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Abstract

Prompt tuning represents a valuable technique for
adapting pre-trained visual-language models (VLM) to var-
ious downstream tasks. Recent advancements in CoOp-
based methods propose a set of learnable domain-shared or
image-conditional textual tokens to facilitate the generation
of task-specific textual classifiers. However, those textual
tokens have a limited generalization ability regarding un-
seen domains, as they cannot dynamically adjust to the dis-
tribution of testing classes. To tackle this issue, we present a
novel Textual-based Class-aware Prompt tuning(TCP) that
explicitly incorporates prior knowledge about classes to en-
hance their discriminability. The critical concept of TCP in-
volves leveraging Textual Knowledge Embedding (TKE) to
map the high generalizability of class-level textual knowl-
edge into class-aware textual tokens. By seamlessly inte-
grating these class-aware prompts into the Text Encoder, a
dynamic class-aware classifier is generated to enhance dis-
criminability for unseen domains. During inference, TKE
dynamically generates class-aware prompts related to the
unseen classes. Comprehensive evaluations demonstrate
that TKE serves as a plug-and-play module effortlessly
combinable with existing methods. Furthermore, TCP con-
sistently achieves superior performance while demanding
less training time1.

1. Introduction

Large-scale image-text pairs have the ability to train a
Visual-language model (VLM) with a powerful generaliza-
tion capacity for various downstream tasks [2, 33]. How-
ever, training these models from scratch requires a huge
dataset with labeled images, making it difficult to apply
them directly to downstream tasks with fewer images. To
address this issue, three common techniques have been pro-

1https : / / github . com / htyao89 / Textual - based _
Class-aware_prompt_tuning
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Figure 1. Comparison with existing frameworks. (a) Domain-
shared prompt tuning applies the same learnable prompt between
the training and testing domains. (b) Image-conditional prompt
tuning combines the image embedding with the learnable prompt;
(c) Class-aware Prompt tuning injects the class-level textual em-
bedding into the Text Encoder with the class-aware prompt.

posed: fine-tuning [30], prompt tuning [50], adapter [12]
and LoRA [15]. Among them, prompt tuning is a simple
and efficient framework that transfers the essential general
knowledge of VLM to the downstream tasks.

Prompt tuning2 is a technique that combines learn-
able textual tokens with class tokens to generate a dis-
criminative textual classifier, known as Context Optimiza-
tion (CoOp) [50]. Recently, various CoOp-based meth-
ods [4, 5, 17, 18, 22, 31, 40, 43, 50, 52] infer the domain-
shared prompt tokens between training and testing do-
mains(Figure 1(a)). Nevertheless, as the domain-shared
prompt tokens are derived from labeled training images,
their performance is suboptimal when confronted with un-
seen test classes. To enhance the generalization capacity of
learnable prompt tokens, image-conditional prompts have
been proposed in [45, 49] by fusing image features and
learnable tokens (Figure 1(b)). Notably, image-conditional

2For the visual-language model, two types of prompt-tuning strategies
exist: visual prompt tuning and textual prompt tuning. In this work, we
focus on the textual prompt tuning and do not consider the visual prompt
tuning.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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textual tokens encapsulate specific knowledge of each im-
age, particularly for testing images,thereby rendering it
more apt for generalization to unseen testing images. How-
ever, image-conditional prompt tokens with image-specific
knowledge have less ability in elevating the distribution of
class embeddings. In summary, classifiers generated by
domain-shared and image-conditional textual tokens exhibit
suboptimal performance for the unseen classes, primarily
due to their inability to explicitly model the class distri-
bution. Consequently, it is imperative to establish a dy-
namic relationship between the learnable prompt and the
textual knowledge of each class to augment its discrimina-
tive prowess.

The frozen CLIP, coupled with a hand-crafted prompt,
exhibits robust generalization capabilities to novel classes,
rendering it a valuable source of prior textual knowledge
for each class. By associating the class-level textual knowl-
edge with the learnable prompts, a class-aware prompt can
be formulated for hencing the discriminative capacity of
the textual classifier. To achieve this, we employ an em-
bedding module to project the class-aware textual knowl-
edge into the class-aware prompt tokens, as shown in Fig-
ure 1(c). The resultant class-aware prompt incorporates
prior textual knowledge specific to each class, endowing the
generated textual classifier with heightened discriminative
prowess. Furthermore, the class-aware prompt facilitates
the generation of classifiers for both seen and unseen classes
by leveraging textual knowledge from both categories. To
sum up, the trained embedding module can generate a class-
aware prompt for each class based on its description (‘class
name’), thereby enhancing generalization and discrimina-
tive capabilities in class-level textual embeddings.

Therefore, we propose a novel Textual-based Class-
aware Prompt tuning (TCP) based on the framework of
CoOp, shown in Figure 2. In addition to the domain-
share textual tokens introduced in CoOp, TCP contributes
a novel Textual Knowledge Embedding (TKE) to map the
class-level textual knowledge into class-aware prompt to-
kens. Moreover, a class-aware textual classifier is generated
by inserting the class-aware prompt tokens into the mid-
dle layer of the Text Encoder. We use standard contrastive
loss and knowledge-guided consistency [43] to optimize the
TKE and the learnable prompt tokens. During inference,
TCP generates a class-aware classifier for unseen classes
by feeding the domain-shared prompt tokens and the class-
aware prompt tokens generated by the TKE into the frozen
Text Encoder.

