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Abstract

Compressive spectral image reconstruction is a critical
method for acquiring images with high spatial and spectral
resolution. Current advanced methods, which involve de-
signing deeper networks or adding more self-attention mod-
ules, are limited by the scope of attention modules and the
irrelevance of attentions across different dimensions. This
leads to difficulties in capturing non-local mutation fea-
tures in the spatial-spectral domain and results in a signif-
icant parameter increase but only limited performance im-
provement. To address these issues, we propose SPECAT,
a SPatial-spEctral Cumulative-Attention Transformer de-
signed for high-resolution hyperspectral image reconstruc-
tion. SPECAT utilizes Cumulative-Attention Blocks (CABs)
within an efficient hierarchical framework to extract fea-
tures from non-local spatial-spectral details. Furthermore,
it employs a projection-object Dual-domain Loss Function
(DLF) to integrate the optical path constraint, a physical
aspect often overlooked in current methodologies. Ulti-
mately, SPECAT not only significantly enhances the recon-
struction quality of spectral details but also breaks through
the bottleneck of mutual restriction between the cost and
accuracy in existing algorithms. Our experimental re-
sults demonstrate the superiority of SPECAT, achieving
40.3 dB in hyperspectral reconstruction benchmarks, out-
performing the state-of-the-art (SOTA) algorithms by 1.2
dB while using only 5% of the network parameters and
10% of the computational cost. The code is available at
https://github.com/THU-luvision/SPECAT.

1. Introduction
Improving imaging resolution and increasing the dimen-
sionality of acquired information are critical challenges cur-
rently faced in the field of visual imaging [1–4]. Exploiting
their unique spectral characteristics, hyperspectral imaging
(HSI) play a crucial role in various fields such as precision
agriculture [5], defense [6], environmental monitoring [7],
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Figure 1. Comparison of PSNR, Params, and GFLOPs between
our SPECAT and SOTA HSI reconstruction methods. The ver-
tical axis represents PSNR (dB), the horizontal axis corresponds
to GFLOPs (computational cost), and the circle radius signifies
Params (memory cost).

and space exploration [8]. Additionally, they significantly
contribute to the advancement of computer vision applica-
tions, including object tracking [9, 10], material classifica-
tion [11], feature identification [12, 13], and medical imag-
ing [14]. Traditional imaging methods, which sequentially
scan spatial or spectral dimensions and require multiple
exposures to reconstruct scene spectral data [15], perform
poorly in real-time applications. The development of Com-
pressed Sensing (CS) theory has led to the creation of Snap-
shot Compressed Imaging (SCI) systems [16], integrating
spectral snapshot information into a single 2D metric.

Among these systems, Coded Aperture Snapshot Spec-
tral Imaging (CASSI) [17, 18] has emerged as a leading
area of research. CASSI system stores three-dimensional
hyperspectral images on a two-dimensional sensor by en-
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coding both the spatial and spectral domains, then obtains
the complete hyperspectral data from these compressed data
by compressive spectral image reconstruction algorithm.
Traditional hyperspectral reconstruction methods [19–24]
achieve hyperspectral image reconstruction through grad-
ual iterations by utilizing the CS theory and sparse prior.
However, their iterative nature and computational intensity
often result in slower reconstruction speeds.

Deep learning has been used in compressive spectral re-
construction and has shown significant advantages in high-
resolution and rapid hyperspectral image reconstruction.
The most effective performers are primarily End-to-End
(E2E) deep learning algorithms and Deep Unfolding (DU)
networks. E2E algorithms directly learn the mapping from
compressive images to their hyperspectral counterparts, of-
fering advantages such as rapid processing and effective
performance [25]. Current E2E algorithms extract features
at different scales using deeper network structures in a sin-
gle independent domain [26, 27] and adopt separate spa-
tial sparsity learning and spectral recovery modules [28].
The deeper network structures increase the network com-
plexity and computational demands significantly. The sep-
arate learning of the spatial and spectral information faces
challenges in capturing global spatial-spectral mutation fea-
tures.DU networks, which employ network-based sparse
prior instead of regularization as in conventional recon-
struction algorithms, iteratively restore hyperspectral im-
ages based on CS physical models [29, 30]. However, they
often have larger parameters and high computational over-
head. In short, the current methods encounter a bottleneck
in the reconstruction accuracy of spectral details and com-
putational cost.

