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Abstract

This paper introduces Unified Language-driven Zero-
shot Domain Adaptation (ULDA), a novel task setting that
enables a single model to adapt to diverse target domains
without explicit domain-ID knowledge. We identify the con-
straints in the existing language-driven zero-shot domain
adaptation task, particularly the requirement for domain
IDs and domain-specific models, which may restrict flexibil-
ity and scalability. To overcome these issues, we propose a
new framework for ULDA, consisting of Hierarchical Con-
text Alignment (HCA), Domain Consistent Representation
Learning (DCRL), and Text-Driven Rectifier (TDR). These
components work synergistically to align simulated features
with target text across multiple visual levels, retain seman-
tic correlations between different regional representations,
and rectify biases between simulated and real target visual
features, respectively. Our extensive empirical evaluations
demonstrate that this framework achieves competitive per-
formance in both settings, surpassing even the model that
requires domain-ID, showcasing its superiority and gener-
alization ability. The proposed method is not only effective
but also maintains practicality and efficiency, as it does not
introduce additional computational costs during inference.
The code is available on the project website1.

1. Introduction
Being robust to the domain shift is a critical concept in ma-
chine learning, as it enables models trained on a source do-
main to be effectively applied to a new target domain [8, 9,
22, 28]. The domain adaptation (DA) task [5, 10, 11, 16, 23]
may assume the availability of target domain data for fine-
tuning the model. However, this assumption may poten-
tially hinder real-world applications [2, 6, 17, 27]. For ex-
ample, privacy concerns or data scarcity may prevent direct
access to target data. Therefore, the underlying challenges
caused by the absence of direct access to target domain data
in developing the domain-versatile models should be con-
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Figure 1. Our proposed Unified Language-driven Domain Adap-
tation (ULDA) task focuses on real-world practical scenarios. In
the training phase, ULDA does not allow access to images of the
target domain and only provides source domain images along with
the textual descriptions. During testing, ULDA requires a single
model to adapt to diverse target domains without domain-IDs, in-
stead of using domain-specific heads as in previous methods.

sidered and decently addressed, ensuring the applicability
of DA techniques in practical situations.

Recently, the development of vision-language founda-
tional models [1, 15, 18, 19, 26] has greatly advanced
the alignment of image-text pairs, enabling effective gen-
eralization to novel concepts. This has paved the way
for numerous studies that leverage the zero-shot capabil-
ities of these models to tackle domain adaptation chal-
lenges [7, 8, 12, 14, 18]. Notably, PØDA [6] stands out for
leveraging language embeddings obtained from CLIP [18]
to simulate target domain visual representations, and PØDA
tunes the model to fit the simulated features, such that the
target images are not needed.

However, while PØDA demonstrates an impressive abil-
ity to achieve zero-shot domain adaptation without relying
on target domain images, we observe that it introduces con-
straints that should be taken into account in practical con-
texts: prior knowledge, i.e., domain-ID, is required to se-
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lect the domain-specific model. For example, for “driving
in rain” and “driving in snow”, two individual models are
trained to fit these two task domains with the help of CLIP
text embeddings. During inference, when an image comes,
the system processes in two steps: 1) know what the cur-
rent domain is via Domain ID, and then 2) select the corre-
sponding model. These domain-specific customization re-
quirements may hinder the model’s flexibility and scalabil-
ity, thereby limiting its broader applications.

To address the aforementioned issue, we propose a novel
and practical task called Unified Language-driven Zero-shot
Domain Adaptation (ULDA), as shown in Fig. 1. Follow-
ing previous literature [6], ULDA also does not allow access
to images of the target domain, only providing source do-
main images along with the textual descriptions regarding
target domains to accomplish the adaptation training pro-
cess. However, ULDA takes a step further by requiring a
single model to adapt to diverse target domains without ex-
plicit hints, i.e., the domain-ID, during testing. Neverthe-
less, this new requirement also presents a significant chal-
lenge: how to adapt a single model’s embedding space to
accommodate multiple domains while still maintaining se-
mantic discriminative capabilities for different categories?

To address this challenge, we propose a new framework
for ULDA. It has three essential components: Hierarchical
Context Alignment (HCA), Domain Consistent Represen-
tation Learning (DCRL), and Text-Driven Rectifier (TDR).
Specifically, HCA aligns simulated features with target text
at multiple visual levels to mitigate the semantic loss caused
by the vanilla scene-text alignment. Then, DCRL retains the
semantic correlations between different regional representa-
tions to that of the text embeddings across diverse domains,
ensuring structural consistency. Additionally, we incorpo-
rate TDR to rectify simulated features, mitigating the bias
between the simulated and real target visual features.