Overall, the proposed TCP explicitly steers prompts to
learn a class-aware knowledge that maximizes the general-
ization and discriminative of the downstream tasks. Evalu-
ation over 11 image classification datasets on base-to-new
generalization, cross-dataset generalization, and few-shot
learning verify shows that TCP is an efficient method that

obtain a higher performance with less training time. In
summary, the proposed Textual-based Class-aware Prompt
tuning(TCP) has the following main contributions:
1. An effectively Textual-based Class-aware Prompt tuning

is proposed by injecting the textual class-aware prompts
generated by Textual Knowledge Embedding(TKE) into
the Text Encoder.

2. We demonstrate that explicitly incorporating the prior
knowledge of each class into the learnable prompt tokens
can enhance the discriminative of the class distribution.

3. Textual Knowledge Embedding(TKE) is a plug-and-play
module that can quickly insert existing prompt tuning
methods to improve their performance further.

2. Related Works
2.1. Vision-Language Models

Recently, researchers have shown that the Visual-Languge
Models(VLM) [2, 33] consisting of visual and textual
modalities trained on the large-scale of image-text pairs has
a powerful generalization and discriminativeion. To further
boost the descriptive ability of VLM, the VLM models are
boosted from the following aspect: 1) using a stronger text
encoder or visual encoder [25, 41, 46]; 2) deeply fusing
the visual and text knowledges [23, 38]; 3) using more im-
ages [16, 33, 35, 36]. To boost the diversity of text descrip-
tion, Masked Language Modeling (MLM) [20] [26] ran-
domly erases the words in the text description used for rep-
resentation learning. Unlike MLM, Masked autoencoder-
based methods [13] are proposed to boost the descriptive
ability by randomly masking the image patches. Among
existing VLM models, CLIP is a representative and straight-
forward framework for inferring the independent visual and
text encoder using the contrastive loss based on 400 million
image-text association pairs. As CLIP has a good gener-
alization, most existing CoOp-based methods are proposed
based on CLIP for adapting the pre-trained VLM into the
downstream task. Similar to existing methods, we conduct
the prompt-tuning strategy on the TextEncoder of CLIP to
obtain a task-specific textual embedding for prediction.

2.2. Prompt Tuning

To adapt the pretrained VLM to the downstream tasks,
the prompt tuning [10, 22, 24, 31, 33, 45] always applies
task-related textual tokens to infer the task-specific tex-
tual knowledge. In CLIP[33], the hand-crafted template “a
photo of a [CLASS]” is used to embed the textual embed-
ding for zero-shot prediction. However, the hand-crafted
prompts have a poor ability to describe the downstream
task. Textual prompt tuning is applied to boost the tex-
tual embedding by inferring a set of learnable textual tokens
combined with the class tokens. For example, Context Op-
timization(CoOp) [50] replaces the hand-crafted prompts
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with the learnable soft prompts. To improve the general-
ization of the learnable textual prompt in CoOp, Condi-
tional Context Optimization(CoCoOp) [49] and VPT [45]
generates an image-conditional prompt fusing the im-
age feature and the learnable textual prompt. Moreover,
Knowlege-Guided Context Optimization(KgCoOp) [43],
ProGrad [51], and Prompt Regularization(ProReg) [52]
constrain the proposed learnable prompts contain the essen-
tial general knowledge. Unlike the above methods, which
consider textual prompts, Ensembling Context Optimiza-
tion(ECO) [1] employs prompt ensembling to combine mul-
tiple prompts. To obtain high-quality task-related tokens,
ProDA [27] considers the prompt’s prior distribution learn-
ing, and Distribution-Aware Prompt Tuning (DAPT) [5]
optimizes the learnable prompt by maximizing inter-
dispersion. Besides the textual knowledge from “class-
name”, Knowlege-Aware Prompt Tuning(KAPT) [17] em-
ploys the external knowledge to generate the discrimi-
native knowledge-aware prompt for the novel categories.
PLOT [4] applies optimal transport to match the vi-
sion and text modalities for generating the discriminative
and visual-aligned local textual prompt tokens. Besides
the textual prompt tuning, Multi-modal Prompt Learning
(MaPLe) [18] and PromptSRC [19] conduct the visual-
textual prompt tuning by jointly conducting the prompt
tuning on the visual and text encoders. Multitask Vision-
Language Prompt Tuning(MVLPT) [37]incorporates cross-
task knowledge into prompt tuning for vision-language
models. DenseCLIP [34] uses the context-aware prompt
strategy to generate dense prediction tasks, and CLIP-
Adapter [11] applies an adapter to adjust the visual or text
embeddings.

Existing methods commonly infer two types of prompt
tokens: domain-share and image-conditional. However, the
textual classifiers generated with these tokens tend to per-
form poorly on unseen classes. To mitigate this limitation,
we propose a novel Textual-based Class-aware Prompt tun-
ing (TCP) that employs a dynamic class-aware token to en-
hance the generalization and discriminative capabilities of
the learnable textual prompt. Moreover, we introduce a Tex-
tual Knowledge Embedding to project class-level textual
knowledge into the class-aware prompts, which are then in-
serted into the Text Encoder to generate a discriminative
class-aware classifier. The evaluation results demonstrate
that integrating class-level prior knowledge into the prompt
tokens significantly enhances the discriminative ability of
the prompt tuning process.