To address the aforementioned issues, we pro-
pose a SPatial-spEctral Cumulative-Attention Transformer
(SPECAT) for high-resolution hyperspectral image recon-
struction. SPECAT adopts joint spatial and spectral at-
tention through spatial-spectral cumulative-attention blocks
(CAB), efficiently extracting non-local mutation features
and improving the reconstruction quality of spectral details.
By employing multi-head self-attention in the spatial do-
main, we achieve a sparse representation of image charac-
teristics across different spectral bands. Subsequently, we
apply multi-head spectral-wise attention to the spatial fea-
tures of different spectral bands through a hierarchical struc-
ture, capturing subtle features that represent high fidelity
and spectral domain mutations. Relative to current method-
ologies, CAB offers advantages in two aspects. First, cu-
mulative spatial and spectral attention enables global key
feature extraction at a single scale. This approach greatly
reduces the network depth and computational costs needed
for detailed feature extraction. Second, lower-level spatial
attention capitalizes on spatial sparsity and highlights mu-
tation areas. This supports upper-level spectral attention in

accurately reconstructing mutation features and similarities,
thereby increasing the precision of reconstruction.

The main contributions of this paper can be summarized
in the following three aspects.

(1) We propose a new method, SPECAT, for high-
resolution hyperspectral image reconstruction. Compared
with previous state-of-the-art (SOTA) methods, SPECAT
achieves, for the first time, a breakthrough of an average
40 dB PSNR with a much smaller number of parameters
and computational cost in the simulated hyperspectral re-
construction benchmark with a single camera.

(2) We present a novel attention block, CAB, to effi-
ciently extract non-local mutation features and restore the
global crucial information of hyperspectral images.

(3) We study the performance of existing algorithms
and our proposed algorithm on the optical filters-based hy-
perspectral system (e.g. liquid crystal tunable filter-based
HSI[31], metasurface HSI[32], Fabry-Pérot filters-based
HSI[33]), offering a reliable and effective reconstruction al-
gorithm suitable for future on-chip HSI systems.

2. Related works
2.1. Hyperspectral Imaging Systems

Since its emergence, HSI has advanced remarkably, di-
versifying into several forms such as pushbroom [34],
whiskbroom[35], and snapshot modalities [36]. Particu-
larly, encoding-based snapshot HSI utilizes a mask for com-
pressed image acquisition in the spatial-spectral domain, of-
fering high temporal, spatial, and spectral resolution. As
Fig. 2 shows, classical CASSI systems encode spatial and
spectral domains separately, resulting in larger sizes and re-
duced tolerance to jolts or impacts. Filter-based HSI sys-
tems use broadband filters to encode both domains with a
single mask. Not only do they offer high light throughput
and high resolution, but they also greatly simplify the op-
tical path of the imaging system, allowing for integration
onto a chip [31–33, 37]. Therefore, exploring hyperspectral
reconstruction in optical filter-based HSI systems is crucial
for advancing the miniaturization of spectrometers [38].

2.2. Hyperspectral Reconstruction Algorithm

Traditional hyperspectral reconstruction methods [19–24]
are centered around model-driven techniques, mainly rely-
ing on handcrafted priors. Due to their limited represen-
tational capabilities, they often lack efficiency and flexibil-
ity. In contrast, deep learning methods can establish power-
ful mappings, directly reconstructing hyperspectral images
from measurements or aiding the iterative process to gen-
erate more optimal prior, significantly enhancing the effi-
ciency and accuracy of hyperspectral image reconstruction.
Existing hyperspectral reconstruction methods include al-
gorithms directly targeting a single fixed mask system and
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those integrating mask optimization into a holistic optimiza-
tion approach. Although the latter significantly improves
reconstruction performance, it increases the complexity and
size of the system at the hardware level[39, 40]. Therefore,
considering the future miniaturization demands of spec-
trometers, the former has more advantages.