We validate the effectiveness of our proposed method
through extensive empirical evaluations conducted in both
the previous classic setting [6] and the proposed ULDA.
The results consistently demonstrate that our approach
achieves competitive performance in both settings, high-
lighting its superiority and efficacy. In summary, our con-
tribution can be summarized in three key aspects:
• Unlike existing literature, we go beyond existing ap-

proaches by examining the limitations that hinder further
applications. To this end, we propose a more practical set-
ting called Unified Language-driven Zero-shot Domain
Adaptation (ULDA).

• To address the new challenge posed by ULDA, we pro-
pose a new framework, and it comprises three key com-
ponents, namely Hierarchical Context Alignment (HCA),
Domain Consistent Representation Learning (DCRL),
and Text-Driven Rectifier (TDR), for achieving better
alignment to the text embedding space, ensuring a better
adaptation performance.

• Despite its simplicity, our proposed method’s effective-
ness has been verified in both settings. Furthermore,
it does not introduce any additional computational costs
during model inference, ensuring its practicality.

2. Preliminary
In this section, we introduce a closely related work
PØDA [6], which proposes a paradigm for prompt-driven
zero-shot domain adaptation in computer vision, by only
leveraging a natural language description of the target do-
main, thus eliminating the need for target domain images
during training. A more detailed introduction regarding re-
lated works is shown in the supplementary file.

Specifically, PØDA undergoes two stages of training to
leverage the pretrained CLIP encoder for optimizing source
feature transformations and aligning them with the text em-
bedding of the target domain. In Stage-1, it learns to simu-
late target features. In Stage-2, it fine-tunes the segmenta-
tion head with the simulated ones. Details are as follows.

Stage-1: PØDA introduces Prompt-driven Instance Nor-
malization (PIN), as in Eq. (1), in which µ and σ are learn-
able variables guided by a text domain prompt to simulate
the knowledge of the target domain, while µ(fs) and σ(fs)
represent the mean and standard deviation of the source in-
put features fs.

fs→t = PIN (fs,µ,σ) = σ

(
fs − µ (fs)

σ (fs)

)
+ µ. (1)

PIN is adopted to transform source domain features into the
target domain, i.e., fs→t. This operation is followed by an
attention-based pooling operation, resulting in the output
denoted as f s→t. To ensure a proper shift from the source
to the target domain, it is necessary to promote similarity
between f s→t and CLIP text embeddings TrgEmb, by ap-
plying the loss function presented in Equation (2), which
encourages alignment between the transformed features and
the textual representations, facilitating decent adaptation
from the source to target domain.

Lµ,σ

(
f s→t,TrgEmb

)
= 1− f s→t · TrgEmb∥∥f s→t

∥∥ ∥TrgEmb ∥
. (2)

Stage-2: With the simulated features obtained via
Eq. (1), PØDA fine-tunes the pre-trained segmentation head
to enable the model to better adapt to the target domain for
accomplishing the downstream task. This stage’s training is
supervised by the cross-entropy loss between the segmenta-
tion predictions and the ground-truth masks.

It is worth noting that, for both two training stages, only
the images from the source domain and text descriptions
are available. After two phases of training, the model is
evaluated on the images of target domains. More details
can be found in [6].
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3. ULDA: Unified Language-driven Zero-shot
Domain Adaptation

Motivation. Traditional domain adaptation methods of-
ten depend on having access to data from the target domain
in order to align the models. However, this dependence on
target domain data can lead to overfitting to specific do-
mains and subsequently undermine the generalization per-
formance of the models. In real-world applications, espe-
cially in dynamic settings like autonomous driving, acquir-
ing comprehensive data for every possible adverse condi-
tion (e.g., rain, snow, fog, night) is not always feasible. In-
stead, practitioners may only have a conceptual understand-
ing or hypothetical descriptions of potential downstream
tasks. In this case, the ability to augment a model’s per-
formance in such predicted scenarios without actual data
collection is preferred.

To achieve this, PØDA [6] tunes different models to
tackle individual scenarios separately. However, the prior
knowledge of each upcoming domain for selecting the cor-
responding model may not always be accessible in practice.
Therefore, we believe it is necessary to adopt an adaptation
approach such that a single model can be scaled to simulta-
neously fit a broad spectrum of domain conditions.