3. Methodolgy

As the Textual-based Class-aware Prompt tuning(TCP) is
proposed based on Context Optimization (CoOp), we first
briefly review CoOp and then introduce the proposed TCP.

3.1. Preliminaries

Existing CoOp-based methods are proposed based on the
powerful Contrastive Language-Image Pre-training(CLIP).
Given an image along with its corresponding textual de-
scription, CLIP uses visual and text encoders to extract the
visual and text embeddings. After that, the constrastive loss
between the visual and textual embeddings is calculated to
align those two embeddings. To effectively adapt CLIP for
the downstream task, CLIP applies the hand-crafted tem-
plate “a photo of a {}” to extract the general class-level tex-
tual embedding, defined as Wclip = {wclip

i }Nc
i=1, where

wclip
i is the textual embedding of i-th class, and Nc is the

number of classes. Given the ‘class-name’ of i-th class,
Word Embedded e(·) firstly embeds the hand-crafted de-
scription into a vectorized textual tokens: tclipi = e(“a
photo of a {class-name}”). After that, Text Encoder θ maps
the vectorized textual tokens tclipi into the class-level em-
bedding: wclip

i = θ(tclipi ).
To improve the discriminative of the class-level em-

bedding, the prompt tuning methods of Context Optimiza-
tion(CoOp) replaces the hand-crafted textual tokens with a
set of learnable textual tokens T = {t1, t2, ..., tM}, where
M is the length of tokens. Similar to CLIP, the corre-
sponding class token ci is concatenated with the learn-
able tokens T for generating the textual token tcoopi =
{t1, t2, ..., tM , ci}. Next, the textual embedding wcoop

i is
obtained by fedding the textual tokens tcoopi into Text En-
coder θ, i.e., wcoop

i = θ(tcoopi ). Finally, the textual embed-
dings of all classes are defined as Wcoop = {wcoop

i }Nc
i=1.

CoOp infers the learnable textual tokens T by minimizing
the contrastive loss between the image’s embedding x and
its class embedding wcoop

y :

Lce =
1

N

∑
(x,y)∈Ds

exp(d(x,wcoop
y )/τ)∑Nc

i=1 exp(d(x,w
coop
i )/τ)

, (1)

where Ds is the seen dataset, and d(·) is the cosine distance.
τ is a temperature factor defined in CLIP, and N is the num-
ber of training images.

As the generated textual embedding has a good general-
ization ability for the novel classes, KgCoOp further adds
an efficient consistency Lkg between the generated embed-
ding Wcoop and the general embedding Wclip,

Lkg = ||Wclip −Wcoop||22. (2)

Therefore, a robust objective for prompt tuning is:

L = Lce + ωLkg, (3)

where ω is set as 8.0 same as in KgCoOp [43].
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Figure 2. The framework of the proposed TCP.

3.2. Textual-based Class-aware Prompt tuning

Based on the pre-trained Text Encoder in CLIP, the textual
prompt tuning aims to infer a set of the domain-shared or
image-conditional textual tokens combined with the gen-
eral class tokens for generating the specific class embed-
dings. However, the textual classifier generated by those
textual tokens performs a worse generalization on the un-
seen classes because they can not model the distribution of
the testing classes. Research has shown that utilizing the
general textual knowledge extracted by frozen CLIP can
create a discriminative prior knowledge of novel classes, en-
hancing the discriminative and generalization of the learn-
able prompt. Drawing on the benefit of the general tex-
tual knowledge of seen and unseen classes, we propose
a Textual-based Class-aware Prompt tuning(TCP) to adapt
the pretrained CLIP to the downstream task. As shown
in Figure 2, TCP employs a Textual Knowledge Embed-
ding(TKE) to transfer the general class-level textual em-
bedding into the class-aware prompt, which is then com-
bined with the learnable textual tokens for generating the
class-aware classifiers. TKE is advantageous for unseen
classes, as it generates class-specific prompts to obtain an
unseen class-aware textual classifier with better discrim-
inative abilities. Moreover, explicitly incorporating seen
class-aware prompts can enhance the discriminative power
of seen classes.

Given the general class-level textual embedding
Wclip ∈ RNc×Dt with Nc training classes, Textual Knowl-
edge Embedding(TKE) T (·) is proposed to project the
class-level embedding Wclip into the class-aware prompt
T=T (Wclip). As shown in Figure 2, TKE consists of
two layers: down-project layer and up-project layer. The
down-project layer uses the weight Wdown ∈ RDt×Dmid

to project the textual embedding into the low-dimension
feature with the dimension of Dmid. Next, the weight
Wup ∈ RDmid×D′

of the up-project layer maps the
low-dimension feature into the high-dimension feature with
the dimension of D′. Note that D′ is determined by the
prompt’s length M and dimension D: D′ = M × D. In

summary, the general textual embedding Wclip ∈ RNc×Dt

can be projected into the class-aware textual tokens
T ∈ RNc×D′

, which is further reshaped into the shape of
T ∈ RNc×M×D for inserting into the middle layer of Text
Encoder θ.