Among existing methods for CASSI systems with a fixed
mask, CNN-based networks [26, 41, 42] excel in extracting
local spatial correlations for data reconstruction and offer
the advantage of rapid inference. However, they may over-
look global features. The development of Transformer[43]-
based networks in recent years provides a reliable means
for hyperspectral imaging [25, 27–30]. However, to im-
prove the reconstruction accuracy of subtle features, ex-
isting methods either separate spatial sparsity learning and
spectral recovery modules to reduce redundant information
and enhance local attention [28], or use deeper network
structures to extract features at different scales through
multiple convolutions and downsampling [25, 27, 28, 44].
However, limited by the scope of attention modules and
the irrelevance of attention across different dimensions, it is
difficult to capture non-local abrupt features in the spatial-
spectral domain. Although the DU networks[29, 30] in-
corporates physical models to improve the reconstruction
quality of non-local features to a certain extent, the lack
of joint application of spatial-spectral attention also results
in limited improvement in detailed reconstruction. This ul-
timately leads to current SOTA strategies significantly in-
creasing network complexity and computational demands,
with only limited performance improvements.

(a) Classical CASSI system

(b) Optical filters-based HSI system

Figure 2. The diagram of the classical CASSI system and optical
filters-based HSI system.

3. Methods
3.1. Model of Snapshot HSI System

The concise CASSI system schematic is shown in
Fig. 2. Using X∈ RH×W×Nλ to represent the three-
dimensional HSI data, and setting the projection matri-
ces for spatial encoding and spectral encoding as M∈

RH×(W+d(Nλ−1))×Nλ (which is generated by shifting the
actual physical mask m∈ RH×W with d), the two-
dimensional data Yc∈ RH×(W+d(Nλ−1)) received by the
sensor satisfies Eq. (1). d ∈ R1 denotes the shifting step.

Yc =
∑
λ

Mc ⊙ shift(X) + Gc (1)

Where the shift(·) function characterizes the process in
the CASSI system, ⊙ denotes the element-wise multi-
plication. After the polychromatic light passes through
the dispersive element, a two-dimensional mask m equiv-
alently generates a three-dimensional mask M, complet-
ing the joint spatial spectral domain encoding process, and
generating compressed two-dimensional images from the
shifted three-dimensional hyperspectral images. And Gc∈
RH×(W+d(Nλ−1)) was the measurement noises.

For a hyperspectral imaging system based on optical fil-
ters, a single pixel of a two-dimensional mask can encode
all spectral bands (i.e., different spectral bands will have
different transmittance rates for that pixel). For a specific
spectral band of interest, the transmittance through differ-
ent mask pixels can be achieved by changing the structure
of the filters. In short, by designing different types of filters
and mapping them one-to-one with the pixels of the two-
dimensional sensor, the spatial-spectral encoding and infor-
mation compression of the three-dimensional HSI data cube
can be accomplished. Eq. (2) provides the spectral compres-
sive imaging model for optical filter-based systems.

Y =
∑
λ

M ⊙ X + G =
∑
λ

m(λ)⊙ X(λ) + G (2)

Where Y∈ RH×W is the two-dimensional data received by
the sensor satisfies through a three-dimensional mask M∈
RH×W×Nλ and measurement noises G∈ RH×W , m(λ)∈
RH×W denotes the equivalent mask at the representative
wavelength λ, which is determined by the properties of the
filters and their spatial arrangement. Compared to the tra-
ditional CASSI system, the optical filter-based HSI system
achieves the encoding process of a three-dimensional mask
solely through a physical two-dimensional mask, greatly
simplifying the imaging optical path. Furthermore, because
different filters have significantly varied responses to dif-
ferent spectral bands, the non-correlation between column
vectors of the physical imaging model M is enhanced, pos-
ing higher requirements for the decoupling ability of the re-
construction algorithm.

