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Abstract

Current diffusion or flow-based generative models for
3D shapes divide to two: distilling pre-trained 2D image
diffusion models, and training directly on 3D shapes. When
training a diffusion or flow models on 3D shapes a cru-
cial design choice is the shape representation. An effective
shape representation needs to adhere three design princi-
ples: it should allow an efficient conversion of large 3D
datasets to the representation form; it should provide a good
tradeoff of approximation power versus number of parame-
ters; and it should have a simple tensorial form that is com-
patible with existing powerful neural architectures. While
standard 3D shape representations such as volumetric grids
and point clouds do not adhere to all these principles simul-
taneously, we advocate in this paper a new representation
that does. We introduce Mosaic-SDF (M-SDF): a simple
3D shape representation that approximates the Signed Dis-
tance Function (SDF) of a given shape by using a set of
local grids spread near the shape’s boundary. The M-SDF
representation is fast to compute for each shape individually
making it readily parallelizable; it is parameter efficient as
it only covers the space around the shape’s boundary; and
it has a simple matrix form, compatible with Transformer-
based architectures. We demonstrate the efficacy of the
M-SDF representation by using it to train a 3D genera-
tive flow model including class-conditioned generation with
the ShapeNetCore-V2 (3D Warehouse) dataset, and text-to-
3D generation using a dataset of about 600k caption-shape
pairs.

1. Introduction
Image-based generative models have rapidly advanced in
recent years due to improvements in generation methodolo-
gies (e.g., Diffusion Models), model architecture and condi-
tioning (e.g., Text-to-Image Models, Attention/Transformer
layers), and the consolidation of large, high quality im-
age datasets. Although generation of 3D shapes have pro-
gressed as well, it has not seen the same level of progress
demonstrated in image generation.

*Work done while interning at Meta.

Current works for 3D generation divide mostly into two
groups: Optimization based: 2D image generative priors
are used for training/optimizing 3D shape [20, 35, 46]. The
main benefit is leveraging existing powerful image models,
but the generation process is expensive/slow as it requires
training a new model for each sample. Furthermore, us-
ing only image priors is often insufficient to build consis-
tent 3D shape (e.g., the Janus effect) [7]. Forward based:
the 3D shapes are generated by a forward process, such as
solving an Ordinary Differnetial Euqation (ODE), making
generation process more efficient than optimization based
methods. However, forward based model are first trained
on a dataset of 3D shapes using, e.g., Diffusion or Flow
Models, where to that end shapes are first transformed into
some canonical 3D representation, e.g., volumetric grid or
a point cloud. Forward based models work directly with 3D
shapes and suffer from two limitations: first, they require
3D shape datasets for training and these still lag behind im-
age datasets in terms of quantity and quality. Second, in
contrast to images, 3D shapes do not occupy the full 3D
space and therefore an effective 3D shape representation is
more challenging to find/work with.

In this work we focus on forward based 3D generative
models. To enable high quality, large scale 3D generation
the 3D shape representation of choice should adhere the fol-
lowing design principles:

(i) Preprocess efficiency: can be efficiently computed
for a large collection of shapes.

(ii) Parameter efficiency: provides a good approxima-
tion vs. parameter count trade-off.

(iii) Simple structure: has a simple tensorial structure,
compatible with expressive neural architectures.

Examining existing 3D representations used for training
generative 3D models including volumetric grids [19, 31],
tri-planes [10, 41, 45], point clouds [26, 33, 48, 52], meshes
[23] and neural fields [15] we find that all are lacking in one
or more of the above design principles. For example, vol-
umetric grids scale cubically and maintain redundant infor-
mation in the entire space, while tri-planes tend to be more
efficient but still encode full 3D tensors and require a neural
network trained jointly on the training set. Point clouds do
not provide a full surface information; meshes do not enjoy
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Figure 1. Method overview. Train (top): First we convert the
dataset of shapes to M-SDF representations (Algorithm 1), next
we train a Flow Matching model with the M-SDF representations
(Algorithm 2). Sampling (bottom): We random a noisy M-SDF
and numerically solve the ode in equation 13 (Algorithm 3).

a simple tensorial structure in general; and neural fields are
encoded by weight vector with non-trivial symmetries [32].