Assuming we insert the class-aware prompt T into l-th
layer of Text Encoder θ. We will give a detailed analysis
of the hyperparameter l in the following. Similar to CoOp,
by combining the domain-shared learnable textual tokens
T = [t1, t2, ..., tM ] and the pre-trained class tokens C of
all classes, we can obtain the input textual tokens F0 =
{T,C} of the Text Encoder, where C = {ci}Nc

i , and ci
is the vectorized textual tokens of i-th class. The textual
token F0 is fed into the first l layers of Text Encoder for
obtaining the middle-level textual embedding Fl. Formally,
the textual token Fi(i ≤ l) of i-th layer is defined as:

Fi = θi(Fi−1), i ∈ [1, l], (4)

where θi is the i-th layer of Text Encoder.
For the textual tokens Fl ∈ RNc×Nt×D and the class-

aware prompt tokens T ∈ RNc×M×D, the first dimension
is related to the number of classes. Therefore, the learnable
prompt tokens are always inserted into the second dimen-
sion of Fl, the same as CoOp. Formally, the class-aware
prompt T is inserted into Fl to generate the class-aware en-
hanced tokens F′

l,

F′
l = [T1,T2, ...,TM ,Fl,M+1,Fl,M+2, ...,Fl,Nt ], (5)

where Ti denotes the i-th index of T in the second dimen-
sion, and Fl,j denote the correspond j-th index of Fl in the
second dimension, i.e., Ti = T[:, i, :], and Fl,j = Fl[:, j, :].

After that, the class-enhanced textual tokens F′
l are fed-

ded into the rest layers for generating the class-aware tex-
tual embedding,

F′
i = θi(F

′
i−1), i ∈ [l + 1, L]. (6)

The output of the last layer F′
L is treated as the class em-

bedding Wtcp used for optimization with contrastive loss
and knowledge-guided consistency loss in Eq. (3).

4. Experiments
Similar to CoOp [50], we evaluate the effectiveness of TCP
from the three types of tasks: 1) generalization from base-
to-new classes within a dataset; 2)few-shot learning with
K-shot labeled images; 3) cross-dataset generalization from
the imagenet to other datasets. More detailed results will be
provided in the Supplementary materials.

4.1. Experimental Setup

Dataset. We conduct the base-to-new generaliation, few-
shot learning, and cross-dataset generalization on 11 bench-
marks, i.e., ImageNet [7], Caltech [9], OxfordPets [32],

23441



Table 1. Comparison on the base-to-new generalization setting with 16-shot samples.‘tp’,‘dtp’,‘vp’,and ‘dvp’ denote the ‘textual prompt’,
‘deep textual prompt’,‘visual prompt’, and ‘deep visual prompt’, respectively. PromptSRC are based on deep visual-textual prompt tun-
ing(‘dvp+dtp’). ‘*’ denote the performance obtained by our re-implementation.

Datasets Sets CoOp*
(IJCV22)

CoCoOp
(CVPR22)

DAPT*
(ICCV23)

ProGrad*
(ICCV23)

ProDA
(CVPR22)

KgCoOp
(CVPR23)

RPO
(ICCV23)

PLOT*
(ICLR23)

LFA
(ICCV23)

MaPLe
(CVPR23)

DePT
(Arxiv23)

PromptSRC*
(ICCV23)

TCP

tp tp tp+vp tp tp tp dtp+dvp tp+vp – dtp+dvp tp dtp+dvp tp

Average
Base 82.38 80.47 83.18 82.48 81.56 80.73 81.13 83.98 83.62 82.28 83.62 84.12 84.13
New 67.96 71.69 69.27 70.75 72.30 73.6 75.00 71.72 74.56 75.14 75.04 75.02 75.36

H 74.48 75.83 75.59 76.16 76.65 77.0 77.78 77.37 78.83 78.55 79.10 79.31 79.51

ImageNet
Base 76.46 75.98 76.83 77.02 75.40 75.83 76.60 77.30 76.89 76.66 77.03 77.75 77.27
New 66.31 70.43 69.27 66.66 70.23 69.96 71.57 69.87 69.36 70.54 70.13 70.70 69.87

H 71.02 73.10 72.85 71.46 72.72 72.78 74.00 73.40 72.93 73.47 73.42 74.06 73.38

Caltech101
Base 97.80 97.96 97.83 98.02 98.27 97.72 97.97 98.53 98.41 97.74 98.30 98.13 98.23
New 93.27 93.81 93.07 93.89 93.23 94.39 94.37 92.80 93.93 94.36 94.60 93.90 94.67

H 95.48 95.84 95.39 95.91 95.68 96.03 96.03 95.58 96.13 96.02 96.41 95.97 96.42

OxfordPets
Base 94.47 95.20 95.00 95.07 95.43 94.65 94.63 94.50 95.13 95.43 94.33 95.50 94.67
New 96.00 97.69 95.83 97.63 97.83 97.76 97.50 96.83 96.23 97.76 97.23 97.40 97.20