3.2. Spatial-Spectral Cumulative Attention

The hierarchical attention mechanism was previously pro-
posed for document classification [45]. Given that different
documents contain sentences of varied lengths and seman-
tics, extracting key features from each text before classify-
ing the entire content can effectively enhance the final clas-
sification accuracy and simplify the network structure and
parameter size. Notably, in hyperspectral reconstruction,
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Figure 3. Diagram of the framework structure with SPECAT for HSI reconstruction.

the three-dimensional data is sparse in the spatial domain,
indicating the presence of a large amount of redundant in-
formation. The reconstruction in the spectral domain, on the
other hand, ultimately determines the reliability of the HSI
technology. Therefore, inspired by the hierarchical classi-
fication method for documents, we propose a Cumulative-
Attention Block (CAB) with a hierarchical structure. It first
identifies the spatial domain information that best charac-
terizes each spectral band and then uses spectral attention
to recover their fine-grained feature details.

As shown in Fig. 3, the CAB consists of a Hierarchi-
cal Spatial Attention (HSA) block, a Mask Attention (MA)
block and a global spectral attention block. The motiva-
tion for introducing spectral attention is inspired by MST
[25]. By unfolding the attention in the spectral dimension,
it could significantly reduce the overhead of attention com-
putation, and utilize the spectral correlation of hyperspectral
data to improve the reconstruction fidelity. The HSA adopts
the Swin Transformer[46] attention framework, which cur-
rently performs excellently in multi-dimensional image fea-
ture extraction. Since the spatial attention between different
spectral bands is independent, CAB can focus more on the
areas where the spatial domain changes with spectral varia-
tions, thus better recovering the spatial domain information
during different spectral bands.

The spatial attention considers each local spatial feature
map under different spectral bands as a token and calcu-
lates self-attention along the spatial dimension. Referring
to the SST [27], based on the attention module of the Swin
Transformer, we have added the Feature Feed Forward Net-
work (FFN) module and the LayerNorm (LN) layer. The

FFN module consists of a series of layers connected in se-
quence: a 1x1 convolutional layer, a GELU activation layer,
a 3x3 convolutional layer, another GELU activation layer,
and a final 1x1 convolutional layer. The input X is com-
puted for Windowed Multi-head Attention (W-MSA) after
passing through LN. It is first window-sampled into tokens
x ∈ RH

s ·Ws ×s·s×Nλ , and then linearly projected into queries
Q(λi)∈ Rs2 , keys K(λi)∈ Rs2 , and values V(λi)∈ Rs2

through Eq. (3) with the learnable weights WQ(λi)(λi),
WK(λi)(λi), and WV(λi)(λi) ∈ Rs×s for different wave-
length (λi) . Afterward, it goes through LN, and the above
process is repeated with shift windows (i.e. SW-MSA).
Ultimately, we obtain the window spatial feature output
Aw(λi)∈ Rs2 corresponding to different wavelengths by
Eq. (4). Where B ∈ Rs2×s2 represents the relative posi-
tion embedding, and the scaling factor dk is equal to the
dimension of the K(λi). Then the Aspatial(λi) ∈ RHW

is obtained after concatenation and residual connection fol-
lowing multi-head of the Aw(λi).

Q(λi) = x(λi)W
Q(λi)(λi),

K(λi) = x(λi)W
K(λi)(λi),

V(λi) = x(λi)W
V(λi)(λi)

(3)

Aw(λi) = V(λi)softmax(
K(λi)

T ·Q(λi)√
dk

+B) (4)

Aspatial(λi) = concat(Aw(λi)) + x(λi) (5)

The spectral attention considers each spectral feature
map as a token and computes self-attention along the spec-
tral dimension. Inspired by the MST [25], we first combine
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Figure 4. Visual comparisons of our SPECAT and SOTA methods of Scene 6 with 4 out of 28 spectral channels on the KAIST dataset with
the optical filter-based HSI system data. The RGB images are generated by three channels [625.0 nm, 551.5 nm, 462.0 nm]. The numbers
in the figures represent the PSNR of the enlarged image for details.

and reshape Aspatial(λi) obtained from different wave-
lengths λi into tokens Aspatial ∈ RHW×Nλ . Then Aspatial

is also linearly projected into queries Q ∈ RHW×Nλ ,
keys K ∈ RHW×Nλ , and values V ∈ RHW×Nλ through
Eq. (6) with the learnable weights WQ, WK, and WV ∈
RNλ×Nλ . The Q, K and V are both divided into N heads
along the spectral channel dimension.

