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Abstract

Multiple clustering has gained significant attention in
recent years due to its potential to reveal multiple hidden
structures of data from different perspectives. The advent of
deep multiple clustering techniques has notably advanced
the performance by uncovering complex patterns and rela-
tionships within large datasets. However, a major challenge
arises as users often do not need all the clusterings that al-
gorithms generate, and figuring out the one needed requires
a substantial understanding of each clustering result. Tra-
ditionally, aligning a user’s brief keyword of interest with
the corresponding vision components was challenging, but
the emergence of multi-modal and large language models
(LLMs) has begun to bridge this gap. In response, given un-
labeled target visual data, we propose Multi-MaP, a novel
method employing a multi-modal proxy learning process. It
leverages CLIP encoders to extract coherent text and im-
age embeddings, with GPT-4 integrating users’ interests to
formulate effective textual contexts. Moreover, reference
word constraint and concept-level constraint are designed
to learn the optimal text proxy according to the user’s in-
terest. Multi-MaP not only adeptly captures a user’s inter-
est via a keyword but also facilitates identifying relevant
clusterings. Our extensive experiments show that Multi-
MaP consistently outperforms state-of-the-art methods in
all benchmark multi-clustering vision tasks. Our code is
available at https://github.com/Alexander-Yao/Multi-MaP.

1. Introduction
Clustering, which groups data points based on their similar-
ities, has been extensively researched, since huge amount of
unlabeled data are becoming more and more available. Tra-
ditional methods [2, 16, 19] exploit general-purpose hand-
crafted features that are not always ideal for specific tasks.
Recently, deep clustering algorithms [9, 23, 33] leverage
Deep Neural Networks (DNNs) significantly improve per-
formance. However, most algorithms yield a single data
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User I am eager to see the color-based and species-based 
clustering results.

GPT-4 Common colors include red, 
yellow, green……

Multi-Map

GPT-4Common species include 
apples, bananas……

Multi-Map

Figure 1. The flow chart of Multi-MaP. Multi-MaP obtains multi-
ple clustering results based on the high-level concepts from users
and the reference words from GPT-4.

partition, while data can exhibit multiple aspects (e.g., color
and species as shown in Fig. 1). Traditional multiple clus-
tering algorithms [1, 12] have been developed to generate
different partitions for varying applications, demonstrating
the ability to identify multiple distinct clusterings from a
dataset. Contemporary advancements in the field reveal
a growing inclination among researchers to integrate deep
learning methodologies for facilitating multiple clustering
outcomes. Predominantly, such techniques capitalize on
auto-encoders and data augmentation processes to capture
a broad spectrum of feature dimensions, thereby enhancing
the performance of multiple clustering [18, 27, 35].

However, a common issue arises as users often do not
require all the clusterings generated by the algorithm, and
identifying the relevant ones necessitates a substantial un-
derstanding of each clustering result. Therefore, in this
work, we initiate an exploration into a method that is adept
at accurately capturing and reflecting a user’s interest. Users
typically express their interests through concise keywords
(e.g., color or species), and aligning these with different vi-
sual components precisely is challenging. Fortunately, the
advent of multi-modal models like CLIP [25] that aligns im-
ages to their corresponding text descriptions, can be helpful
to fill this gap. However, unlike methods that employ la-
beled data to fine-tune pre-trained models [6, 30], multiple

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14066



clustering deals with environments marked by vague or un-
defined label categories and amounts. Consequently, given
only a high-level concept from the user, it is infeasible to
fine-tune the pre-trained models to capture a specific aspect
of the data, without the detailed labels corresponding to the
user’s concept.

An intuitive strategy to integrate pre-trained models into
clustering is the zero-shot feature extraction, followed by
clustering of the resultant embeddings. However, this ap-
proach exhibits limitations, particularly in capturing the
interests of users within the dataset. Taking the multi-
modal model CLIP [25] as an example, when feeding im-
age data into CLIP, regardless of what aspects of cluster-
ing the user expects, CLIP can only produce the same em-
beddings. Even considering the scenario that different pre-
trained models can capture different aspects of the same
data as in [9], it is hard to tell which one matches a user’s
preference. Fortunately, given CLIP’s ability to model
image-text pairs collaboratively, we can use a user’s high-
level concept to trigger the corresponding feature extraction
from the pre-trained encoders from CLIP. However, no pre-
vious work has studied if CLIP has this potential to uncover
different aspects of images, which is the focus of this work.

Specifically, we propose to integrate a user’s high-level
concept describing the preference using a personalized tex-
tual prompt. For example, if a user’s focus pertains to the
color dimension of fruit, a prospective prompt might be for-
mulated as “a fruit with the color of *”, wherein the “*”
placeholder represents the proxy word awaiting determi-
nation using the knowledge in CLIP. Thereafter, we can
learn the proxy word embedding by maximizing the sim-
ilarity between the image and text embedding. However,
the proxy word embedding is now searched in a continuous
space while the original CLIP used discrete tokens, which
can downgrade the performance. We prove that the perfor-
mance can be well guaranteed by selecting the nearest token
as the reference, which is unavailable in a clustering task.