H 95.23 96.43 95.41 96.33 96.62 96.18 96.05 95.65 95.68 96.58 95.76 96.44 95.92

Cars
Base 75.67 70.49 75.80 77.68 74.70 71.76 73.87 79.07 76.32 72.94 79.13 78.40 80.80
New 67.53 73.59 63.93 68.63 71.20 75.04 75.53 74.80 74.88 74.00 75.47 74.73 74.13

H 71.37 72.01 69.36 72.88 72.91 73.36 74.69 76.88 75.59 73.47 77.26 75.52 77.32

Flowers
Base 97.27 94.87 96.97 95.54 97.70 95.00 94.13 97.93 97.34 95.92 98.00 97.90 97.73
New 67.13 71.75 60.90 71.87 68.68 74.73 76.67 73.53 75.44 72.46 76.37 76.77 75.57

H 79.44 81.71 74.81 82.03 80.66 83.65 84.50 83.99 85.00 82.56 85.84 86.06 85.23

Food101
Base 89.37 90.70 90.37 90.37 90.30 90.5 90.33 89.80 90.52 90.71 90.50 90.63 90.57
New 88.77 91.29 91.30 89.59 88.57 91.7 90.83 91.37 91.48 92.05 91.60 91.50 91.37

H 89.07 90.99 90.83 89.98 89.43 91.09 90.58 90.58 91.00 91.38 91.05 91.06 90.97

Aircraft
Base 39.67 33.41 39.97 40.54 36.90 36.21 37.33 42.13 41.48 37.44 43.20 42.30 41.97
New 31.23 23.71 29.80 27.57 34.13 33.55 34.20 33.73 32.29 35.61 34.83 36.97 34.43

H 34.95 27.74 34.14 32.82 35.46 34.83 35.70 37.46 36.31 36.50 38.57 39.46 37.83

SUN397
Base 80.85 79.74 80.97 81.26 78.67 80.29 80.60 82.20 82.13 80.82 82.33 82.83 82.63
New 68.34 76.86 76.97 74.17 76.93 76.53 77.80 73.63 77.20 78.70 77.80 79.00 78.20

H 74.07 78.27 78.92 77.55 77.79 78.36 79.18 77.68 79.59 79.75 80.00 80.87 80.35

DTD
Base 79.97 77.01 82.23 77.35 80.67 77.55 76.70 81.97 81.29 80.36 82.20 82.60 82.77
New 48.60 56.00 54.23 52.35 56.48 54.99 62.13 43.80 60.63 59.18 59.13 57.50 58.07

H 60.46 64.85 65.36 62.45 66.44 64.35 68.61 57.09 69.46 68.16 68.78 67.80 68.25

EuroSAT
Base 90.10 87.49 94.73 90.11 83.90 85.64 86.63 93.70 93.40 94.07 89.03 92.40 91.63
New 53.00 60.04 50.33 60.89 66.00 64.34 68.97 62.67 71.24 73.23 71.07 68.43 74.73

H 66.74 71.21 65.74 72.67 73.88 73.48 76.79 75.11 80.83 82.3 79.04 78.63 82.32

UCF101
Base 84.53 82.33 84.30 84.33 85.23 82.89 83.67 86.60 86.97 83.00 85.80 86.93 87.13
New 67.37 73.45 76.33 74.94 71.97 76.67 75.43 75.90 77.48 78.66 77.23 78.33 80.77

H 74.98 77.67 80.12 79.35 78.04 79.65 79.34 80.90 81.95 80.77 81.29 82.41 83.83

StanfordCars [21], Flowers [29], Food101 [3], FGVCAir-
craft [28], EuroSAT [14], UCF101 [39], DTD [6], and
SUN397 [42]. A detailed introduction of those dataset is
given in the Supplementary materials.
Training Details. Our implementation is based on CoOp’s
code [50]. All experiments are conducted based on the
CLIP with the backbone of ViT-B/16 [8]. The prompt’s
length M is set as 4 with random initialization of “X X X
X {}”. The final performance is averaged over three ran-
dom seeds(1/2/3)for a fair comparison. Adam optimizer is
applied for optimization with the learning rate of 2e-3 and
the batch size of 32, and the training epochs is 50. All ex-
periments are conducted on RTX 3090.
Baselines. Recently CoOp-based methods are used for
comparison, e.g., CoOp [50], CoCoOp [49], ProGrad [51],
ProDA [27], KgCoOp [43], PromptSRC [19], MaPLe [18],
LFA [31], DePT [47], DAPT [5], PLOT [4], TaskRes [44],
RPO [22], VPT [45], and TIP-Adapter-F [48].

4.2. Base-to-New Class Generalization

To verify the generalization ability of the prompt tuning, the
base-to-new class generalization splits each dataset into two

disjoint subsets: Base and New classes, where Base classes
are used to infer the learnable prompt and TKE, and New
classes are used for evaluation. Note that each New class
contains 16-shot samples. We summarize the comparison
between the proposed TCP and existing methods in Table 1
from the following two aspects: Textual Prompt Tuning and
Viusal-Textual Prompt Tuning.