Q = ASpatialWQ,

K = ASpatialWK,

V = ASpatialWV

(6)

To introduce the physical constraints of the mask into the
network, inspired by MST [25], we take the product of Q
from the above equation with the MA as the final Q for
computing the space-spectral hierarchical attention. Con-
sidering that for the optical filter-based HSI system, the
mask itself reflects the characteristics of three-dimensional
space-spectral sampling. Therefore, to enhance the net-
work’s generalizability across different systems, we employ
a simplified mask attention framework. As shown in Fig. 3,
its mathematical expression is given by Eq. (7).

Amask = f(M,WAmask

) +M (7)
Where f denotes convolutional and activation operations
and WAmask ∈ RNλ×Nλ . Finally, the spatial-spectral
cumulative-attention feature output for each head headi and
the ASpa−Spe ∈ RHW×Nλ are given by Eq. (8) and Eq. (9).
Where σi is a learnable parameter to re-weight the multipli-
cation, W ∈ RNλ×Nλ denotes the learnable weight, and
P represents the function generating position embeddings,
analogous to the method employed in MST++ [44].

headi = softmax(σiQiK
T
i )(Vi ⊙Amask) (8)

ASpa−Spe = concatNi=1(headi) ·W + P (V) (9)

3.3. Dual-domain Loss and Projection Constraint

Most existing E2E algorithms primarily rely on design-
ing loss functions for the target domain. Although net-
work training performance can be enhanced through fre-
quency domain transformations and other methods, the lack
of spectral compression constraints limits performance. In-
spired by [27, 47], to integrate the physical model of spec-
tral reconstruction into the network, enhancing the net-
work’s interpretability and reconstruction accuracy while
minimizing the additional computational cost, we propose
a Dual-domain Loss Function (DLF) for the projection do-
main and the object domain in this study.

L = ||Xout −X0||2 + ||
∑
λ

M⊙Xout −Y0||2 (10)

Where the X0 ∈ RH×W×Nλ and Y0 ∈ RH×W are the true
values of the object and projection, respectively. Although
the proportion of contributions from these two terms can be
adjusted, the ratio chosen in Eq. (10) is based on the consid-
eration that both direct reconstruction of the objection and
validation of the imaging process are equally important.

3.4. The Overall Structure of SPECAT

Our proposed SPECAT network’s overall framework is il-
lustrated in Fig. 3. To learn features at various scales, we
refer to the U-Net structure [48]. The input reconstruction
data passes through a series of N1 CAB blocks, followed by
a downsampling (4×4 convolution) that reduces the spatial
dimensions to a quarter of the original size. Subsequently,
it goes through N2 CAB blocks, and during upsampling,
it is concatenated with shallow features through skip con-
nections before passing through another set of N1 blocks
to output the reconstructed three-dimensional hyperspectral
data. We set N1 = 2 and N2 = 1 in the experiments.
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4. Experiments
4.1. Experimental Design

In our experiments, we worked with 28 spectral channels
ranging from wavelengths of 450 nm to 650 nm. Our ex-
periments were conducted on both simulated and real hy-
perspectral image datasets.

4.2. Optical Filter-based HSI System Data

We engaged with two distinct datasets: CAVE [51] and
KAIST [52]. The CAVE dataset encompasses 32 hyper-
spectral images, each with a uniform spatial resolution of
512×512 pixels. The KAIST dataset contained 30 hyper-
spectral images, each with a larger spatial resolution of
2704×3376 pixels. Aligning with the previous method-
ology [25–29], we designated the CAVE dataset for train-
ing purposes. Additionally, we selected 10 scenes from the
KAIST dataset for our testing phase. All training and test
sets were processed through an optical filter-based mask to
generate simulated measurements. In this section, we se-
lected the mask consisting of Fabry-Pérot filters described
in [33] for optical filter-based HSI system simulation, due
to its representativeness in design and performance.