The goal of this work is to introduce Mosaic-SDF (M-
SDF), a simple novel 3D shape representation that achieves
all desired properties listed above. With M-SDF we are able
to train a forward based flow generative model on a datasets
of 3D shapes achieving high quality and diversity. In a nut-
shell, M-SDF approximates an arbitrary Signed Distance
Function (SDF) with a set of small (7 × 7 × 7) volumetric
grids with different centers and scales. Namely, M-SDF of a
single shape is a matrix X of dimension n× d, where each
row represent a single grid, and it can be fitted to a given
shape’s SDF in less then 2 minutes with a single Nvidia
A100 GPU. Furthermore, as X is a matrix representing a
set it is compatible with existing expressive architectures,
similar to the ones trained on points clouds [33]. Lastly,
since the grids are centered near the shape’s surface M-SDF
provides a parameter efficient representation.

We have used the M-SDF representation to train a Flow
Matching model [21] on two main datasets: ShapeNetCore-
V2 (3D Warehouse) [4] consisting of ∼50K 3D models di-
vided to 55 classes and a dataset of ∼600K shapes and a
matching text description [27]. We find that M-SDF to be
the method of choice for 3D geometry representation and
facilitate simple, generalizable, high quality, forward based
3D generative models.

2. Related work

Our work focuses on designing a representation that is bene-
ficial for 3D generation. Below we review relevant previous
works categorized by the type of representation they used
for 3D shapes.

Grids and Triplanes. Several works suggested to train
a diffusion model to predict a grid-based representation,
which can be either 3D voxel grids [13, 19, 31], or using
the Triplanes representation [10, 41, 45]. DiffRF [31] rep-
resents each shape as a volumetric radiance field on a voxel
grid. [19] represents voxelized truncated signed distance
functions (TSDF) encoded into a lower resolution features
grid. Neural Wavelet [13] also advocates voxel grid struc-
ture containing wavelet coefficients of a truncated SDF sig-
nal. The main drawback of voxel grids is that they are re-
stricted to a fixed and usually low resolution grids, mainly
due to their cubic scaling.

The cubic scaling of volumetric grids motivated the Tri-
plane representation [3, 39] using lower dimensional grids
(1D and 2D) and encode a 3D function as a small MLP ap-
plied to sums of outer products. [10, 41, 45] utilize 2D dif-
fusion model backbones on 3D training scenes represented
by 2D feature planes. Despite the elegant correspondence
to 2D images, prepossessing a large data set of 3D shapes
into Triplane representation is compute intensive, requires
to learn a shared MLP and in some cases a shared auto-
encoder [10, 45]. Compared to our representation, grid-
based representations contains many redundant empty vox-
els, since the shape’s surface usually occupied only a small
fraction of the grid.

Neural Fields. Following the considerable success of
Implicit Neural Representations (INRs) for modeling 3D
shapes [29, 30, 34], several works suggest a generative
model that produces a parameterization of an implicit func-
tion. [6, 51] employed a GAN to generate latent vector
or volume representing an implicit function with a shared
MLP. Shape-E [15] suggests a diffusion model that directly
predicts the weights of a Multi-Layer Perceptron (MLP).
However, training an MLP for each shape in a large dataset
is compute intensive, and should consider the symmetries
of MLP weights [32].

Point clouds. [26, 33, 48, 52] suggest to generate 3D
Point clouds, taking advantage of existing permutation-
equivariant architectures [36, 43]. Although point-clouds
are easy to compute during preprocess and hence suit-
able for training on large datasets, post-processing it into
a smooth surface results in loss of details or requires ex-
tensive number of points, which are hard to generate with
permutation-equivariant models [44]. Point-E [33] suggests
to train an additional upsampler diffusion model to scale
the size of the generated point cloud, however it still fails to
describe thin structures.
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Other representations. There are papers that suggested
methods that are related to our work and not fall into one
of the categories above. [2] offers to generate a set of Volu-
metric Primitives [24] composed on top a coarse mesh, su-
pervised with another 3D generative model’s outputs. [49]
and [50] presented different representation for encoding oc-
cupancy field using a set of either structured or unstructured
latent vectors. Similarly to our representation, they are com-
patible with the transformer architecture [43], trained as the
generative model. However, all these methods require a sig-
nificant compute intensive preprocessing stage for fitting a
generalized representation for a large scale dataset. In con-
trast, our representation is both compact, has a simple struc-
ture, interpretable, and can be formed independently and
quickly for each shape in the dataset.