Textual Prompt Tuning: Based on the visual feature ex-
tracted from the frozen visual encoder, the textual prompt
tuning (e.g., CoOp, CoCoOp, ProGrad, ProDA, and Kg-
CoOp) merely conducts the textual prompt tuning by in-
serting a set of learnable textual prompts into the Text En-
coder for obtaining a discriminative textual classifier, which
is same as our proposed TCP. Among all textual prompt tun-
ing methods, KgCoOp [43] is a more substantial baseline,
which is also the baseline of our TCP. Compared to Kg-
CoOp, TCP improves the metric term of Base/New/H from
80.73%/73.6%/77.0% to 84.35%/75.28%/79.56%. We can
observe that a noticeable improvement of 3.62% and 1.68%
are obtained in the Base class and New class, respectively.
The superior performance proves that TCP using the class-
aware prompt to inject the class knowledge can generate
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Table 2. Comparison of cross-dataset evaluation.‘tp’,‘dtp’,‘vp’,and ‘dvp’ denote the ‘textual prompt’, ‘deep textual prompt’,‘visual
prompt’, and ‘deep visual prompt’, respectively. Note that DAPT and MaPLe are based on visual-textual prompt tuning(‘vp+tp’).

Datasets CLIP CoOp ProGrad KgCoOp DePT VPT PLOT PromptSRC MaPLe DAPT TCP

tp tp tp tp tp+vp tp+vp dtp+tvp dtp+dvp tp+vp tp

ImageNet 66.70 71.51 72.24 70.66 72.77 69.73 71.60 71.27 70.72 71.60 71.40

Caltech101 93.30 93.70 91.52 93.92 94.23 93.67 92.07 93.60 93.53 93.50 93.97
OxfordPets 89.10 89.14 89.64 89.83 90.03 89.27 90.10 90.25 90.49 90.67 91.25
StandfordCars 65.70 64.51 62.39 65.41 65.57 65.5 65.70 65.70 65.57 65.93 64.69
Flowers 70.70 68.71 67.87 70.01 70.57 70.2 69.23 70.25 72.20 71.70 71.21
Food101 85.90 85.30 85.40 86.36 86.37 86.27 86.23 86.15 86.20 86.10 86.69
FGVCAircraft 24.90 18.47 20.16 22.51 23.27 22.13 25.00 23.90 24.74 23.03 23.45
SUN397 62.60 64.15 62.47 66.16 66.67 66.57 61.67 67.10 67.01 67.00 67.15
DTD 44.30 41.92 39.42 46.35 45.97 46.93 38.60 46.87 46.49 44/00 44.35
EuroSAT 48.30 46.39 43.46 46.04 43.53 47.43 47.83 45.50 48.06 52.47 51.45
UCF101 67.60 66.55 64.29 68.50 69.30 67.20 67.00 68.75 68.69 68.73 68.73

Avg. 65.24 63.88 62.71 65.51 65.55 65.52 64.34 65.81 66.30 66.31 66.29

the discriminative textual classifier for both seen and un-
seen classes. DePT [47] is another work that also treats
KgCoOp as the baseline and obtains the best H of 79.10%
among all textual prompt tuning methods. Compared
to DePT, the proposed TCP obtains the performance of
84.35%/75.28%/79.56% in the metric term of Base/New/H,
achieving the improvement of 0.51%/0.32%/0.41%.

Visual-Textual Prompt Tuning: Different from the tex-
tual prompt tuning merely adapts Text Encoder, DAPT [5],
PLOT [4], RPO [22], MaPLe [18], and PromptSRC [19]
all jointly performs prompt tuning on the text and visual
encoders for both improving the discriminative of textual
embedding and visual embeddings. Unlike CoOp and TCP,
which conduct the prompt tuning on one or two layers, those
methods conduct the visual-textual prompt tunings on sev-
eral layers of visual and text encoders. Compared to them,
the proposed TCP with shallow textual prompt tuning ob-
tains a higher performance, e.g., 79.51% vs 79.31% for
PromptSRC in terms of H. Compared to deep visual-textual
prompt tuning, the superior performance demonstrates that
class-aware prompt tuning can generate discriminative and
generalization textual-level classifiers.

4.3. Cross-Dataset Generalization

In the Base-to-New generalization setting, New classes al-
ways have a similar data distribution as the Base classes. To
further verify the generalization of the proposed TCP, in the
Cross-Dataset generalization, TCP is trained from the Ima-
geNet and directly evaluated on the unrelated datasets, e.g.,
the rest ten datasets. The comparison between the proposed
TCP and existing methods is summarized in Table 2. From
Table 2, we can observe that the proposed TCP obtains the
highest average performance among all textual prompt tun-
ing methods(66.29% vs 65.55% of DePT [47]), and obtains
a comparable performance with the visual-textual prompt
tuning methods (66.29% vs 66.31% of DAPT [5]), demon-
strating the effectiveness of TCP in learning the generaliza-
tion knowledge.

Table 3. Effect of TCP on CoOp, KgCoOp, ProGrad, PromptSRC,
and DAPT in the base-to-new generalization setting regarding final
average performance.