Considering these practical constraints, we propose a
new task setting, namely Unified Language-driven Zero-
shot Domain Adaptation (ULDA), which encourages the
model to be capable of adapting to a variety of conditions
without access to real data and domain prior knowledge.

Task setting. The model M is limited to training with data
Is from the source domain Ds and has no access to target
domain data It, where t = 1, 2...n represent the n target
domains Dt. M can only utilize natural descriptions Tt to
understand the characteristics of target domain scenarios.

One of the challenges in this context is to effectively ex-
tract sufficient information from textual descriptions alone
for adapting source visual features to different domains.
Another crucial challenge is to enable a single model M to
adapt to multiple target domains Dt without relying on spe-
cific domain IDs. This would allow the model to achieve
robustness across diverse scenarios while still maintaining
a strong ability to discriminate between different classes.

Comparison with other settings. Different from Unsu-
pervised Domain Adaptation (UDA), ULDA offers the ad-
vantage of generalizing to target domains without the need
for target domain images. Instead, it only relies on a con-
cise one-sentence description for each domain. This leads
to a significant reduction in resource overhead. Addition-
ally, unlike prompt-driven zero-shot domain adaptation pro-
posed in PØDA that requires domain IDs to invoke domain-
specific models, the proposed ULDA enables a single model
to adapt to multiple downstream scenarios without the re-
quirement for separate tuning for each scenario.

4. Method
The proposed ULDA brings a challenge in representation
learning as a single model needs to adapt to multiple do-
mains. This challenge arises from the fact that aligning the
model towards target domains, such as “driving in rain” and
“driving in snow,” may potentially compromise semantic
discrimination for precise segmentation.

For better accomplishing ULDA, we propose a frame-
work that is composed of three components. The overview
is shown in Fig. 2, and the respective details are as follows.

4.1. Hierarchical Context Alignment

Vanilla scene-text alignment causes semantic loss.
PØDA achieved vision-language alignment at a scene level
by directly aligning the pooled feature f s→t with the text
embedding TrgEmb via Eq. (2). However, it is challeng-
ing for the model to achieve a decent alignment with the
target domain by only adapting the global context to fit the
target domain, because this may cause potential semantic
loss when aligning features of different objects in a scene
to a single shared target text domain embedding, causing a
deviation from their respective real semantic distributions.

To alleviate this issue, we propose a Hierarchical Context
Alignment (HCA) strategy, which enables intricate align-
ments on the feature fs→t at multiple levels, including 1)
the entire scene, 2) regions in the scene, and 3) pixels in
the scene. The scene-text alignment follows that of Eq. (2),
while the proposed region- and pixel-text alignments are
elaborated as follows.
Regional alignment. During the adaptation process, it is
essential for regions belonging to different categories to re-
tain their unique semantic characteristics. To achieve this,
by leveraging the class names existing in the ground truth,
and the target domain description, we can get the more fine-
grained d-dimensional text embedding T ∈ R[n×d] of n
classes contained in the image. By doing so, we can align
different regions with more suitable counterparts, ensuring
that their individual semantic characteristics are preserved.
For example, in a rainy scenario with n classes, we can get
descriptions such as “the bus in rain,” “the road in rain,”
“the rider in rain,” and so on. Then, the corresponding text
embeddings T ∈ R[n×d] for these descriptions can be ob-
tained from the pre-trained CLIP text encoder.

After that, given the image feature map fs→t ∈
R[HW×d] and text embedding T ∈ R[n×d], the pixel-wise
ground-truth annotation y ∈ R[HW ] can be accordingly
transformed into n binary masks y∗ ∈ R[n×HW ] indicat-
ing the existence of n classes in y. Then, we can obtain the
regional prototypes C ∈ R[n×d] by applying masked aver-
age pooling (MAP) with y∗ and fs→t as Eq. (3):

C =
y∗ × fs→t∑HW
j=1 y∗(·, j)

. (3)
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Figure 2. Illustration of the three key components for our ULDA framework. The ULDA’s pipeline follows [6]. Our proposed
Hierarchical Context Alignment operates across Pixel-level, Regional-level, and Scene-level to align features with text embeddings. The
circles, squares, and triangles represent the hierarchical features, respectively. The Domain Consistent Representation Learning ensures
a consistent correlation between prototypes and text embeddings across multiple target domains. Text-Driven Rectifier incorporates text
embeddings to rectify the simulated PIN features during the fine-tuning phase.