3. Method
In this section we present our 3D shape representation based
on an efficient approximation of the Signed Distance Func-
tion (SDF), we detail how it is computed for a dataset of
shapes in a preprocess stage, and how it is used for training
a flow-based generative model.

3.1. Mosaic-SDF Shape Representation

We advocate a simple and effective representation for the
Signed Distance Functions (SDFs) of 3D shapes, suitable
for generative models, that we call Mosaic-SDF (M-SDF).
Our main focus is on building a representation that satisfies
properties (i)-(iii) from Section 1.

Signed Distance Function (SDF). Our goal is to build a
simple low parameter count approximation to the SDF of a
shape S ⊂ R3, where x ∈ S are points inside the shape,
x /∈ S are outside and x ∈ ∂S are on the shape’s boundary.
The SDF of the shape is defined by

FS(x) =

{
−d(x, ∂S) x ∈ S
d(x, ∂S) x /∈ S

, (1)

where the unsigned distance function is defined by
d(x, ∂S) = miny∈∂S ∥x− y∥2.

Figure 2. Mosaic-SDF
representation.

M-SDF representation. We
approximate FS with a volu-
metric function FX : R3 →
R defined by the parameters
X . The core idea is to define
FX as a weighted combination
of a set of local grids. Fol-
lowing the three principles out-
lined above, (i)-(iii) we define the representation X to be
the set of tuples

X = {(pi, si,Vi)}i∈[n] , (2)

where [n] = {1, . . . , n}, pi ∈ R3 are 3D point locations,
si ∈ R are local scales, and Vi ∈ Rk×k×k are local vol-
umetric grids. See Figure 2 for an illustration of the local
grids. We denote by IVi

: [−1, 1]3 → R the trilinear inter-
polants of the values Vi over the origin-centered volumetric
grid G of the cube [−1, 1]3 defined by

G =

{
2 (i1, i2, i3)− n− 1

n− 1

∣∣∣i1, i2, i3 ∈ [k]

}
. (3)

By convention the interpolants IVi
vanish outside the cube

[−1, 1]3, i.e., IVi(x) = 0 for x /∈ [−1, 1]3. The parametric
SDF approximation is then defined by

FX(x) =
∑
i∈[n]

wi (x) IVi

(
x− pi

si

)
(4)

where wi(·) are scalar weight functions that define the con-
tribution of the i’th local grid; the wi(·) are supported in the
cube [−1, 1]3 and satisfying partition of unity, i.e.,∑

i∈[n]

wi(x) = 1, ∀x ∈ R3. (5)

We opt for

wi(x) =
w̄i(x)∑

j∈[n] w̄j(x)
, w̄i(x) = ReLU

[
1−

∥∥∥∥x− pi

si

∥∥∥∥
∞

]
.

The domain of definition of FX is the union of local grids,

D(X) = ∪i∈[n]B∞(pi, si), (6)

where B∞(p, s) =
{
x ∈ R3| ∥x− p∥∞ < s

}
is the infin-

ity ball of radius s centered at p.