Fortunately, we can use the user’s high-level concept as
a reference, which however covers a broad range of tokens
under its scope. Therefore, we propose to leverage large
language models like GPT-4 to generate candidate tokens
using the user’s high-level concept, in which the closest can
be used as a closer reference token. Furthermore, in some
scenarios, users may provide multiple concepts to obtain
multiple clusterings simultaneously as shown in Fig. 1, we
can also introduce a negative loss with these constrastive
concepts to further enhance the learning. Therefore, to
capture a user’s specific interest and discover personalized
clustering structure hidden in the data, we propose a multi-
modal proxy learning method (Multi-MaP). Multi-MaP in-
corporates both text prompts and unlabeled images from
the clustering task, and leverages CLIP to acquire their re-
spective personalized representations using both reference

word and concept-level constraints. The contributions of
this work can be summarized as:
• We are the first to explore a deep multiple clustering

method that precisely captures a user’s interest(s) and
generates personalized clustering(s) accordingly.

• We propose a novel multi-modal proxy learning method,
Multi-MaP, by leveraging the text and image encoders
pre-trained by CLIP, where the user’s interest can be cap-
tured by the personalized text prompts.

• Considering the challenge of learning a word proxy in a
continuous space while tokens in CLIP were discrete, we
theoretically prove that a close reference token can help
constrain the search, which motivates the proposed refer-
ence word constraint and concept-level constraint.

• We conduct extensive experiments on all publicly avail-
able visual multiple clustering tasks, which empirically
demonstrates the superiority of the proposed Multi-MaP,
with a precise capturing of a user’s interest.

• Finally, to the best of our knowledge, we are the first who
demonstrate that CLIP can uncover different semantic as-
pects of images.

2. Related Work
In this section, we briefly review two related directions, that
is, multiple clustering and multi-modal models.

2.1. Multiple Clustering

Multiple clustering, as a kind of method that can discover
alternative perspectives of data, has attracted considerable
attention. Traditional methods for multiple clustering [11]
use shallow models to find different ways of grouping data.
Some of these methods rely on constraints to produce alter-
native clusterings. For instance, COALA [1] uses the ob-
jects in an existing clustering as constraints for creating a
new clustering and Qi et al. [21] formulated multiple clus-
tering as a constrained optimization problem. Other meth-
ods exploit different feature subspaces to generate multiple
clusterings. For example, Hu et al. [12] found multiple clus-
terings by maximizing the eigengap in different subspaces.
MNMF [34] adds the inner product of similarity matrices
as a regularization term to find multiple clusterings. Some
methods also use information theory to generate multiple
clusterings. Gondek [8] applied conditional information
bottleneck and Dang [4] used an expectation maximization
framework to optimize mutual information.

Recently, some methods have used DNNs to find multi-
ple clusterings and achieved better results. Wei et al. [31]
proposed a deep matrix factorization based method that uses
multi-view data to find multiple clusterings. ENRC [18]
uses an auto-encoder to learn object features and finds mul-
tiple clusterings by optimizing a clustering objective func-
tion. iMClusts [27] exploits auto-encoders and multi-head
attention to learn features from different perspectives, and
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then find multiple clusterings. AugDMC [35] leverages
data augmentation to generate diverse aspects of images and
learns the representations to discover multiple clusterings.
Although existing deep multiple clustering methods have
achieved remarkable results, they require users to exert con-
siderable efforts to select the correct clustering they need.
In this work, we aim to efficiently and effectively capture
users’ interests using short keywords and provide clustering
results accordingly.

2.2. Multi-modal Model
Multi-modal learning refers to the process of learning repre-
sentations from different types of input modalities, such as
image data, text, or speech. As related, we focus on how vi-
sion models can benefit from natural language supervision.
CLIP [25] is a notable model, which is trained with a dataset
containing 400 million text-image pairs from the internet.
The objective is to align images to their corresponding text
using contrastive learning.