Then, we can calculate the cosine similarity matrix S ∈
R[n×n] between the T and C in Eq. (4).

S =
C × T T

∥C∥ ∥T ∥T (4)

Therefore, we could use the categorical prototypes Cy and
text embeddings T to accomplish the regional alignment as:

Lr = −
n∑

i=1

log

(
exp (Sii/τ)∑n

k=1 exp (Sik/τ)

)
(5)

where τ is the temperature parameter, and we empirically
set it to 0.1. Eq. (5) encourages the regional prototypes to be
similar to the corresponding text embeddings in the target
domain while pushing away negative pairs.
Pixel-wise alignment. Building upon the regional align-
ment, we further enhance the alignment between the source
and the unseen target domains by incorporating a pixel
alignment loss Lp. Compared to the alignments at the scene
and regional levels, Lp serves to narrow the distance at a
more intricate level, enabling more precise alignment be-
tween the two domains. Similar to the regional alignment,
we begin the pixel-level alignment by computing the class
probability P ∈ R[HW×n] for each pixel, as in Eq. (6):

P =
fs→t × T T

∥fs→t∥ ∥T ∥T (6)

Then, we use P to calculate the cross-entropy loss with the
ground truth y ∈ R[HW ] using Eq. (7):

Lp = − 1

HW

HW∑
i=1

yi log (Pi) (7)

Visual Representations Text Embeddings

Mimic

Rain

Snow
Bus

Bike

Rider

Rider

Bus
Bike Bike

Rider

Bus

Rider

Bus
Bike

Snow

Rain

Figure 3. Domain Consistent Representation Learning. We en-
sure the visual regional representations have similar correlations
with that of text embeddings, both within the same domain and
across different domains.

The overall objective. To this end, the training objective
LHC for hierarchical context alignment is formulated as:

LHC = λrLr + λpLp + Lµ,σ (fs→t,TrgEmb) (8)

4.2. Domain Consistent Representation Learning

Despite successfully bringing the feature fs→t closer to the
target domain, this process may unintentionally interfere
with the relational information among different prototypes.
As depicted in Fig. 3, although the entities ‘rider,’ ‘bus,’
and ‘bike’ from the source domain have been individually
aligned with their target domain text embeddings, the inher-
ent correlations between these classes might be disrupted
due to the domain shift. Furthermore, the same category in
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different contexts may exhibit distinct correlations between
the visual and text representations.

For instance, the text embeddings of “a bus in the snow,”
“a bus in the rain,” and “a bus at night” may have differ-
ent correlations compared to their visual counterparts in the
contexts of ‘snow’, ‘rain’ and ‘night’ respectively. This dis-
crepancy in relational consistency between the simulated
domain features and text embeddings can lead the model to
erroneously diverge from the true distributions represented
by the text embeddings of the target domain. To tackle this
problem, we propose the domain consistency loss LDC .

Specifically, for n categories in m target domains, with
Eq. (3), we can obtain m prototypes C ∈ R[n×d] we group
it into the C̃ ∈ R[mn×d]. Similarly, we obtain the m text
embedding T ∈ R[n×d], grouped into the T̃ ∈ R[mn×d].
Lastly, we adopt Eq. (9) as LDC to enforce representation
consistency across multiple domains by preserving the cor-
relation between the prototypes and the corresponding text
embeddings in different scenes.

LDC = MSE(
C̃C̃T

∥C̃∥2
,
T̃ T̃ T

∥T̃ ∥2
) (9)

4.3. Text-Driven Rectifier

Evils in the simulated features. During the second stage
introduced in Sec. 2, the model utilizes the simulated tar-
get domain features to fine-tune the segmentation head, en-
abling the model to be effectively adapted to the target do-
main. However, as shown in Fig. 4, discrepancies may per-
sist between the simulated features and the actual target do-
main features. It is crucial to consider these discrepancies
as using simulated features directly may lead to a deviation
of the segmentation head from the true target distributions,
yielding worse segmentation performance after tuning.