3.2. Computing M-SDF for Shape Dataset

Given an input shape S (as defined above) from some
dataset of shapes, we would like to compute its Mosaic-SDF
representation X such that FX ≈ FS in a neighborhood of
the shape’s boundary surface, ∂S. The computation of X
consists of two stages: (i) Initialization: where we find X
such that the domain of definition of FX covers the surface
of the shape, i.e., ∂S ⊂ D(X); and (ii) Fine-tuning: where
we optimize X to improve approximation FX ≈ FS . This
algorithm can be applied to each shape individually making
it simple to parallelize and is computationally efficient com-
pared to alternatives. The algorithm for converting a shape
S to its M-SDF representation is summarized in Algorithm
1. Figure 3 compares M-SDF representation and some of
the popular existing representations for a fixed budget of
parameters. Note that M-SDF provides the highest qual-
ity approximation while is only ×2 slower than the fastest
method, i.e., the 3D volumetric grid. Later, in Section 4.2
we provide a more detailed evaluations and comparisons.
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GT M-SDF (1 min) INR (30 min) 3D Grid (0.5 min) Triplane (6 min)

Figure 3. M-SDF representation: we compare the ground truth shape (left), with zero levelsets of (from left to right) M-SDF, Implicit
Neural Representation (INR), Volumetric 3D Grid, and Triplane. All representations adhere the same budget of 355K parameters. Note
that M-SDF is provides the highest fidelity with an efficient computation time.

Initialization. We assume all shapes’ boundaries ∂S are
provided in a way that allows basic operations like sampling
and SDF computation, e.g., as triangular meshes. We nor-
malize all shapes so the ∂S fit in the cube [−1, 1]3. We
initialize the volumes centers {pi}i∈[n] using farthest point
sampling [8] over the shape’s boundary ∂S. Second, we set
si = s for all i ∈ [n], where s is the minimal value that
achieves a full coverage of the shape’s boundary, i.e.,

s = min
{
s > 0

∣∣ ∂S ⊂ D(X)
}
, (7)

where D(X) is defined in equation 6. To initialize the local
volumes Vi we simply store the corresponding values of the
SDF FS at the local grid coordinates, i.e., Vi = FS(pi +
siG), where G defined in equation 3.

Fine-Tuning. Although the initialization already provides
a valid approximation to the shape’s SDF it can be further
improved with quick fine-tuning. We optimize the initial-
ized Mosaic-SDF representation X to reduce the following
loss [9, 34] striving to regress the SDF’s values and first
derivatives:

L(X) = L1(X) + λL2(X), (8)

where

L1(X) =
1

m

∑
j∈[m]

∥FX(xj)− FS(xj))∥1 , (9)

L2(X) =
1

m

∑
j∈[m]

∥∇xFX(yj)−∇xFS(yj)∥2 , (10)

where ∥·∥1, ∥·∥2 represent the 1 and 2-norms (resp.), λ >
0 is a hyper-parameter. The sampling points {xi}j∈[m],

{yj}j∈[m] are spread uniformly over the shapes’ boundaries
∂S and their neighborhood; more details are in Section 4.1.

Algorithm 1: Mosaic-SDF preprocess.
Input : Shape S, set size n, grid resolution k,

λ ≥ 0
▷ Initialization
{pi}i∈[n] ← farthest point sampling of ∂S
{si}i∈[n] ← s minimal covering scalar ▷ eq. 7
for i← 1 to n do

Vi ← FS(pi +G · si) ▷ G in eq. 3
▷ Fine-tuning
X ← {(pi, si,Vi)}i∈[n]

while not converged do
Take gradient step with∇XL(X) ▷ eq. 8

Output: X

3.3. Mosaic-SDF Generation with Flow Matching

At this point we assume to be a given a dataset of N
shapes paired with condition vectors (e.g., classes or text
embeddings),

{
(Si, ci)

}
i∈[N ]

, and in a preprocess step we
converted, using Algorithm 1, all shapes to M-SDF form,{
(Xi, ci)

}
i∈[N ]

. Our goal is to train a flow based genera-
tive model taking random noise to M-SDF samples. Given
an M-SDF sample X the shape’s boundary can be extracted
via zero level set contouring of FX , e.g., with Marching
Cubes [25]. Below we recap the fundamentals of flow-
based models adapted to our case and present the full train-
ing (Algorithm 2) and sampling (Algorithm 3).
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Flow-based generative model. Flow-based generative
models are designed to find a transformation taking sam-
ples from some simple noise distributions X0 ∼ p(X0) to
conditioned data samples X1 ∼ q(X1|c). Our noise distri-
bution is, as customary, a standard Gaussian p = N (0, I),
and our empirical target distribution is

q(·, c) = 1

N

∑
i∈[N ]|ci=c

δ(· −Xi), (11)

where δ(X) is a near-delta function (e.g., a Gaussian with
small standard deviation σ) centered at 0. In our case, the
data points are matrices,