Methods Base New H

CoOp [50] 82.63 67.99 74.6
CoOp+TKE 83.10(↑ 0.47) 70.17(↑ 2.18) 76.09 (↑ 1.49)

KgCoOp [43] 80.73 73.6 77.00
KgCoOp +TKE 84.13 (↑ 3.40) 75.36(↑ 1.76) 79.51 (↑ 2.51)

ProGrad [51] 82.48 70.75 76.16
ProGrad+TKE 82.61 (↑ 0.13) 72.91(↑ 2.16) 77.46 (↑ 1.30)

PromptSRC [19] 82.07 74.83 78.03
PromptSRC+TKE 83.74 (↑ 1.67) 75.85(↑ 1.02) 79.60 (↑ 1.57)

DAPT [5] 83.18 69.27 75.59
DAPT+TKE 84.15 (↑ 0.97) 74.87(↑ 5.60) 79.24 (↑ 3.65)

4.4. Few-shot Classification

To verify that the proposed TCP can infer the class-aware
knowledge, the few-shot classification is conducted on all
11 datasets using K-shot labeled source images and eval-
uated on the standard testing domain with the same class
space as the training classes. The 4-shot setting comparison
between the proposed TCP and existing methods is summa-
rized in Table 4. We can observe that the proposed TCP
achieves a higher average performance than existing meth-
ods, i.e., obtaining the average performance of 76.32%.

4.5. Ablation Study

Effect of TKE’s generalization. The critical component
of TCP is the class-aware prompt generated by TKE, which
embeds the prior class knowledge and can be easily inte-
grated with existing CoOp-based methods. As shown in Ta-
ble 3, CoOp, KgCoOp, ProGrad, PromptSRC, and DAPT
have all demonstrated improved performance when TKE is
used. Specifically, improvements of 1.49%, 2.51%, 1.30%,
1.57%, and 3.65% were achieved for CoOp, KgCoOp, Pro-
Grad, PromptSRC 3, and DAPT, respectively. This superior
performance highlights TCP’s plug-and-play functionality,

3PromptSRC is re-implemented with the shallow visual-textual prompt
tuning.
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Table 4. Comparison of few-shot learning with 4-shot samples.

CLIP CoOp CoCoOp ProGrad KgCoOp MaPLe TIP-Adapter-F DAPT PromptSRC PLOT TaskRes TCP

ImageNet 66.70 69.37 70.55 70.21 70.19 70.67 70.78 70.80 70.80 70.40 62.87 70.48
Caltech101 93.30 94.44 94.98 94.93 94.65 94.30 94.77 94.23 94.77 95.13 94.67 95.00
OxfordPets 89.10 91.30 93.01 93.21 93.20 92.05 92.26 92.17 93.23 92.55 92.00 91.90
StandfordCars 65.70 72.73 69.10 71.75 71.98 68.70 74.42 74.40 71.83 74.93 75.90 76.30
Flowers 70.70 91.14 82.56 89.98 90.69 80.80 92.98 92.37 91.31 92.93 91.50 94.40
Food101 85.90 82.58 86.64 85.77 86.59 86.90 86.18 83.60 86.06 86.46 86.03 85.3
FGVCAircraft 24.90 33.18 30.87 32.93 32.47 29.03 35.49 32.47 32.80 35.29 33.80 36.20
SUN397 62.60 70.13 70.50 71.17 71.79 71.47 70.65 72.20 72.80 70.42 72.70 72.11
DTD 44.30 58.57 54.79 57.72 58.31 54.73 61.70 61.37 60.64 62.43 59.57 63.97
EuroSAT 48.30 68.62 63.83 70.84 71.06 54.87 78.27 72.73 75.02 80.70 72.87 77.43
UCF101 67.60 77.41 74.99 77.82 78.40 73.70 79.73 79.40 79.35 79.76 76.10 80.83

Avg. 65.37 73.59 71.98 74.21 74.48 70.66 76.11 75.07 75.33 76.45 74.36 76.72

Table 5. Domain-shared prompt vs Class-aware prompt.

Baseline Domain-Shared Class-Aware Base New H

√ √
80.73 73.6 77√ √
84.05 75.18 79.36√ √ √
84.13 75.36 79.51
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Figure 3. Effect of M on the base-to-new generalization setting.

allowing easy integration with existing methods.
Domain-shared prompt vs the class-aware prompt. It is
common for existing methods to infer the domain-shared
prompt tokens. However, TCP differs significantly from
them in using a class-aware prompt to capture class-aware
knowledge in the Text Encoder. We thus compare the
domain-shared and class-aware prompts, and summarize
the related results in Table 5. We can observe that sim-
ply using the class-aware prompt yields a fantastic perfor-
mance of 79.36% in terms of H, higher than existing meth-
ods. Additionally, as shown in Table 5, using the class-
aware prompt results in a noticeable improvement over the
domain-shared prompt. For instance, the Base/New perfor-
mance is improved from 80.73%/73.6% to 84.05%/75.18%.
The superior performance proves the reasonableness and ef-
fectiveness of injecting the class-aware knowledge into the
prompt tuning. By further considering the domain-shared
and class-aware prompts, the final performance is reached
at 79.51%
Effect of Prompt length M . In this study, we examine the
impact of prompt length (M ) on the Base-to-New gener-
alization setting. We compared prompt lengths of 1, 2, 4,
8, and 16, and the results are presented in Figure 3. The

Table 6. Comparison of different templates.