Therefore, we propose to address this issue by leverag-
ing the text embeddings obtained from CLIP, which effec-
tively resemble the distributions in the real target domain.
By adopting these text embeddings as a prior, we may rec-
tify the simulation process, thereby encouraging the simu-
lated features to align more closely with the target features.
Rectification benefits adaptation. Specifically, we de-
note the features simulated by PIN as fs→t, i.e. fs→t =

PIN (fs,µ,σ). Then, we get the rectified feature f̃s→t by
following Eq. (10):

f̃s→t = β

(
σ̃

(
fs→t − µ (fs→t)

σ (fs→t)

)
+ µ̃

)
+ fs→t, (10)

where β is a learnable factor, initialized as 0.1, controlling
the extent of the rectification applied to fs→t. σ̃ and µ̃ are
obtained by passing text embedding through a linear layer
to represent the mean and standard deviation of the target
domain features, respectively. Then we utilize the f̃s→t ob-
tained from multiple domains to fine-tune the head.

Raw

Simulated

Target DescriptionReal Target

Stage-1

Figure 4. Text-Driven Rectifier. Despite the simulated features
exhibiting a closer alignment with the real targets in comparison
to raw features, a gap still exists. To address this disparity, we
employ the text descriptions from the target domain to rectify the
simulated ones when tuning the segmentation head in Stage-2.

Consequently, through text-driven rectification (TDR),
we are able to correct the features initially simulated by PIN
to preserve the distinctive attributes of each domain. This
enhancement improves the overall generalization capability
of the shared final head, enabling it to effectively adapt to
multiple domains simultaneously.

It is worth noting that TDR is applied to bridge the gap
between simulated features and actual target domain fea-
tures, exclusively during Stage-2 mentioned in Sec. 2 for
head tuning. We do not apply TDR to Stage-1 as it would
lead to a trivial solution. The theoretical proof is in Sec. 6.

4.4. Overall Loss Function
With the above strategies, the overall loss function L for
Stage-1’s training becomes:

L = λHCLHC + λDCLDC + λsegLseg (11)

where the λHC , λDC , λseg , are weighting coefficients bal-
ancing the respective loss components. We observe the seg-
mentation loss Lseg benefits the Stage-1 training, as illus-
trated in the ablation study. For Stage-2, which involves
fine-tuning the model for segmentation, only the vanilla
segmentation loss Lseg is adopted.

5. Experiments
In Sec. 5.1, we present the details of our experiment setup,
encompassing the datasets, task settings, and implementa-
tion specifics. We showcase the effectiveness of our method
in both traditional settings, demonstrated in Sec. 5.2, and in
new practical settings, elaborated upon in Sec. 5.3. Addi-
tionally, we utilize GPT-4 to generate multiple natural de-
scriptions of autonomous driving scenarios, including some
uncommon situations such as sandstorms and forest fires.
These scenarios are often challenging for model training
due to their limited data availability. Due to space limita-
tions, we detail this interesting experiment in the supple-
mentary.
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5.1. Experiment Setup

Datasets. We primarily use the Cityscapes [4] as the source
domain dataset. Following PØDA, we report the main re-
sults using ACDC [21]. To demonstrate the generaliza-
tion of our method, we also investigate two extra adapta-
tion scenarios: real to synthetic (source: Cityscapes; target:
GTA5 [20]) and synthetic to real (source: GTA5; target:
Cityscapes). The evaluation configuration follows [6].
Implentation Details . In this study, we conduct compar-
isons on both the setting of PØDA and our proposed set-
ting. As for the base segmentation model, DeepLabv3+ [3]
with a backbone model of pre-trained CLIP-ResNet-502

is adopted. The base model is sufficiently trained on the
source domain following the configuration of [6]. In the
fine-tuning stage (Stage 2), we begin with the source pre-
trained model and only fine-tune the classifier head, also
following the configurations of [6] for a fair comparison.
All models are tested on the original images without resiz-
ing, and more details are in the supplementary file.

5.2. Effectiveness on Traditional Settings.

Effectiveness on prompt-driven zero shot adaptation.
Following the previous benchmark, we explore various
adaptation scenarios, including: day→night, clear→snow,
clear→rain, real→synthetic, and synthetic→real. We
compare our approach with two state-of-the-art baselines:
CLIPstyler [13] for zero-shot style transfer and PØDA [6]
for prompt-driven zero-shot adaptation. Notably, PØDA,
CLIPstyler and our approach, do not utilize target images
during training. Following the previous setting, we only
select simple prompts for each domain to demonstrate the
effectiveness of our method.