4.3. Real CASSI System Data

For real HSI data, we employed a dataset acquired using
the CASSI system, which was previously developed and de-
scribed in TSA-Net [26]. All training sets simulated mea-
surements by the CASSI system, with noise added to mimic
the projection data acquisition of real sensors.

4.4. Evaluation Metrics

To evaluate the performance of HSI reconstruction, we em-
ployed two metrics: peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) [53].

4.5. Implementation Specifics

We developed the SPECAT using Pytorch, which was
trained on a single Nvidia RTX 4090 GPU. All the mod-
els were trained via the Adam[54] optimizer with β1 set to
0.9 and β2 to 0.999 for 300 epochs. The initial learning rate
was fixed at 4 × 10−4, with a Cosine Annealing learning
rate schedule (γ = 1× 10−6).

5. Results and Discussion
5.1. Results of Optical Filter-based HSI System

A comparison of several state-of-the-art (SOTA) algo-
rithms, including TwIST[21], DeSCI[23], TSA-Net[26],
GAP-net[49], BIRNAT[50], MST-L[25], MST++[44],
CST-L[28], DAUHST-9stg[29], PADUT-12stg[30] and
SST-LPlus[27], was conducted. These algorithms were
evaluated under uniform conditions (test size = 256× 256)

for parameters, GFLOPs, PSNR, and SSIM, based on 10
scenes from simulation datasets.

(i) As shown in Tab. 1, our SPECAT algorithm showed
superior performance, achieving an average PSNR of 40.37
dB and an average SSIM of 98.6%, outperforming existing
models by over 1.24 dB in PSNR and 1.23% in SSIM. It
notably surpassed the other algorithms in PSNR and SSIM,
demonstrating its high efficiency. A visual comparison of
SPECAT with other methods on select spectral channels of
Scene 6 in Fig. 4 revealed that SPECAT provided richer
spatial details and clearer textures. The spectral curve of
SPECAT also indicated higher spectral accuracy and better
perceptual quality.

(ii) Quantitatively, SPECAT enhanced performance
while reducing memory and computational resource con-
sumption. Compared with other Transformer-based meth-
ods like SST-LPlus[27], CST-L[28], and MST-L[25],
SPECAT showed higher PSNR with significantly fewer pa-
rameters and GFLOPs. It also outperformed DU networks
like PADUT-12stg[30] and DAUHST-9stg[29] in PSNR,
with much lower parameter and GFLOPs requirements,
highlighting its efficiency and effectiveness in terms of
PSNR, parameter count, and GFLOPs. As Fig. 1 intuitively
illustrates, SPECAT outperforms the aforementioned opti-
mal algorithms [25–30, 41, 42, 48–50, 55, 56] in terms of
PSNR, parameter count, and GFLOPs.

5.2. Results of CASSI System

To evaluate the effectiveness of our method on data from
CASSI systems, we conducted tests using five compressed
measurements captured by an actual CASSI system. All
compared methods were trained on the CAVE dataset,
adopted the optimal model within allowable parameter
and memory ranges, employed the same actual mask, and
had 11-bit quantization noise injected for fair comparisons
[25]. Fig. 5 visually compares our proposed SPECAT
with existing state-of-the-art (SOTA) methods, includ-
ing TSA-Net[26], GAP-net[49], BIRNAT[50], MST[25],
MST++[44], CST[28], DAUHST[29], PADUT[30], and
SST-M[27]. When employing the same parameters as
that used in the optical filter-based HSI system, SPECAT
achieved reconstruction results comparable to SOTA meth-
ods. Although there is still room for improvement in the
spatial details recovered for the CASSI system, it exhibits
significant enhancement in recovering spectral dimension
information. In Scene 1, at 503.9nm, the right green flower
appears bright while the left red flower nearly disappears,
and at 604.2nm, the opposite occurs. The reconstruction re-
sults of Our SPECAT best displayed the contrast between
the two flowers, demonstrating its superiority in spectral re-
construction accuracy. In Scene 4, SPECAT more clearly
reconstructed the pentagram’s edge contours under differ-
ent spectral bands compared to current SOTA methods.
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Algorithms Parameters GFLOPs S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg

TwIST[21] - - 25.10 23.08 21.45 30.16 21.85 20.87 22.45 21.75 22.56 22.73 23.20
0.689 0.620 0.721 0.832 0.652 0.640 0.645 0.653 0.698 0.572 0.678

DeSCI[23] - - 27.15 22.90 26.78 34.78 23.89 22.42 24.40 22.10 24.50 23.60 25.25
0.753 0.615 0.812 0.893 0.701 0.685 0.681 0.728 0.872 0.590 0.733

TSA-Net[26] 44.2 M 135.1 32.30 31.26 28.53 36.36 30.37 33.06 31.04 30.88 28.99 32.62 31.54
0.936 0.906 0.875 0.931 0.937 0.950 0.891 0.924 0.872 0.947 0.917

GAP-net[49] 4.26 M 84.5 34.30 31.59 28.48 36.62 32.74 34.30 31.76 31.52 30.01 33.45 32.48
0.942 0.893 0.831 0.909 0.923 0.921 0.877 0.906 0.867 0.948 0.901

BIRNAT[50] 4.35 M 2130 37.58 38.53 37.31 41.39 37.39 38.16 36.61 35.58 37.07 35.93 37.55
0.965 0.964 0.950 0.952 0.969 0.962 0.952 0.950 0.954 0.962 0.958

MST-L[25] 2.03 M 28.5 36.55 36.29 33.46 39.78 35.40 36.10 34.53 33.08 34.38 35.19 35.48
0.963 0.953 0.904 0.951 0.964 0.963 0.924 0.945 0.926 0.966 0.946

MST++[44] 1.34 M 19.6 36.65 37.14 34.84 38.94 36.44 36.96 35.37 34.27 34.58 35.08 36.03
0.960 0.963 0.936 0.959 0.968 0.969 0.940 0.953 0.941 0.974 0.956

CST-L[28] 3.00 M 40.1 36.98 38.34 35.89 40.98 36.19 37.23 35.75 34.64 36.41 35.93 36.83
0.963 0.963 0.939 0.951 0.967 0.957 0.944 0.946 0.946 0.961 0.954

DAUHST-9stg[29] 6.15 M 79.5 38.37 39.91 37.71 42.97 37.69 39.05 37.62 36.11 38.45 37.39 38.53
0.972 0.977 0.965 0.967 0.980 0.974 0.964 0.965 0.971 0.976 0.971

PADUT-12stg[30] 5.38 M 90.5 38.42 40.34 38.95 43.50 38.22 39.16 38.21 36.03 39.45 37.30 38.96
0.974 0.983 0.972 0.977 0.983 0.979 0.971 0.969 0.979 0.981 0.977

SST-LPlus[27] 9.71 M 162.1 39.49 40.64 39.92 42.79 38.78 39.34 38.21 36.53 39.47 36.17 39.13
0.977 0.978 0.970 0.976 0.980 0.976 0.968 0.966 0.971 0.970 0.973

SPECAT 0.29M 12.4
40.24 42.40 41.43 44.90 39.62 39.90 39.41 37.49 40.45 37.90 40.37
0.982 0.986 0.978 0.982 0.987 0.984 0.977 0.977 0.982 0.983 0.986

Table 1. Comparison of Parameter count, GFLOPs, PSNR and SSIM (upper and lower entry in each cell, respectively) of different methods
on 10 simulation scenes (S1∼S10) for optical filter-based HSI system.

