ageptn at
10. The model undergoes training for 12 epochs using the
AdamW optimizer with initial learning rates of 2¢~° and
le~* for point and image modalities, respectively. In the
ablation studies, unless explicitly stated, fine-tuning is con-
ducted for 12 epochs on 50% of the image data and for
20 epochs on 20% of the point data, without the use of
CBGS [105] strategy and cut-and-paste [87] augmentation.

4.3. Comparison with State-of-the-Art Methods

3D Object Detection. In Table 1, we compare UniPAD
with previous detection approaches on the nuScenes val-
idation set. We adopt UVTR [38] as our baselines for
point-modality (UVTR-L), camera-modality (UVTR-C),
Camera-Sweep-modality (UVTR-CS), and fusion-modality
(UVTR-M). Benefits from the effective pre-training, Uni-
PAD consistently improves the baselines, namely, UVTR-
L, UVTR-C, and UVTR-M, by 2.9, 2.4, and 3.0 NDS,
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Table 1. Comparisons of different methods with a single model on the nuScenes val set. We compare with classic methods on different
modalities without test-time augmentation. {: denotes our reproduced results based on MMDetection3D [17]. L, C, CS, and M indicate

the LiDAR, Camera, Camera Sweep, and Multi-modality input, respectively.

Methods ‘ Present at ‘ Modality ‘ CS ‘ CBGS ‘ NDS?T mAPT
PVT-SSD [91] CVPR’23 L v 65.0 53.6
CenterPoint [97] CVPR’21 L v 66.8 59.6
FSD [22] NeurIPS’22 L v 68.7 62.5
VoxelNeXt [14] CVPR’23 L v 68.7 63.5
LargeKernel3D [13] CVPR’23 L v 69.1 63.3
TransFusion-L [2] CVPR’22 L v 70.1 65.1
CMT-L [86] ICCV’23 L v 68.6 62.1
UVTR-L [38] NeurIPS’22 L v 67.7 60.9
UVTR-L+UniPAD (Ours) - L v 70.6 65.0
BEVFormer-S [40] ECCV’22 C v 44.8 37.5
SpatialDETR [21] ECCV’22 C 42.5 35.1
PETR [50] ECCV’22 C v 44.2 37.0
Ego3RT [55] ECCV’22 C 45.0 37.5
3DPPE [65] ICCV’23 C v 45.8 39.1
BEVFormerV2 [88] CVPR’23 C 46.7 39.6
CMT-C [86] ICCV’23 C v 46.0 40.6
FCOS3DT [73] ICCVW’21 C 384 31.1
FCOS3D+UniPAD (Ours) - C 40.1 33.2
UVTR-C [38] NeurIPS’22 C 45.0 37.2
UVTR-C+UniPAD (Ours) - C 47.4 41.5
UVTR-CS [38] NeurIPS’22 C 48.8 39.2
UVTR-CS+UniPAD (Ours) - C 50.2 42.8
PointPainting [70] CVPR’20 C+L v 69.6 65.8
MVP [98] NeurIPS’21 C+L v 70.8 67.1
TransFusion [2] CVPR’22 C+L v 71.3 67.5
AutoAlignV2 [15] ECCV’22 C+L v 71.2 67.1
BEVFusion [43] NeurIPS’22 C+L v 71.0 67.9
BEVFusion [54] ICRA’23 C+L v 71.4 68.5
ObjectFusion [6] ICCV’23 C+L v 72.3 69.8
Deeplnteraction [93] NeurIPS’22 C+L v 72.6 69.9
SparseFusion [81] ICCVv’23 C+L v 72.8 70.4
CMT-M [86] ICCV’23 C+L v 72.9 70.3
UVTR-M [38] NeurIPS’22 C+L v 70.2 65.4
UVTR-M+UniPAD (Ours) - C+L v 73.2 69.9

Table 2. Comparisons of different methods with a single model on
the nuScenes segmentation dataset.

Methods Modality | Backbone Split

val  test
RangeFormer [34] L Transformer | 78.1 80.1
SphereFormer [36] L Transformer | 78.4 81.9
WaffleIron [62] L Conv2D 79.1 -
SPVNAS [66] L SpConv - 77.4
Cylinder3D [107] L SpConv 76.1 71.2
SpUNet [16] L SpConv 73.3 -
SpUNet+UniPAD (Ours) L SpConv 794 81.1

respectively. When taking multi-frame cameras as in-

puts, UniPAD-CS brings 1.4 NDS and 3.6 mAP gains over
UVTR-CS. Our pre-training technique also achieves 1.7
NDS and 2.1 mAP improvements over the monocular-based
baseline FCOS3D [73]. Without any test time augmenta-
tion or model ensemble, our single-modal and multi-modal
methods, UniPAD-L, UniPAD-C, and UniPAD-M, achieve
impressive NDS of 70.6, 47.4, and 73.2, respectively, reach-
ing the level of existing state-of-the-art methods.