X ∈ Rn×d, where d = 3 + 1 + k3, (12)

with their row order considered only up to a permutation. A
flow model is modeled with a learnable velocity field [5] de-
noted Uθ : [0, 1]×Rn×d×Rc → Rn×d, where θ represents
its learnable parameters, and c the dimension of an optional
conditioning variable. Sampling from a flow model repre-
sented by Uθ is done by first randomizing X0 ∼ p(X0),
and second, solving the ODE

Ẋt = Uθ
t (Xt, c), (13)

with initial condition X0, from time t = 0 until time t =
1, and c ∈ Rc is the condition vector. Lastly, the desired
sample of the model is defined to be X1.

Symmetric Data. As mentioned above X ∈ Rn×d rep-
resents a set of n elements in Rd (i.e., the elements are the
rows of X). Differently put, permutation of the rows of X ,
i.e., PX with P being a permutation matrix, is a symmetry
of this representation, namely represents the same object
X ∼= PX . Consequently, we would like our generative
model to generate X and PX with the same probability.
One way to achieve this is to consider noise density p that
is permutation invariant, i.e.,

p(PX) = p(X), for all X,P , (14)

and a permutation equivariant flow field Uθ, i.e.,

Uθ
t (PX, c) = PUθ

t (X, c), for all t,X, c,P . (15)

Indeed as proved in [18] (Theorem 1 and 2) equations 14
and 15 imply that the generations X(1) using an equivari-
ant model Uθ and invariant noise p are also permutation
equivariant and X(1) and PX(1) are generated with the
same probability, as required. One benefit of this set sym-
metry is the existence of a powerful permutation equivariant
neural architecture, namely a Transformer [33, 42] without
positional encoding.

Algorithm 2: Flow Matching training.

Input : M-SDF dataset
{
Xi

}
i∈[N ]

, puncond, σ

Initialize Uθ
t

while not converged do
t ∼ U([0, 1]) ▷ sample time
(x1, c) ∼ q(x1, c) ▷ sample data and condition
c← ∅ with probability puncond ▷ null condition
X0 ∼ p(X0) ▷ sample noise
Xt ← tX1 + (1− ρt)X0 ▷ eq. 17
Ẋt ← X1 − ρX0

Take gradient step on∇θ∥Uθ
t (Xt, c)− Ẋt∥2

Output: Uθ

Flow Matching. We use the recent formulation of Flow
Matching (FM) [21] with its permutation equivariant variant
[17]. Flow Matching models are similar to diffusion models
in taking noise to data but directly regress the velocity field
of a noise-to-data target flow and consequently have several
benefits such as flexibility of noise-to-data paths, they are
well defined for the entire time interval from noise to data
(i.e., work with 0 SNR noise), easier to sample due to lower
kinetic energy [40], and provide a competitive generation
quality. We train Flow Matching with Classifier Free Guid-
ance (CFG) [11] by minimizing the loss

L(θ) = Et,b,p(X0),q(X1,c)

∥∥∥Uθ
t (Xt, c̄(b))− Ẋt

∥∥∥2 (16)

where t ∼ U([0, 1]) is the uniform distribution, b ∈
B(puncond) is a Bernoulli random variable taking values 0, 1
with probability (1 − puncond), puncond (resp.), c̄ = (1 − b) ·
c + b · ∅ where ∅ is a symbol of null conditioning, and
Xt is a path interpolating noise X0 and data X1. We opt
for paths Xt that form Optimal Transport displacement map
[28] conditioned on a training sample X1 ∼ q(X1), i.e.,

Xt = (1− ρt)X0 + tX1, ρ = 1− σ (17)

where σ > 0 is a hyper-parameter chosen to be σ = 10−5 in
our case. This path choice is referred to as Conditional Opti-
mal Transport (Cond-OT) and it takes samples from p(X0)
to samples from N (X1, σ

2I). Equivalent formulations of
Flow Matching are also introduced in [1, 22].