Templates Base New H

‘X X X X ’ 84.13 75.36 79.51
‘a photo of a ’ 83.94 74.94 79.18
‘this is a picture ’ 84.00 74.66 79.06
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Dmid in TKE.
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Figure 5. Effect of insert layer l.

findings indicate that longer prompt lengths produce better
performance, with M = 8 producing the best results. How-
ever, the performance gap between the highest and lowest
values of H, which were 79.63% and 79.26%, respectively,
is only 0.37%. Therefore, the proposed TCP is relatively
insensitive to prompt length (M ).
Effect of different templates. Unlike most CoOp-based
methods using the handcrafted template “a photo of a {}”,
the proposed TCP utilizes the random initialization tem-
plate (“X X X X {}”). Therefore, we conducted a compar-
ison among different templates. Table 6 shows that using
the random template performs better than the handcrafted
template. This is because TCP uses the class-ware prompt
without considering the domain-share prompt, which has
achieved better performance. For instance, in Table 5, TCP
with the class-aware prompt achieves comparable perfor-
mance of 84.05%/75.18%/79.36% in terms of Base/New/H
compared to existing methods. Moreover, the domain-
shared prompt initialized as the random template provides
complementary knowledge to the class-aware prompt.
Effect of Dmid in TAK. We analyze the effect of the di-
mension Dmid in TKE, and show the comparison in Fig-
ure 4. Setting Dmid=128 obtains the best performance, and
a smaller Dmid would get a worse performance.
Insert which layer? TCP inserts the class-aware textual
prompts into a particular layer of the Text Encoder. The im-
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Table 7. Comparison with single-layer vs multiple layers prompt tuning.

Modes Layers Base New H

TCP-Shallow {8} 84.13 75.36 79.51
TCP-Deeper {4;8} 84.02 75.13 79.33
TCP-Deeper {8;10} 84.24 75.29 79.51
TCP-Deeper {4;8;10} 84.11 74.51 79.02
TCP-Deeper {4;6;8;10} 84.17 74.66 79.13
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Figure 6. Comparison with TCP and Adapter-based methods.

pact of inserting prompts into different layers was analyzed
and shown in Figure 5. The best performance was achieved
when the class-aware prompt tuning was done on the 8th
layer. This is because doing so on earlier layers (l < 8)
does not transfer class-aware knowledge to the textual em-
bedding, and doing it on later layers can easily affect the
textual embedding.
Single-layer vs Multiple-layers? The results of existing
MaPLe and PromptSRC show that deep prompt learning
applied on multiple layers can perform better than shal-
low prompt tuning with a single layer. Therefore, we com-
pared the performance of shallow prompt tuning with deep
prompt tuning. The results in Table 7 indicate that the shal-
low class-aware prompt tuning with a single layer provides
better performance. For instance, TCP-Shallow with 8-
layer achieves the highest H of 79.51%, which surpasses
all variants of TCP-deeper that have two, three, and four
layers. Additionally, we observed that TCP-shallow obtains
the best performance of 75.36% for the New class, and us-
ing more layers results in lower performance.
Compared to Adapter-based methods: In TCP, TKE acts
as a special adapter, leading to the proposed TCP is similar
to Adapter-based methods. We compared TCP with several
Adapter-based methods such as CLIP-Adapter and CoOp-
Adapter, which apply the adapter on the general textual-
level class embeddings. However, TCP applies TKE to
transfer the textual-level class embedding into the class-
aware prompt combined with the class tokens in the mid-
dle layer of the Text Encoder. As shown in Figure 6, TCP
with TKE performs better than the existing CLIP-Adapter
and CoOp-Adapter on all 11 datasets.
Training time analysis: We further analyze the training
time of the proposed TCP. The training time was determined
based on the average time to process one image from the
ImageNet with a 16-shot setting. According to Table 8, the
proposed TCP is an efficient method that performs better

Table 8. Training time comparison(ms/image).

CoOp ProGrad KgCoOp PLOT RPO MaPLe PromptSRC TCP

ms/image 6ms 22ms 6ms 78.8ms 190ms 90.7ms 43.2ms 6.4ms
H 74.48 76.16 77.00 77.37 77.78 78.55 79.31 79.51
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Figure 7. Visualization of the probability of CoOp and TCP.

with less running time. This is because TCP adds an ef-
ficient TKE component for generating class-aware prompt
upon CoOp and KgCoOp, resulting in slightly more time
consumption than CoOp and KgCoOp.
Visualization. To prove that the proposed TCP can gen-
erate the discriminative textual classifier for prediction,
we further visualize the prediction probability among all
classes. As shown in Figure 7, the proposed TCP has an
obvious inter-class classes than existing methods.

5. Conclusion

To improve the generalization and discriminative abili-
ties of the learnable prompt, we introduce a Textual-based
Class-aware Prompt tuning method that takes advantage of
the benefits of general class-level textual knowledge. To
achieve this, we propose a Textual Knowledge Embedding
(TKE) that transfers the class-level textual embedding into
the class-aware prompt. This is combined with pre-trained
class tokens to generate task-specific textual knowledge.
Several benchmarks and tasks have shown that the class-
aware prompt is effective for prompt tuning.

However, the class-aware prompt in TCP heavily relies
on the discriminative ability of the general textual embed-
ding. On the other hand, a weaker textual embedding will
produce a weaker textual classifier. For example, TCP does
not perform well on the FGVCAircraft dataset. Therefore,
in the future, we plan to explore ways to use weaker textual
knowledge to obtain a discriminative textual classifier.
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