3D Semantic Segmentation. In Table 2, we compare
UniPAD with previous point cloud semantic segmentation
approaches on the nuScenes Lidar-Seg dataset. We adopt
SpUNet [16] implemented by Pointcept [18] as our base-
line. Benefiting from effective pre-training, UniPAD im-
proves the baselines by 6.1 mloU, achieving state-of-the-
art performance on the validation set. Meanwhile, UniPAD
achieves an impressive mloU of 81.1 on the fest set, which
is comparable with existing state-of-the-art methods.

4.4. Comparisons with Pre-training Methods.

Image-based Pre-training. In Table 3, we conduct com-
parisons between UniPAD and several other image-based
pre-training approaches: 1) Depth Estimator: we follow
[60] to inject 3D priors into 2D learned features via depth
estimation; 2) Detector: the image encoder is initialized
using pre-trained weights from MaskRCNN [25] on the
nulmages dataset [5]; 3) 3D Detector: the weights from
the widely used monocular 3D detector [73] is used for
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Table 3. Comparison with different image-based pre-training.

Table 5. Pre-training effect on different view transformations.

Label

Methods ‘ D 1D ‘ NDS mAP
UVTR-C (Baseline) 25.2 23.0
+Depth Estimator 26.911-7 25.1121
+Detector v 29.414:2 277147
+3D Detector v 317165 29,0760
+UniPAD | | 329177 326190

Table 4. Comparison with different point-based pre-training.

. Support
Methods D D ‘ NDS mAP
UVTR-L (Baseline) 46.7 39.0
+Occupancy-based v 482115 412122
+MAE-based v 48.812-1 42.6#”75
+Contrast-based v v 492125 48.819-8
+UniPAD | v v | 558191 48,1191

model initialization, which relies on 3D labels for super-
vision. UniPAD demonstrates superior knowledge transfer
capabilities compared to previous unsupervised or super-
vised pre-training methods, showcasing the efficacy of our
rendering-based pretext task.

Point-based Pre-training. For point modality, we also
present comparisons with recently proposed self-supervised
methods in Table 4: 1) Occupancy-based: we implement
ALSO [4] in our framework to train the point encoder;
2) MAE-based: the leading-performing method [90] is
adopted, which reconstructs masked point clouds using the
chamfer distance. 3) Contrast-based: [49] is used for com-
parisons, which employs pixel-to-point contrastive learn-
ing to integrate 2D knowledge into 3D points. Among
these methods, UniPAD achieves the best NDS perfor-
mance. While UniPAD has a slightly lower mAP compared
to the contrast-based method, it avoids the need for complex
positive-negative sample assignments in contrastive learn-
ing. More implementation details will be provided in the
supplementary material.

4.5. Effectiveness on Various Backbones.

Different View Transformations. In Table 5, we inves-
tigate different view transformation strategies for convert-
ing 2D features into 3D space, including BEVDet [31],
BEVDepth [39], and BEVformer [40]. Due to the preva-
lent use of BEV representation, we integrate these methods
into our framework by transforming features into volumet-
ric representations. Consistent improvements ranging from
5.2 t0 6.3 NDS can be observed across different transforma-
tion techniques, which demonstrates the strong generaliza-
tion ability of the proposed approach.

Different Modalities. Unlike most previous pre-training
methods, our framework can be seamlessly applied to vari-
ous modalities. To verify the effectiveness of our approach,

Methods View Transform NDS mAP
BEVDet Pooling 27.1 24.6
+UniPAD Pooling 32.715:6 32.818:2
BEVDepth Pooling & Depth 28.9 28.1
+UniPAD Pooling & Depth 341152 33.915:8
BEVformer Transformer 26. 8 24.5
+UniPAD Transformer 33176+ 319174

Table 6. Pre-training effectiveness on different input modalities.

Methods Modality |  NDS mAP
UVTR-L LiDAR 46.7 39.0
+UniPAD LiDAR 55.819-1 48.119-1
UVTR-C Camera 252 23.0
+UniPAD Camera 329177 32.619:6
UVTR-M LiDAR-Camera 499 52.7
+UniPAD LiDAR-Camera 56.816-9 57.014:3

we set UVTR as our baseline, which contains detectors with
point, camera, and fusion modalities. Table 6 shows the im-
pact of UniPAD on different modalities. UniPAD consis-
tently improves the UVTR-L, UVTR-C, and UVTR-M by
9.1,7.7, and 6.9 NDS, respectively.

Scaling up Backbones. To test UniPAD across different
backbone scales, we adopt an off-the-shelf model, Con-
vNeXt, and its variants with different numbers of learnable
parameters. As shown in Table 7, one can observe that
with our UniPAD pre-training, all baselines are improved
by large margins of +6.0~7.7 NDS and +8.2~10.3 mAP.
The steady gains suggest that UniPAD has the potential to
boost various state-of-the-art networks.

4.6. Ablation Studies

Masking Ratio. Table 8 shows the influence of the mask-
ing ratio for the camera modality. We discover that a mask-
ing ratio of 0.3, which is lower than the ratios used in previ-
ous MAE-based methods, is optimal for our method. This
discrepancy could be attributed to the challenge of ren-
dering the original image from the volume representation,
which is more complex compared to image-to-image recon-
struction. For the point modality, we adopt a mask ratio of
0.8, as suggested in [90], considering the spatial redundancy
inherent in point clouds.