4. Experiments
4.1. Implementation details

Datasets and preprocess. We train our generative model
on two main datasets: 3D Warehouse data, commonly re-
ferred to as ShapenetCore v2 [4] consisting of 50K 3D
polygonal meshes classified to 55 different categories, and
a dataset of 600K polygonal meshes with matching text
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Figure 4. Conditional samples from a Flow Matching model trained on M-SDF representations of ShapeNetCore v2.

Algorithm 3: ODE sampling.

Input : trained model Uθ, condition c,
guidance parameter ω, number of steps m

X0 ∼ p(X0) ▷ sample noise
h← 1

m ▷ step size
Vt(·)← (1 +ω)Uθ

t (·|c)−ωUθ
t (·|∅)▷ CFG velocity

for t = 0, h, . . . , 1− h do
Xt+h ← ODEStep(Vt, Xt) ▷ ODE solver step

Output: X1

descriptions [27]. We preprocess each polygonal mesh as
follows: First, scale it to be bounded inside the unit cube
[−1, 1]3. Second, make it watertight using [12, 47]. Third,
we run Algorithm 1 for 1K iterations, with n = 1024,
k = 7, and λ = 0.1. Consequently the M-SDF tensor
representation is X ∈ R1024×(3+1+73) (see equation 12)
and has 355K parameters in total. This last step takes less
than 2 minutes on a single Nvidia A100 GPU (it takes a
bit longer than the experiment in Figure 3 since here we
used λ > 0). Fourth, noting that the M-SDF representation
has three channels, (pi, si,Vi), we normalize pi, si to have
zero mean and unit max norm (using 50K random samples
of each channel).

Flow Matching model architecture and training. We
train a Flow Matching generative model [21] where for
Uθ we use the transformer-based architecture [42] without
positional encoding to achieve permutation equivariance,
compatible with our M-SDF tensorial representation. Each
element in the set (i.e., row) of the noisy sample Xt ∈ Rn×d

is fed in as token, as well as the time t and the condition-
ing c. Our transformer is built with 24 layers with 16 heads
and 1024 hidden dimension, which result in a 328M param-
eter model. We train Uθ for 500K iterations with batch size
of 1024 using the ADAM optimizer [16] and learning rate of
1e−4 with initial warm-up of 5K iterations. We additionally
perform EMA (Exponential Moving Average) to the trans-
fomer’s weights. Both training were done on 8 nodes of 8
NVIDIA A100 GPUs, which takes around a week.

4.2. Representation evaluation

We start with comparing M-SDF to existing popular SDF
representations used in 3D generative models focusing on
two key aspects: preprocess efficiency, and parameter effi-
ciency. We only consider SDF representations computed
independently for each individual shape, i.e., does not
use latent space representations defined by a global en-
coder/decoder. The main reason for this choice is that all
methods, including M-SDF, can be adapted to work on la-
tent space, which is an orthogonal design choice. We com-
pare to: 3D Volumetric Grid (3D-Grid), Triplane and Im-
plicit Neural Representation (INR).

We consider 100 random (GT) models from
ShapeNetCore-V2 (3D Warehouse) and for each SDF
representation (M-SDF, 3D-Grid, Triplane, INR) we log
its average preprocess time and surface approximation
quality for varying parameter budget. The preprocess
time is measured as the wall-clock time it takes a single
Nvidia A100 GPU to compute the representation. For
Triplane, INR and M-SDF we use the loss in equation 8
with λ = 0; 3D-Grid is computed by evaluating the GT
SDF at the grid nodes. The surface approximation quality
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Figure 5. (a) 3D approximation quality vs. representation parame-
ter count; (b) pre-process training time vs. 3D approximation qual-
ity for a fixed representation budget of 355K parameters.