Fine-tuning approaches adapt vision-language models
like CLIP to specific downstream image recognition tasks.
CoOp [36] and CLIP-Adapter [6] exemplify this, with the
latter integrating residual style feature blending to enhance
performance on various visual classification tasks. Addi-
tionally, insights from TeS [30], further elucidate the effec-
tiveness of fine-tuning strategies in leveraging natural lan-
guage supervision for enhanced visual understanding. Rec-
ognizing the scarcity of labeled data for various tasks, sig-
nificant research efforts have been dedicated to enhancing
zero-shot learning. Some approaches extend beyond CLIP
by incorporating other large pre-trained models. For in-
stance, VisDesc [17] harnesses the power of GPT-3 to gen-
erate comprehensive contextual descriptions corresponding
to given class names, thereby demonstrating superior per-
formance compared to CLIP’s basic prompts. UPL [13] and
TPT [29] leverages unlabeled data to optimize learnable in-
put text prompts. InMaP [24] recovers the proxy of each
class in the vision space with the help from the text proxy.
All of these methods aim to improve the performance of vi-
sion classification tasks, while clustering is a different sce-
nario that we do not have class names that we can exploit to
extract useful information from CLIP. In this work, we con-
sider leveraging the CLIP encoder to extract coherent text
and image embeddings, and using GPT-4 to integrate users’
interests for the purpose of multiple clustering.

3. The Proposed Method
In this section, we first briefly review the training objective
in CLIP as follows, and then describe the details of our pro-
posed method based on that.

3.1. Multi-modal Pre-training

Given a set of image-text pairs as {xi, ti}ni=1, where xi is
an image and ti is the corresponding text description, their

vision and text representations can be obtained by two en-
coders as xi = f(xi) and ti = h(ti). f(·) and h(·) are
vision and text encoders for optimization, where xi and ti
have the unit norm. Then, these two encoders can be learned
by minimizing the contrastive loss as

min
f,h

∑
i

− log
exp(x⊤

i ti/τ)∑
j exp(x

⊤
i tj)/τ)

−log
exp(t⊤i xi/τ)∑
j exp(t

⊤
i xj)/τ)

where τ is the temperature.
This contrastive loss aims to pull the image and its

description together while pushing away the irrelevant
text [22], which enables the emerging multi-modal appli-
cations, e.g., zero-shot transfer [24, 25], text-to-image gen-
eration [28], etc.

3.2. Multi-modal Proxy Learning

Given the pre-trained vision and text encoders from CLIP,
this work takes one step further to investigate if we can ex-
tract user-specific information from the alignment between
images and text.

Concretely, given an image of fruit [12] as shown in
Fig. 2, some users may be interested in only one specific
property of the object, e.g., color. In this scenario, apply-
ing the vision encoder to extract the representation for the
whole image can miss the preference of users. To mitigate
the problem, we propose to explore the proxy representa-
tion from the image with the guidance from the text us-
ing users’ preference, named Multi-Modal Proxy learning
(Multi-MaP).

Recall that CLIP is pre-trained by images and text de-
scriptions, where the text prompt is “a photo of a fruit” for
an image containing “fruit”. Now given a user’s preference
(e.g., color), we can rewrite the prompt as “fruit with the
color of *” denoted by t∗i for image xi, where “*” is the
proxy word and its token embedding is wi that is learnable.
Then, we can align image and text prompt representations
to obtain the appropriate proxy embedding for a user’s in-
terest. Since there is no negative pairs, only the similarity
between positive pairs can be optimized as

L(wi) = −⟨f(xi), h(t
∗
i )⟩ (1)

where the vision and text encoders are frozen, and wi is the
only variable for learning as the representation of the proxy
word. By maximizing the similarity to the image represen-
tation, Multi-MaP aims to learn the optimal text proxy ac-
cording to the user’s interest.

However, it should be noted that the text encoder was
pre-trained with discrete text tokens, while the domain of
wi in Eqn. 1 is unconstrained. Therefore, the text repre-
sentation extracted from the frozen text encoder can be in-
accurate for wi that degenerates the performance, which is
demonstrated in the following theory.
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A fruit with the color of green

Text Encoder

A fruit with the color of *

Proxy Learning

Reference Word 
Constraint

Contrastive 
Concepts Constraint

Optimize 

Prompt Concepts:

GPT-4 Common colors of fruit include red, yellow, green…… Common species of fruit include …… 

User I am eager to see the color-based and species-based clustering results.

Multi-Map Concepts are color ( ) and species ( ). I’ll generate the clustering of color firstly. The reference 
words are red ( ), yellow ( ), green ( ) ……

Proxy 
word

Fruit dataset

Input image

Image Encoder

Prompts with reference words

A fruit with the color of yellow
A fruit with the color of red

co
si

ne

…

arg max

Target: color 
Irrelevant: species  

Learnable 
embedding

initialize

pts w

Selected 
reference 
word

Text subspace

Token subspace

Figure 2. Multi-MaP framework. In the training process of Multi-MaP, the vision and text encoders are frozen and the proxy word
embeddings wi are learnable. Specifically, it first constructs the prompt embeddings based on the reference words provided by GPT-4
using a user’s high-level concept, and then selects a reference word zi for each image according to the similarity between the prompt
embeddings ti and the image embeddings xi. Then, it combines the prompt and the reference words to form the new prompt embeddings
t∗i and maximizes the similarity to the image representation, so the proxy word embeddings wi can capture the desired image features. In
addition, the proxy word embeddings wi should be close to the target concept word u1 and the selected reference word zi to construct the
concept-level constraint and reference word constraint, which capture the features related to the user’s interest.