Rendering Design. Our examinations in Tables 9, 10, and
11 illustrate the flexible design of our differentiable render-
ing. In Table 9, we vary the depth (Dspr, Drgg) of the
SDF and RGB decoders, revealing the importance of suf-
Table 7. Pre-training effectiveness on different backbone scales.

Methods Backbone

ConvNeXt-S ConvNeXt-B ConvNeXt-L
UVTR-C 25.2/23.0 26.9/24.4 29.1/27.7
+UniPAD |32.977-7/32.619:6 34,177-2/347110.3 351716.0/35 918.2
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Table 8. Ablation studies of the masking ratio.

Ratio | 0. 03 0.5 0.7 0.9
NDS ‘ 319 329 323 32.1 314

Table 9. Ablation studies of the decoder depth.
Layer ‘ (2,2) 4,3) 5,4) (6,4) (7,5)
NDS ‘ 31.3 31.9 32.1 329 32.7

Table 10. Ablation studies of the decoder width.
Dim. | 16 32 64 128 256

NDS ‘ 32.1 329 325 329 324

ficient decoder depth for succeeding in downstream detec-
tion tasks. This is because deeper ones may have the ability
to adequately integrate geometry or appearance cues during
pre-training. Conversely, as reflected in Table 10, the width
of the decoder has a relatively minimal impact on perfor-
mance. Thus, the default dimension is set to 32 for effi-
ciency. Additionally, we explore the effect of various ren-
dering techniques in Table 11, which employ different ways
for ray point sampling and accumulation. Using NeuS [72]
for rendering records a 0.4 and 0.1 NDS improvement com-
pared to UniSurf [58] and VolSDF [95], respectively, show-
casing the learned representation can be improved by utiliz-
ing well-designed rendering methods and benefiting from
the advancements in neural rendering.

Memory-friendly Ray Sampling. Instead of rendering
the entire set of multi-view images, we sample only a sub-
set of rays to provide supervision signals. Table 12 out-
lines the different strategies explored to minimize memory
usage and computational costs during pre-training. Our ob-
servations indicate that depth-aware sampling holds a sub-
stantial advantage, improving scores by 0.4 and 1.0 NDS
compared to random sampling (K = 512) and dilation sam-
pling (I = 16), respectively. The sampling excludes regions
without well-defined depth, like the sky, from contributing
to the loss. This allows the representation learning to fo-
cus more on the objects in the scene, which is beneficial for
downstream tasks. Meanwhile, it costs less memory usage
than dilation sampling.

Feature Projection. The significance of feature projec-
tion is shown in Table 13. Removing projection from
pre-training and fine-tuning leads to drops of 1.8 and 2.7
NDS, respectively, underscoring the essential role it plays
in enhancing voxel representation. Concurrently, utilizing
shared parameters for the projection during pre-training and
fine-tuning induces reductions of 0.8 NDS and 0.6 mAP.

Table 11. Ablation studies of the rendering technique.

Methods | NDS mAP
UniSurf [58] 325 32.1
VoISDF [95] 32.8 324
Neus [72] 329 32.6

Table 12. Ablation studies of the sampling strategy.

Methods ‘ Memory NDS mAP
Dilation Sampling 1.4x 31.9 324
Random Sampling 1x 325 32.1

Depth-aware Sampling 1x 329 32.6

Table 13. Ablation studies of the feature projection.

Methods | NDS mAP
Baseline 329 32.6
w/o Projectionp 30.242:7 29.7+2-9
w/o Projectionp 31148 30.5421
Shared Projection 32.140:8 32.040-6

Table 14. Ablation studies of the pre-trained components.

Methods | NDS mAP
Baseline 25.2 23.0
+Encoder 32,0168 31.878:8
+Encoder & FPN 32.210-2 32,2104
+Encoder & FPN & VT 329107 32.610-4

This phenomenon is likely due to the disparity between the
rendering and recognition tasks, with the final layers being
more tailored for extracting features specific to each task.

Pre-trained Components. In Table 14, the influence of
pre-trained parameters on each component is investigated.
Replacing the pre-trained weights of the FPN and view
transformation (VT) with those from a random initialization
induces declines of 0.2 and 0.7 NDS, respectively, thereby
highlighting the crucial roles of these components.

5. Conclusion

We present UniPAD, an innovative self-supervised learn-
ing paradigm that excels in various 3D perception tasks.
UniPAD stands out for its ingenious adaptation of NeRF as
a unified rendering decoder, enabling seamless integration
into both 2D and 3D frameworks. The inherent adaptabil-
ity of our approach bridges the 2D and 3D domains, which
could facilitate representation learning through advance-
ments in the other domain. For instance, semantic knowl-
edge can be infused into point clouds via additional seman-
tic supervision, leveraging the outputs of well-developed
models like SAM [33] in the 2D domain as learning targets.

Limitation. There are still certain limitations to the ap-
proach. For instance, we need to explicitly transform point
and image features into volumetric representations, which
would increase memory usage as voxel resolution rises.
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