As shown in Table 1, our proposed method consistently
outperforms all baseline models in zero-shot domain adap-
tation, using mean Intersection over Union (mIoU) as the
comparative metric. Our method surpasses previous ap-
proaches, achieving improvements in all the scenarios. It
is noteworthy that the previous SOTA method, PØDA, re-
quires training a separate head for each scenario. We be-
lieve that while using distinct heads for individual scenarios
simplifies the task, it also compromises the method’s gen-
eralizability, limiting its practical application in real-world
settings. In contrast, our method surpasses previous ap-
proaches by using only a single head, further demonstrat-
ing our method’s effectiveness. Furthermore, our proposed
method, without altering the original framework or requir-
ing any additional information, achieves significant im-
provements by deeply exploring the relationships between
multi-level images and texts. This further validates the ef-
fectiveness of our approach in the traditional zero-shot do-
main adaptation task.

2https://github.com/openai/CLIP

Source Target eval. Method mIoU[%]

CS

Prompt = “driving at night”

ACDC Night

source-only 18.31
CLIPstyler 21.38
PØDA 25.03
ULDA 25.40

Prompt = “driving in snow”

ACDC Snow

source-only 39.28
CLIPstyler 41.09
PØDA 43.90
ULDA 46.00

Prompt = “driving under rain”

ACDC Rain

source-only 38.20
CLIPstyler 37.17
PØDA 42.31
ULDA 44.94

Prompt = “driving in a game”

GTA5

source-only 39.59
CLIPstyler 38.73
PØDA 40.77
ULDA 42.91

GTA5

Prompt = “driving in real”

Cityscapes

source-only 36.38
CLIPstyler 32.40
PØDA 40.02
ULDA 41.73

Table 1. Performance on classic prompt driven zero shot
domain adaptation in semantic segmentation. Performance
(mIoU%) of ULDA framework compared against previous meth-
ods and source-only baseline. CS stands for Cityscapes [4].

Besides, in supplementary, we compare our proposed
method with the one-shot SOTA method SM-PPM [25] to
demonstrate the effectiveness of our method.

5.3. Effectiveness on Unified language-driven zero
shot adaptation

Quantitative Results. For the newly introduced task of
Unified Language-driven Zero-Shot Adaptation, our aim is
to propose a benchmark that is more aligned with real-world
scenarios and holds practical value. Accordingly, following
the setting described in Sec. 3, we are limited to only hav-
ing natural descriptions of potential target domains. And
this setting also requires our model to be versatile enough to
be tested across all downstream target domains using just a
singular model architecture. We set two practical adaptation
scenarios as our benchmark, including: clear-to-adverse-
weather adaptation on Cityscapes→ACDC and synthetic-
to-real adaptation on GTA5→Cityscape and ACDC.

We establish the mean mIoU as the comparative metric
for our study. This mean mIoU is derived by calculating the
average of mIoU values across various domains. Addition-
ally, we also report the mIoU and mean Accuracy (mAcc)
for each individual domain. To demonstrate the generaliz-
ability of our method, we just utilize simple prompt descrip-
tions to reflect the target domain knowledge.

Clear-to-Adverse weather. In Table 2, we compare our
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Scenarios Source2Fog Source2Night Source2Rain Source2Snow
Mean-mIoUDomain Description driving in fog driving at night driving under rain driving in snow

Method REF mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc
Source OpenAI 49.98 65.42 18.31 34.16 38.20 58.97 39.28 54.64 36.44

CLIPStyler CVPR2022 [12] 48.87 64.31 20.83 35.32 36.97 57.46 40.31 54.42 36.75
PØDA∗ ICCV2023 [6] 51.54 64.51 25.03 55.5 42.31 75.4 43.90 70.7 40.65
ULDA ours 53.55 80.2 25.40 55.8 44.94 74.4 46.00 70.0 42.47

Table 2. Performance comparison of clear-to-adverse weather in ULDA. We use Cityscape as the source domain and ACDC as the four
target domains in this setting. Mean-mIoU represents the average mIoU value in four scenarios. PØDA∗ represents the model that uses
different segmentation heads in specific domains, while the others adopt the shared head.