is measured by the Chamfer Distance (CD) between the
extracted surface mesh from the SDF representation and
the GT mesh. Figure 5 summarizes the results in two
graphs: (a) shows the surface approximation quality of
each representation for different parameter budgets; and
(b) surface approximation quality versus preprocess time
of each representation. For INR we additionally examine
the option of using Positional Encoding (PE) [30], which
incorporates high frequencies as input to the MLP. For
Triplane we evaluated the two alternatives of aggregating
the projected features, as suggested in [39], using learned
linear decoder (denoted as lin.) or using a small MLP
decoder. We note that while previous works that use the
Triplane representation [3, 41] suggested additional regu-
larizations, we tested Triplane with the same supervision
and loss as the other methods that require optimization,
namely INR and M-SDF. This can potentially explain the
degradation in the approximation quality as the parameter
count increases. Additionally, for M-SDF we report the
surface approximation quality both at initialization and
after fine-tuning (see Section 3.2). As can be seen in the
graphs, M-SDF is superior to INR in terms of surface
approximation per parameter budget while is computable
in only a fraction of the time. 3D Grids are the only faster
baseline to M-SDF but their approximation-parameter
trade-off is considerably worse (see also Figure 3).

4.3. Class conditional generation

In this section we evaluate our class-conditioned genera-
tive FM model trained on the ShapeNetCore-V2 (3D Ware-
house) [4] where the 55 classes of objects in this dataset
are used as conditions. We follow the split to train/val/test
suggested by [49]. Following and extending protocols of
past works, Table 1 reports quantitative evaluation for the 5
largest classes (containing over 3K shapes each) comparing
M-SDF and relevant recent baselines.

FPD (↓) KPD (↓) COV (↑,%) MMD (↓) 1-NNA (↓,%)
CD EMD CD EMD CD EMD

airplane

3DILG 1.83 3.22 41.09 32.67 4.69 4.73 82.67 84.41
NW 0.81 1.26 51.98 45.05 3.36 4.19 68.32 73.76
S2VS 0.94 1.65 51.98 40.59 3.80 4.45 69.06 76.73
Ours 0.44 0.50 52.48 51.49 3.54 3.78 62.62 69.55
car

3DILG 2.84 6.24 18.86 20.57 4.67 3.83 93.43 90.57
NW - - - - - - - -
S2VS 1.32 2.17 37.71 40.00 4.13 3.52 84.57 86.57
Ours 0.46 0.48 45.71 51.43 2.87 2.75 70.00 66.00
chair

3DILG 1.64 2.00 37.87 39.94 20.37 10.54 74.11 69.38
NW 1.41 1.29 43.79 47.04 16.53 9.47 59.47 64.20
S2VS 0.77 0.63 51.78 52.37 16.97 9.44 58.43 60.80
Ours 0.52 0.19 48.22 55.03 15.47 9.13 51.04 55.62
sofa

3DILG 3.19 5.83 25.95 29.11 26.41 10.71 84.81 77.85
NW - - - - - - - -
S2VS 1.17 1.70 48.73 51.90 10.83 7.25 62.66 57.91
Ours 0.63 0.62 46.20 48.10 12.43 7.60 61.71 55.70
table

3DILG 2.86 4.13 29.45 30.88 22.96 10.18 78.27 78.74
NW 1.49 2.20 51.07 47.98 13.27 7.72 56.41 58.67
S2VS 0.83 0.92 53.44 49.41 14.06 8.01 59.74 61.05
Ours 0.47 0.21 52.97 53.21 13.49 7.74 51.31 50.59

Table 1. Evaluation of our class conditioning generation model
trained on 3D Warehouse [14] compared to baselines. We report
results on the 5 largest classes in the dataset. KPD is multiplied by
103, MMD-CD by 103 and MMD-EMD by 102.
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Figure 6. Class conditioning generation of 3D shapes compared to
relevant baselines. Note the high fidelity demonstrated in M-SDF
generated shapes compared to the (overly smooth) baselines.