Figure 5. Comparison of real HSI reconstruction for Scene 1 and Scene 4 measured by the CASSI system in [26], with 6 spectra randomly
chosen out of 28. The RGB images are generated by three channels [625.0 nm, 551.5 nm, 462.0 nm].
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5.3. Ablation Study

As shown in Tab. 2, a break-down ablation study was con-
ducted on SPECAT to investigate the impact of each mod-
ule on performance enhancement, including the Hierarchi-
cal Spatial Attention (HSA) and Mask Attention (MA) in
CAB. The setting of the ablation experiment was consis-
tent with the simulation experiment of the hyperspectral
system based on optical filters. The baseline is a spectral-
wise Transformer with the same architecture with the re-
moval of CAB and DLF. The ablation study demonstrated
that the proposed CAB significantly improves the network’s
reconstruction accuracy. Among them, HSA plays a ma-
jor role, surpassing networks that only increase the number
of spectral attention modules and network depth in terms
of improvement (e.g. MST++). Additionally, the results
also show that under the same network model and training
parameters, after incorporating projection constraints, there
was an approximate improvement of 0.4 dB in PSNR on
the performance metrics and a slight improvement in SSIM.
Thus, the dual-domain loss can effectively utilize the physi-
cal model constraints of spectral imaging to further enhance
the performance of SPECAT.

Baseline CAB DLF PSNR SSIM Params(M) GFLOPsHSA MA

✓ 34.02 0.931 0.16 5.2

✓ ✓ 38.87 0.964 0.27 11.4

✓ ✓ ✓ 39.96 0.985 0.29 12.4

✓ ✓ ✓ ✓ 40.37 0.986 0.29 12.4

Table 2. Break-down ablation study of SPECAT.

CABs Depth AMs FCLs PSNR Params(M) GFLOPs

[2, 1] 2 15 40 40.37 0.29 12.4

[2, 2] 2 18 48 40.42 0.39 13.9

[2, 2, 1] 3 27 72 40.68 1.17 19.9

[2, 2, 2] 3 30 80 40.70 1.54 21.5

SST-LPlus 3 108 ∼432 39.13 9.71 162.1

Table 3. Params and cost analysis of SPECAT.

The results of Tab. 3 indicate that the significant reduc-
tion in parameters and costs of SPECAT can be attributed
to three aspects: (1) Compared to global self-attention, our
hierarchical attention mechanism has lower complexity. (2)
The stronger representational capability of the CAB allows
for the use of fewer Attention Modules (AMs) and Fully
Connected Layers (FCLs). (3) The depth (U-shape stage)
is reduced. In the experiments, the parameters and cost of
SPECAT significantly increase with the increase of AMs
and depth, but the performance improvement is limited. The
network structure ([2,1]) chosen in our paper aims to bal-
ance performance with the lowest possible cost. The con-

figuration of U-shaped stages and the number of CABs can
be tailored to specific tasks to attain peak performance.

5.4. Cumulative Attention

As shown in Fig. 6, during the reconstruction process of
SPECAT, CAB can utilize the spatial attention of the lower
layer to first identify and ‘mark out’ the spatial character-
istics of the object. This aids the spectral attention of the
upper layer in more accurately extracting deep features of
the three-dimensional hyperspectral data, especially in spa-
tial areas where the spectral response may undergo signif-
icant changes. For the 648.1nm wavelength, the petals on
the hat of the model were suppressed through spatial atten-
tion. Therefore, in Fig. 4, only the reconstruction results of
SPECAT accurately represent the absence of petals in this
wavelength range, consistent with the true value.

Figure 6. Attention feature maps of different spectral segments ob-
tained through spatial attention during reconstruction. All images
have been individually normalized for display purposes.

6. Conclusion
In this study, we propose SPECAT, a spatial-spectral cu-
mulative attention converter specifically designed for high-
resolution hyperspectral image reconstruction. The core of
SPECAT lies in its CAB, which efficiently extracts detailed
features through hierarchical attention and solves the chal-
lenge of capturing complex spatial-spectral relationships in
hyperspectral images. The experimental results show that
SPECAT is superior to SOTA in terms of parameter quan-
tity, computational cost, and spectral reconstruction fidelity.
Although there is still room for further improvement in the
restoration of spatial details in the reconstruction of CASSI
systems, the results of filter-based HSI systems indicate that
SPECAT has great potential in advancing on-chip hyper-
spectral imaging systems and contributing to the miniatur-
ization technology of spectrometers.
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