Scenarios Source2CS Source2Fog Source2Night Source2Rain Source2Snow
Mean-mIoUDomain Description driving in real driving in fog driving at night driving under rain driving in snow

Method mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc
Source 36.38 46.19 33.20 42.51 12.22 22.56 33.32 43.15 32.33 40.60 29.49

CLIPStyler 32.20 41.64 30.79 40.37 11.12 20.18 31.17 40.06 30.65 38.97 27.19
PØDA∗ 40.05 48.95 35.76 44.98 13.35 25.24 34.19 45.93 33.81 42.10 31.43
ULDA 41.73 51.98 36.98 46.56 15.72 28.99 35.84 47.39 35.77 43.74 33.21

Table 3. Performance comparison of Synthetic-to-Real in ULDA We use GTA5 as the source domain, Cityscapes and ACDC as the
five target domains in this setting. Mean-mIoU represents the average mIoU value in five scenarios. PØDA∗ represents the model used
different segmentation heads in specific domains, while the others adopt the shared head.

proposed ULDA with the SOTA method in Zero-shot do-
main adaptation. PØDA∗ employs four distinct heads, se-
lecting a specific head tailored to each scenario. Our pro-
posed method consistently surpasses all previous models in
Unified Language-driven Domain Adaptation. It achieves
improvements of 6.03% over the baseline source model.
Remarkably, our approach, which utilizes a single head,
even exceeds the performance of PØDA∗, and achieves im-
provements of 1.82% mIoU, which necessitates training
separate heads for different scenarios. This highlights the
strength of our method, particularly in its ability to employ
Hierarchical Context modeling. Such modeling adeptly ex-
tracts and leverages the multi-level correlation between im-
age and text, facilitating more effective domain transfer.
Moreover, our approach of domain-consistent representa-
tion learning ensures consistency across various domains.
This enables our model to generalize effectively to various
domains within a single unified model architecture.
Synthetic-to-Real. In traditional settings, the capabil-
ity of methods in synthetic-to-real scenarios is typically
validated first on the GTA5→Cityscapes, and then fur-
ther verified through additional experiments to demon-
strate their applicability to adverse weather conditions,
such as adaptation from Cityscapes to ACDC. However,
the practical utility and generalizability of these exper-
iments are somewhat limited. In autonomous driving
scenarios, it is more desirable to learn from a diverse
range of source domain virtual datasets like GTA5 and
to achieve direct generalization to various complex real-
world scenarios, like ACDC. Therefore, our experimental
setting, termed ”Synthetic-to-Real,” specifically focuses on
the GTA5→Cityscapes+ACDC dataset.

In Table 3, we present a comprehensive comparison
of our proposed ULDA method against the current SOTA

Raw PODA ULDA

Figure 5. Qualitative Results of our models and previous SOTA
method on ACDC-Foggy. More results are in the Appendix.

methods in Zero-shot domain adaptation. Our method
consistently outperforms all previous models in Unified
Language-driven Domain Adaptation, achieving significant
improvements of 3.72% and 1.78% over the baseline source
model and the former SOTA method, PØDA∗, respectively.
Notably, our method shows remarkable performance en-
hancement in complex scenarios. For instance, in GTA5-to-
Cityscapes where the source model only achieves 36.38%
mIoU and 46.19% mAcc, our proposed method achieves a
5.35% mIoU and 5.79% mAcc increase. This highlights
that our method can effectively learn extensive knowledge
directly from GTA5 through language alone and general-
ize to real and complex scenarios like Cityscapes ACDC.
Such results underscore the effectiveness and practicality of
our approach. It demonstrates our method’s capability to
extract and apply knowledge from the language description
of the target domains, proving its utility and adaptability in
real-world complex environments.
Qualitative Results To demonstrate the effectiveness of
our proposed method, we show the qualitative analysis,
shown in Fig. 5. Other visualization results are shown in
the supplementary.

5.4. Effectiveness of each component

We conduct the ablation study on Cityscapes-to-ACDC in
the Language-driven zero shot adaptation setting and eval-
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HCA DCRL TDR Lseg Mean-mIoU

Ex1 39.67
Ex2 ✓ 40.52
Ex3 ✓ ✓ 41.49
Ex4 ✓ ✓ 41.35
Ex5 ✓ ✓ ✓ 41.68
Ex6 ✓ ✓ ✓ ✓ 42.47

Table 4. Ablation: Contribution of each component.