Evaluation metrics. We make use of several standard
metrics for evaluating the performance of our M-SDF gen-
erative models. All these metrics quantify differences be-
tween a set of reference shapes Sr and generated shapes
Sg . To measure distances between shapes we follow pre-
vious works (e.g., [26, 48, 50]) and use the Chamfer Dis-
tance (CD) and Earth Moving Distance (EMD). Using
these distances we compute: Maximum Mean Discrepancy
(MMD), Coverage (COV), and 1-nearest neighbor accuracy
(1-NNA) to quantify fidelity, diversity and distributional
similarity, respectively. Furthermore, following [33, 50] we
use the 3D analogs of the Fréchet Inception Distance (FID)
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Figure 7. Text-to-3D samples from a Flow Matching model trained on M-SDF representations.

and Kernel Inception Distance (KID), commonly used to
evaluate image generative models. We employ a pre-trained
PointNet++ [37] to extract features. As in [50] we will re-
fer to these metrics as Fréchet PointNet++ Distance (FPD)
and Kernel PointNet++ Distance (KPD). Additional infor-
mation and implementation details are provided in the sup-
plementary material.

Baselines. We compare to Neural Wavelet (NW) [13] that
generate a grid-based representation. Note that this works
trains an unconditional model for each class separately,
making it arguably simpler than a single conditioned model
on the entire 55 classes. We additionally compare to 3DILG
[49] and 3DShape2VecSet (S2VS) [50], that suggest to gen-
erate structured or unstructured latent vectors, encoding an
occupancy field using a transformer.

As can be read in Table 1 our M-SDF based generative
model compares favorably to the baselines, achieving best,
or second best performance in all metrics. Figure 6 shows
qualitative comparison for two classes common for all base-
lines, i.e., chairs and airplanes. Note that generation with
M-SDF allows higher fidelity and sharper surfaces com-
pared to baselines which tend to be overly smooth. Figure
4 shows additional class conditional generations with our
M-SDF model.

643 1283 2563 5123

3DILG 0.3 2.33 18.44 159.56
NW - - 0.61 -
S2VS 0.06 0.36 OOM OOM
Ours 0.05 0.34 2.74 21.48

Table 2. Surface extraction time
(in seconds).

SDF evaluation time.
An additional advan-
tage of M-SDF com-
pared to other perfor-
mant baselines is the
relative efficiency and
flexibility in extracting
the zero level set of the SDF FX (equation 4). 3DILG
and S2VS require forward pass in a transformer for func-
tion evaluation. NW is restricted to generate a 3D grid in
a single resolution. M-SDF can be evaluated efficiently by
querying only the relevant local grids. In Table 2 we log,
for each method, the total time of extracting the zero lev-
elset of the SDF (with Marching Cubes) using cubic grids

of different resolutions (643, 1283, 2563, and 5123); OOM
stands for Out of Memory.

4.4. Text-to-3D generation

Lastly we provide a qualitative evaluation of our M-SDF
based generative FM model trained on a dataset of 600K
shapes with matching text captions [27]. We utilize a pre-
trained text model [38] as our textual embedding, passing
this embedding to the model as conditioning. Figure 7 de-
picts pairs of generated shapes and the text conditions used
to generate it.

5. Summary and Future Work
We presented a novel 3D shape representation, Mosaic-
SDF, that is geared towards 3D generative models and
offers a simple and efficient preprocessing, favorable
approximation-parameter trade-off, and a simple tensorial
structure compatible with powerful modern architectures
(i.e., transformers). We have used M-SDF to train Flow
Matching generative models and demonstrated state of the
art results for forward-based models. We believe that M-
SDF is the method of choice for 3D generation however
still posses some limitations and can be extended in sev-
eral ways: First, currently we only encode the SDF, missing
texture/color/light information. An interesting extension is
to incorporate texture and/or light field data. Second, in
our architecture we use a simple linear layer passing the lo-
cal grids into the transformer. A possible extension here
is to incorporate convolution layers and/or autoencoders to
further increase resolution/data reuse of the representation.
Lastly, making M-SDF equivariant to orientations, e.g., by
adding local coordinate frames, can improve the generaliza-
tion abilities of the trained model, which is currently only
permutation equivariant.
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