For the sake of simplicity, we assume h′(t) ∈ R is de-
fined on the whole set but only has the right estimation on
a discrete set as T = {ti} and the counterpart with the un-
constrained set is denoted as H(w). According to the defi-
nition, we have ∀t ∈ T, h′(t) = H(t). The gap between the
estimation from h′ and H on unconstrained variable w can
be depicted as follows.

Theorem 1. Given w ̸∈ T and t ∈ T , if assuming h′ and
H are Lh and LH -Lipschitz continuous, we have

∥h′(w)−H(w)∥2 ≤ (Lh + LH)∥t− w∥2
Proof. According to the definition, we have

∥h′(w)−H(w)∥2 = ∥h′(w)− h′(t) + h′(t)−H(w)∥2
≤ ∥h′(w)− h′(t)∥2 + ∥h′(t)−H(w)∥2
= ∥h′(w)− h′(t)∥2 + ∥H(t)−H(w)∥2
≤ (Lh + LH)∥t− w∥2

Remark Theorem 1 implies that the distance of the esti-
mation h′(w) to the ground-truth result H(w) is bounded
by that of w to an arbitrary discrete token t. Therefore, by
selecting the nearest token as the reference, the bound can
be improved as shown in the following corollary.

Corollary 2. With the assumptions in Theorem 1 and letting
t′ = argmini ∥ti − w∥2, we have

∥h′(w)−H(w)∥2 ≤ (Lh + LH)∥t′ − w∥2

3.2.1 Concept-level Constraint

According to the above analysis, a good reference t′ can
help guarantee the performance. Fortunately, the input con-
cept (e.g., color) from the user can be leveraged as the refer-
ence to constrain the freedom of the proxy word. Therefore,
given the target concept word u, we can obtain its token em-
bedding as u = ϕ(u). Then, to learn appropriate represen-
tations from the proxy embedding, the original problem can
be rewritten with the constraint as

L(wi) = −⟨f(xi), h(t
∗
i )⟩ s.t. ∥wi − u∥22 ≤ λ

The constrained problem is equivalent to

L(wi) = −⟨f(xi), h(t
∗
i )⟩+ α∥wi − u∥22 (2)

following [3], which can be optimized effectively by gradi-
ent descent.

3.2.2 Constrained Optimization with Reference Word

However, it is well known that the user concept is often with
a large scope covering a broad range of words (e.g., color
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Datasets # Samples # Clusters

ALOI 288 2;2
Card 8,029 13;4

CMUface 640 4;20;2;4
Fruit 105 3;3

Fruit360 4,856 4;4
Stanford Cars 1,200 4;3

Flowers 1,600 4;4

Table 1. Dataset Statistics.

covers all including but not limited to ‘red’, ‘blue’, ‘green’,
etc.). As suggested by our above theoretical analysis, it is
desired if the reference is as close as possible. In a cluster-
ing scenario and given only the user’s high-level concept,
it is challenging to find a closer reference word to further
constrain the proxy learning. Fortunately, with the devel-
opment of large language models (LLMs), we can leverage
them (e.g., GPT-4) to provide relevant words according to a
user’s high-level concept as the candidate set and develop a
selection strategy to obtain a closer reference word for each
image. While the responses gathered from GPT-4 might
not always precisely align with the data’s ground truth, they
indisputably furnish valuable candidate features, enriching
the capabilities of Multi-MaP.

To elucidate, considering the task of clustering a fruit
dataset based on the concept of color, we can pose a query
to GPT-4 as “What are the common colors of fruit?”. The
response we obtain is “Common colors of fruit include red,
yellow, green, orange, purple, and blue”. The colors enu-
merated in this response can serve as reference word can-
didates. It is worth noting that while the color spectrum
derived from this method might surpass the actual colors
present in the data, we collect all of them into the candidate
set of reference words {zk}k, where z1: “red”, z2: “yel-
low”, etc. Then, their text representations can be obtained
from the prompt tk as “fruit with the color of zk”. Given
the image xi, the closest reference can be observed as

zi = argmax
k

⟨xi, tk⟩

where tk = h(tk). After that, wi can be initialized with the
token embedding of zi as zi = ϕ(zi). Moreover, we change
the regularization using a closer reference word compared
to the high-level concept as

L(wi) = −⟨f(xi), h(t
∗
i )⟩+ α∥wi − zi∥22 (3)

3.2.3 Contrastive Concepts

In some application scenarios, one user may need more than
one clustering and provide high-level concepts as {uj}, e.g.,
u1:“color”, u2:“species”, etc. For the concept “color”, the
irrelevant concept “species” can be leveraged as the nega-
tive constraint for the learning of proxy word. Concretely,

let uw denote the target concept word, a contrastive loss can
be adopted as regularization

R(wi) = − log
exp(w⊤

i uw)∑
j exp(w

⊤
i uj)

and the final objective becomes

L(wi) =

− ⟨f(xi), h(t
∗
i )⟩+ α∥wi − zi∥22 − β log

exp(w⊤
i uw)∑

j exp(w
⊤
i uj)

(4)

where the first term is to infer the user-specific feature,
while the latter two terms constrain the proxy word to the
reference words for the appropriate representation extrac-
tion from the pre-trained text encoder. The overall frame-
work of Multi-MaP is illustrated in Fig. 2.