uate the contribution of each component in our method, in-
cluding Hierarchical Context Alignment (HCA), Domain
Consistent Representation Learning (DCRL) and Text-
Driven Domain Rectify (TDR). Mean-mIoU and Mean-
mAcc are used as metrics, representing the average mIoU
and mAcc values across four scenarios, respectively.
Effects of HCA and DCRL. As shown in Table 4, Ex1

represents the baseline method, PØDA, which only lever-
ages the scene-level alignment. In comparison, Ex2 in-
troduces HCA to align image embeddings and natural de-
scriptions on a multi-level basis. This approach results in
improvements of 0.85% in mean-mIoU. In Ex3, the inte-
gration of DCRL leads to further enhancements, with an
increase of 0.97% in mean-mIoU. This signifies that incor-
porating Domain Consistent Representation Learning effec-
tively addresses domain discrepancies. For a detailed exam-
ination of the impact of DCRL, refer to the further ablation
study provided in the Appendix.
Effects of TDR and segmentation loss. Building on Ex2,
Ex4 introduces Text-Driven Domain Rectify (TDR). TDR,
by making rectify during the fine-tuning phase, bridges the
gap between the simulated features and the real features of
the target domain. This results in a performance improve-
ment of 0.83% in mean-mIoU. In Ex5, based on the foun-
dation laid by Ex3, we introduce a downstream task loss:
Lseg , during the fine-tuning phase. This loss function helps
prevent the overfitting of features to text embeddings and
ensures the retention of downstream task capabilities. It ef-
fectively maintains a balance between domain adaptation
and task-specific performance. By incorporating this el-
ement, Ex5 achieves an additional performance improve-
ment of 0.33% in mean-mIoU.

Overall, Ex6 shows the complete combination of all
components, achieving 42.47% mean-mIoU in total. This
demonstrates that all components compensate each other
and jointly address the challenge in Language-driven zero-
shot domain adaptation. Due to the limitation of the space,
the additional ablation studies are shown in the Appendix.

6. Further Discussions

Why not incorporate TDR to Stage-1? For the original
source domain feature, we can obtain the corresponding tar-

get domain feature fs→t through the following formula:

fs→t = PIN (fs,µ,σ) = σ

(
fs − µ (fs)

σ (fs)

)
+ µ.

For the simulated fs→t, we have std(fs→t) = σ,
mean(fs→t) = µ. Substituting them into Eq. (10) yields:

f̃s→t = β

(
σ̃

(
fs→t − µ (fs→t)

σ (fs→t)

)
+ µ̃

)
+ fs→t

= β

(
σ̃

(
fs − µ (fs)

σ (fs)

)
+ µ̃

)
+ u+ σ

(
fs − µ (fs)

σ (fs)

)
.

=

(
fs − µ (fs)

σ (fs)

)
(βσ̃ + σ) + (βµ̃+ u).

(12)
σ̃ and µ̃ are derived by passing text embeddings through a
linear layer. The parameters σ and µ are learnable and are
designed to simulate features of the target domain. During
Stage-1, it is necessary to optimize µ and σ to transform
the source domain features into those of the target domain,
ensuring alignment with the text embeddings. However, as
the text embeddings are directly input into the linear layer
to obtain µ̃ and σ̃, this process results in µ and σ not be-
ing optimized, leading to a trivial solution. Therefore, we
may not integrate rectification into Stage-1. A more detailed
simplification process is shown in the Appendix.

Is ULDA a degraded form of domain generalization?
Our propose ULDA is not a degraded form of domain gen-
eralization (DG) [24]. Because the ULDA does not conflict
with DG; rather, it complements them. DG methods typi-
cally utilize meta-learning or feature alignment techniques
to incorporate domain-invariant information from source
data during the training phase within the source domain. In
contrast, ULDA focuses on enhancing a pre-trained model,
enabling it to generalize more efficiently and effectively
across a wider range of target domains. Subsequent exper-
iments in the supplementary demonstrate that our proposed
method can also yield benefits for DG methods.

7. Concluding Remarks

This work spots issues in the literature and presents a new
setting named Unified Language-driven Zero-shot Domain
Adaptation (ULDA) with three simple yet effective strate-
gies Hierarchical Context Alignment (HCA), Domain Con-
sistent Representation Learning (DCRL), and Text-Driven
Rectifier (TDR). The effectiveness and practical merits of
our method have been verified by the decent performance
achieved by challenging benchmarks without imposing any
additional inference burdens.
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geiton, and Stéphane Lathuilière. One-shot unsupervised do-
main adaptation with personalized diffusion models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 698–708, 2023. 1

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018. 6

[4] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016. 6

[5] Ning Ding, Yixing Xu, Yehui Tang, Chao Xu, Yunhe Wang,
and Dacheng Tao. Source-free domain adaptation via dis-
tribution estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7212–7222, 2022. 1

[6] Mohammad Fahes, Tuan-Hung Vu, Andrei Bursuc, Patrick
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