4. Experiments
To demonstrate our proposed method, we evaluate Multi-
MaP on all publicly available image datasets in multi-
ple clustering, including ALOI [7], Stanford Cars [14],
Card [35], CMUface [10], Flowers [20], Fruit [12], and
Fruit360 [35] as summarized in Table 1.

We compare Multi-MaP against five state-of-the-art
methods: MSC [12] is a traditional multiple clustering
method that uses hand-crafted features; MCV [9] leverages
multiple feature extractors to represent different “views”
of the same data and employs a multi-input neural net-
work to enhance clustering outcomes; ENRC [18] is a deep
multiple clustering method that integrates auto-encoder and
clustering objective to generate different clusterings; iM-
Clusts [27] makes use of the expressive representational
power of deep autoencoders and multi-head attention to
accomplish multiple clusterings; AugDMC [35] leverages
augmentations to learn different image representations to
achieve multiple clustering.

4.1. Experiment Setup

We employ Adam and set momentum as 0.9 to
train the model for 1000 epochs. All hyper-
parameters are searched according to the loss score
of Multi-MaP, where the learning rate is searched in
{0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}, weight decay is
in {0.0005, 0.0001, 0.00005, 0.00001, 0}, α, β are in
{0.0, 0.1, 0.2, . . . , 1.0}, and λ is fixed as 1 for all the
experiments. For the non pre-trained methods, we perform
k-means [15] 10 times due to its randomness and evaluate
the average clustering performance using two quanti-
tative metrics, that is, Normalized Mutual Information
(NMI) [32] and Rand index (RI) [26]. These measures
range in [0, 1], and higher scores imply more accurate

14070



Dataset Clustering MSC MCV ENRC iMClusts AugDMC Multi-MaP
NMI RI NMI RI NMI RI NMI RI NMI RI NMI RI

ALOI Color 0.1563 0.3428 0.6982 0.7439 0.9833 0.9892 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Shape 0.2968 0.5199 0.7359 0.8261 0.9732 0.9861 0.9963 0.9989 1.0000 1.0000 1.0000 1.0000

Fruit Color 0.6886 0.8051 0.6266 0.7685 0.7103 0.8511 0.7351 0.8632 0.8517 0.9108 0.8619 0.9526
Species 0.1627 0.6045 0.2733 0.6597 0.3187 0.6536 0.3029 0.6743 0.3546 0.7399 1.0000 1.0000

Fruit360 Color 0.2544 0.6054 0.3776 0.6791 0.4264 0.6868 0.4097 0.6841 0.4594 0.7392 0.6239 0.8243
Species 0.2184 0.5805 0.2985 0.6176 0.4142 0.6984 0.3861 0.6732 0.5139 0.7430 0.5284 0.7582

Card Order 0.0807 0.7805 0.0792 0.7128 0.1225 0.7313 0.1144 0.7658 0.1440 0.8267 0.3653 0.8587
Suits 0.0497 0.3587 0.0430 0.3638 0.0676 0.3801 0.0716 0.3715 0.0873 0.4228 0.2734 0.7039

CMUface

Emotion 0.1284 0.6736 0.1433 0.5268 0.1592 0.6630 0.0422 0.5932 0.0161 0.5367 0.1786 0.7105
Glass 0.1420 0.5745 0.1201 0.4905 0.1493 0.6209 0.1929 0.5627 0.1039 0.5361 0.3402 0.7068

Identity 0.3892 0.7326 0.4637 0.6247 0.5607 0.7635 0.5109 0.8260 0.5875 0.8334 0.6625 0.9496
Pose 0.3687 0.6322 0.3254 0.6028 0.2290 0.5029 0.4437 0.6114 0.1320 0.5517 0.4693 0.6624

Stanford Cars Color 0.2331 0.6158 0.2103 0.5802 0.2465 0.6779 0.2336 0.6552 0.2736 0.7525 0.7360 0.9193
Type 0.1325 0.5336 0.1650 0.5634 0.2063 0.6217 0.1963 0.5643 0.2364 0.7356 0.6355 0.8399

Flowers Color 0.2561 0.5965 0.2938 0.5860 0.3329 0.6214 0.3169 0.6127 0.3556 0.6931 0.6426 0.7984
Species 0.1326 0.5273 0.1561 0.6065 0.1894 0.6195 0.1887 0.6077 0.1996 0.6227 0.6013 0.8103

Table 2. Quantitative comparison. The significantly best results with 95% confidence are in bold.

clustering results. The experiments are conducted with
GPU NVIDIA GeForce RTX 2080 Ti.

It should also be noted that some data are difficult to
obtain corresponding candidate labels from GPT-4 or the
labels do not provide semantic features, such as names.
For example, for the identity clustering for the CMUface
dataset [10], different identities represent different people
and the semantic meaning of names should not affect the
clustering results. In this case, we randomly extract 10
words from WordNet [5] as reference words, in order to
make the candidate labels more distinctive. For instance,
we randomly choose “abstain, candid, function, haphazard,
knot, luxury, nonchalance, pension, resilience, taciturn” for
the above scenario. Furthermore, all publicly available mul-
tiple clustering datasets provide each ground-truth cluster-
ing a high-level concept, e.g., ‘shape’, ‘pose’, etc. There-
fore, in the experiment, we directly use them as users’ pref-
erences for our evaluation purposes.

4.2. Performance Comparison

In our experiments, after we obtain the proxy word embed-
ding of each image for a desired concept, we feed them to
k-means to obtain the corresponding clustering. Since k-
means is random, we repeat ten times and the average per-
formance is reported in Table 2. The best results are marked
by bold numbers.

We can observe that Multi-MaP outperforms the base-
lines in all the cases, indicating the superiority of the pro-
posed method. This also shows a strong generalization abil-
ity of the pre-trained model by CLIP, which can capture the
features of data in different aspects.

Since our method uses the CLIP encoder and GPT-4 to
obtain clustering results, a natural question arises how the
performance would be if we directly use them in a zero-
short manner. Therefore, we provide two zero-shot variants
of CLIP, that is, CLIPGPT that uses GPT-4 to obtain the can-

Dataset Clustering CLIPGPT CLIPlabel Multi-MaP
NMI RI NMI RI NMI RI

ALOI Color 0.8581 0.9407 1.0000 1.0000 1.0000 1.0000
Shape 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Fruit Color 0.7912 0.9075 0.8629 0.9780 0.8619 0.9526
Species 0.9793 0.9919 1.0000 1.0000 1.0000 1.0000

Fruit360 Color 0.5613 0.7305 0.5746 0.7673 0.6239 0.8243
Species 0.4370 0.7552 0.5364 0.7631 0.5284 0.7582

Card Order 0.3518 0.8458 0.3518 0.8458 0.3653 0.8587
Suits 0.2711 0.6123 0.2711 0.6123 0.2734 0.7039

CMUface

Emotion 0.1576 0.6532 0.1590 0.6619 0.1786 0.7105
Glass 0.2905 0.6869 0.4686 0.7505 0.3402 0.7068

Identity 0.1998 0.6388 0.2677 0.7545 0.6625 0.9496
Pose 0.4088 0.6473 0.4691 0.6409 0.4693 0.6624

Stanford Cars Color 0.6539 0.8237 0.6830 0.8642 0.7360 0.9193
Type 0.6207 0.7931 0.6429 0.8456 0.6355 0.8399

Flowers Color 0.5653 0.7629 0.5828 0.7836 0.6426 0.7984
Species 0.5620 0.7553 0.6019 0.7996 0.6013 0.8103

Table 3. Variants of CLIP. The significantly best results with 95%
confidence are in bold.

didate labels and predicts labels through zero-shot classifi-
cation with all candidate labels as class names, and CLIPlabel
that performs zero-shot classification with all ground truth
labels. It should be noted that CLIPlabel uses an unfair set-
ting with a ground-truth label set known in advance, which
is expected to provide the best performance using CLIP in
a zero-short manner. The results are shown in Table 3.

As expected, CLIPlabel achieves better performance than
CLIPGPT in almost all cases, since CLIPlabel uses a fixed
ground truth label set, while CLIPGPT uses candidate labels
that may not match the ground truth exactly, introducing
noise. Note that CLIPGPT and CLIPlabel achieve the same
results on Cards, because the candidate labels provided by
GPT-4 are exactly the same as the true labels.

Besides, Multi-MaP performs better than CLIPGPT in al-
most all cases, indicating that the proposed method can
learn more effective features through its training process.
Moreover, although CLIPlabel uses the ground truth, which
is expected to be the best, Multi-MaP still outperforms
CLIPlabel in some cases, such as the clustering of color for
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Multi-MaPp Multi-MaPc Multi-MaPr Multi-MaPcr Multi-MaP

Modules

Proxy Learning ✓ ✓ ✓ ✓ ✓
Concept Word × ✓ × ✓ ✓

Reference Word × × ✓ ✓ ✓
Contrastive Concepts × × × × ✓

NMI↑ RI↑ NMI↑ RI↑ NMI↑ RI↑ NMI↑ RI↑ NMI↑ RI↑

ALOI [7] Color 0.9619 0.9826 1.0000 1.0000 0.9795 0.9869 1.0000 1.0000 1.0000 1.0000
Shape 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Fruit [12] Color 0.7642 0.8439 0.8215 0.9283 0.8136 0.9073 0.8484 0.9308 0.8619 0.9526
Species 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Fruit360 [35] Color 0.5643 0.7665 0.6217 0.7836 0.5910 0.7746 0.6089 0.7965 0.6239 0.8243
Species 0.5077 0.7368 0.5137 0.7436 0.5094 0.7425 0.5199 0.7428 0.5284 0.7582

Card [35] Order 0.1932 0.8152 0.3568 0.8472 0.3113 0.8229 0.3616 0.8094 0.3653 0.8587
Suits 0.2375 0.6282 0.2696 0.6641 0.2498 0.6365 0.2562 0.6599 0.2734 0.7039

CMUface [10]

Emotion 0.1690 0.6170 0.1714 0.6229 0.1697 0.6360 0.1713 0.6843 0.1786 0.7105
Glass 0.3112 0.6911 0.3269 0.7136 0.3162 0.6917 0.3370 0.7108 0.3402 0.7068

Identity 0.5617 0.8234 0.6243 0.8359 0.5839 0.8263 0.6391 0.8946 0.6625 0.9496
Pose 0.4361 0.6386 0.4550 0.6499 0.4381 0.6429 0.4387 0.6489 0.4693 0.6624

Stanford cars [14] Color 0.5939 0.7835 0.6836 0.8659 0.6729 0.8638 0.7112 0.9117 0.7360 0.9193
Type 0.5569 0.7996 0.6383 0.8271 0.6091 0.8046 0.6289 0.8181 0.6355 0.8399

Flowers [20] Color 0.5783 0.7723 0.5830 0.7833 0.5987 0.7849 0.6216 0.7941 0.6426 0.7984
Species 0.5704 0.7608 0.5744 0.7842 0.5723 0.7811 0.5846 0.7892 0.6013 0.8103

Table 4. Components ablation. All of our components boost performance consistently in all benchmark multi-clustering vision tasks.
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Figure 3. Parameter analysis of α and β on Fruit [12].

Fruit360 dataset. This is because CLIP is more inclined
to capture the features of one aspect of the data, while
Multi-MaP learns better embedding of different aspects by
training with the supervision of users’ interests. Further-
more, Multi-MaP also achieves very competitive results
as CLIPlabel in the remaining cases, which further demon-
strates the effectiveness of the proposed method.

4.3. Ablation Study

To validate the effectiveness of the proposed method, we
show the gain from four components in Multi-MaP in Ta-
ble 4. Let “Multi-MaPp” denote the proxy learning without
concept-level constraint, “Multi-MaPc” denote the variant
optimized by solely applying concept word to constrain the
freedom of the proxy word, “Multi-MaPr” denote the vari-
ant optimized by reference word provided by GPT-4 to find
a closer reference word to further constrain the proxy learn-
ing, and “Multi-MaPcr” denote the variant leveraged both
concept word and reference word.

We can observe that the proxy learning only with concept

word or reference word, i.e., Multi-MaPc and Multi-MaPr,
performs better than Multi-MaPp. This shows that the pro-
posed concept-level constraint and constrained optimization
with reference words play an important role in the model
as demonstrated by our theoretical analysis. Moreover,
the model with combined components, i.e, Multi-MaPcr,
achieves better results than Multi-MaPr and Multi-MaPc.
This indicates the effectiveness of the combination of ref-
erence words and reference concepts. Finally, our proposal
using all including the contrastive concepts can further im-
prove the performance, and thus provide the best results on
all cases. This further demonstrates our proposal.

4.4. Parameter Analysis

We further investigate the effect of the reference word con-
straint weight α and concept-level constraint weight β vary-
ing from 0.0 to 0.5. The results of Multi-MaP on Fruit
datasets are shown in Fig. 3 (a) and Fig. 3 (b), respectively.
As α and β change, the proposed method keeps a species
score of 1, since the image encoder can capture very effec-
tive species features. The above results also show that the
proposed method can effectively capture useful information
from images, reference words, and target concepts. As α
increases, the proposed method first increases and then de-
creases, and reaches the maximum values at α=0.4. Sim-
ilar results can be observed for β that the performance of
the proposed method first increases and then decreases as β
increases, and reaches the maximum values at β=0.3. Indi-
cating a suitable value of α or β is helpful for Multi-MaP
to obtain more effective embeddings for multiple clustering
tasks. More studies such as efficiency analysis can be found
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(a) Color using ground truth (b) Color using reference words (c) Color of Multi-MaP (d) Legend of color

(e) Species using ground truth (f) Species using reference words (g) Species of Multi-MaP (h) Legend of species

Figure 4. Visualization of feature embeddings and related labels. The points represent the image or pseudo-word embeddings, and the
triangles represent the prompt or label embeddings. Different colors represent different labels, which are indicated by the text next to the
triangles.

in the supplementary.

4.5. Visualization

To further demonstrate the effectiveness of the pro-
posed method, we visualize the representations obtained
in CLIPlabel, CLIPGPT, and Multi-MaP. Specifically, for
CLIPlabel and CLIPGPT, we visualize the image represen-
tations as well as prompts generated with real labels and
candidate labels, respectively. For the Multi-MaP, we visu-
alize the word embedding w∗ and the candidate labels se-
lected for initialization. The results are shown in Fig. 4. For
species clustering, we can see that image embeddings show
very clear boundaries and correspond well to the prompt for
CLIPlabel, which indicates that CLIP can effectively capture
the features of the species in the data. CLIPGPT uses the can-
didate labels to generate prompts, which introduces more
noise, but benefits from the CLIP text encoder, the image
embedding can keep a relatively far distance from most of
the irrelevant prompts. However, since there are still a few
images that are labeled as peaches (i.e., a noisy label), it per-
forms slightly worse than CLIPlabel, as shown in Fig. 4(e).
Besides, Multi-MaP can capture the image and users’ in-
terests in the training process, therefore it compensates for
the shortcomings of CLIPGPT and achieves better results.
On the other hand, for color clustering, the prompts are far-
ther away from CLIPlabel and CLIPGPT, that indicates the
image embeddings mainly capture the features of species,
which have no direct connection with color. CLIPGPT gen-
erates the prompt from the candidate label, which has more
noise than the ground truth label, resulting in worse perfor-
mance than CLIPlabel. The proposed method can distinguish
different colors more clearly, because it can learn from the
user’s interest and capture the color-related features. How-

ever, some red color embeddings are closer to purple, be-
cause some images in the datasets are actually purple, but
labeled as red. To sum up, the proposed method can learn
more effective embeddings based on the users’ interests for
multiple clustering tasks.

5. Conclusion
To conclude, our study thoroughly investigates the signif-
icant challenges that current advanced deep learning tech-
niques face in multiple clustering. A key issue is that users
often do not need every clustering result produced by an
algorithm, and selecting the most relevant one requires an
in-depth understanding of each outcome. To overcome this
challenge, the proposed method introduces a novel multi-
modal proxy learning process, which effectively aligns a
user’s brief keyword describing the interest with the corre-
sponding vision components. By integrating a multi-modal
model and GPT-4 to precisely capture a user’s interest using
a keyword, the proposed approach uses both reference word
constraint and concept-level constraint to discover person-
alized clustering result(s), which can also lead to enhanced
performance. Experiments on diverse datasets demonstrate
the superiority of the proposed method in multiple cluster-
ing tasks with a precise capture of a user’s interest. The
proposed method is limited by data with semantic mean-
ingful labels, although we can use WordNet to help, whose
comprehensive study will be our future work.

6. Acknowledgement
This research is supported in part by Advata Gift funding.
All opinions, findings, conclusions and recommendations
in this paper are those of the author and do not necessarily
reflect the views of the funding agencies.

14073



References
[1] Eric Bae and James Bailey. Coala: A novel approach for the

extraction of an alternate clustering of high quality and high
dissimilarity. In ICDM, pages 53–62. IEEE, 2006. 1, 2

[2] Christopher M Bishop and Nasser M Nasrabadi. Pattern
recognition and machine learning. Springer, 2006. 1

[3] Stephen P. Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, 2014. 4

[4] Xuan Hong Dang and James Bailey. Generation of alterna-
tive clusterings using the cami approach. In Proceedings of
the 2010 SIAM International Conference on Data Mining,
pages 118–129. SIAM, 2010. 2

[5] Christiane Fellbaum. Wordnet. In Theory and applications of
ontology: computer applications, pages 231–243. Springer,
2010. 6

[6] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao
Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao.
Clip-adapter: Better vision-language models with feature
adapters. International Journal of Computer Vision, pages
1–15, 2023. 1, 3

[7] Jan-Mark Geusebroek, Gertjan J Burghouts, and Arnold WM
Smeulders. The amsterdam library of object images. Inter-
national Journal of Computer Vision, 61:103–112, 2005. 5,
7

[8] David Gondek and Thomas Hofmann. Conditional informa-
tion bottleneck clustering. In 3rd ieee international confer-
ence on data mining, workshop on clustering large data sets,
pages 36–42, 2003. 2
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