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Abstract

CNC manufacturing is a process that employs computer
numerical control (CNC) machines to govern the move-
ments of various industrial tools and machinery, encom-
passing equipment ranging from grinders and lathes to
mills and CNC routers. However, the reliance on man-
ual CNC programming has become a bottleneck, and the
requirement for expert knowledge can result in significant
costs. Therefore, we introduce a pioneering approach
named CNC-Net, representing the use of deep neural net-
works (DNNs) to simulate CNC machines and grasp intri-
cate operations when supplied with raw materials. CNC-
Net constitutes a self-supervised framework that exclu-
sively takes an input 3D model and subsequently gener-
ates the essential operation parameters required by the
CNC machine to construct the object. Our method has
the potential to transformative automation in manufac-
turing by offering a cost-effective alternative to the high
costs of manual CNC programming while maintaining ex-
ceptional precision in 3D object production. Our ex-
periments underscore the effectiveness of our CNC-Net
in constructing the desired 3D objects through the uti-
lization of CNC operations. Notably, it excels in pre-
serving finer local details, exhibiting a marked enhance-
ment in precision compared to the state-of-the-art 3D CAD
reconstruction approaches. The codes are available at
https://github.com/myavartanoo/CNC-Net PyTorch.

1. Introduction

Manufacturing processes have undergone remarkable trans-
formations over the past decades, driven by automation and
the advancement of computational techniques. A domain
that has witnessed substantial innovation is Computer Nu-
merical Control (CNC) machining, a pivotal pillar of mod-
ern manufacturing. CNC machines have revolutionized
manufacturing by producing complex products with better
precision, efficiency, and robustness [1] in diverse indus-
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tries, from aerospace to medical devices. Despite their nu-
merous advantages, CNC machines still grapple with cer-
tain limitations, particularly in manual programming and
adaptability. Traditional CNC programming requires intri-
cate sets of instructions crafted by Computer-Aided Manu-
facturing (CAM) software that guide machine tools, includ-
ing mills and drills, to produce the intended object. How-
ever, despite its effectiveness, this process introduces bot-
tlenecks due to its labor-intensive nature and reliance on
expert knowledge. Furthermore, adapting CNC machines
to new tasks typically involves extensive reprogramming,
hindering their agility and responsiveness in dynamic man-
ufacturing environments. Incorporating deep learning tech-
niques into CNC machining offers a transformative solu-
tion to address these challenges. In particular, several re-
cent studies use deep neural networks (DNNs) to explore
3D objects using Constructive Solid Geometry (CSG) [19]
operations, employing both a set of simple [31, 34] and
more complex [6, 36, 37] primitives. Therefore, the ability
of DNNs to learn complex patterns from data makes them
an ideal candidate for revolutionizing CNC manufacturing,
which can pave the way for automation, adaptive program-
ming, and efficient utilization of CNC machines. However,
the intricate search space for operations on complex objects
involving NP-hard problems presents a challenge in label-
ing optimal solutions as ground truth (GT). Consequently,
lacking a dataset with such a GT as supervision poses chal-
lenges in training a DNN model.

To mitigate these challenges, we propose CNC-Net, a
DNN-based approach designed to simulate generic CNC
machines in a self-supervised manner. Our approach can
construct target objects without relying on the GT la-
bels (i.e., a set of sequential operations). CNC-Net is struc-
tured to incrementally learn the production of target 3D
shapes, thereby determining the subsequent set of opera-
tions by implicitly modeling milling and drilling operations.
This capability enables CNC-Net to generate the necessary
machining steps effectively. At each operational step, the
tools are represented as cylindric primitives, and the CNC-
Net determines the radius of the tool and identifies the path
coordinates for the subsequent milling or drilling action. To
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enhance the carving capabilities of a CNC machine, we in-
troduced a feature that enables the machine to rotate the
workpiece along the X and Y axes. This functionality is
commonly found in advanced CNC setups. In this scenario,
guided solely by the target shape and lacking prior informa-
tion or labeled operations, CNC-Net models 3D shapes at
each step, involving subtracting operations, represented as
the union of cylindric primitives, from the outcomes of pre-
ceding steps. This enables CNC-Net to learn the essential
operations to reconstruct the target shapes accurately.

In our experiments, we provide the competitive perfor-
mance of CNC-Net in reproducing 3D shapes compared
to state-of-the-art (SOTA) CAD reconstruction methods.
To validate the effectiveness of our approach, we con-
duct experiments on both industrial objects from the ABC
dataset [16] and more intricate objects obtained from the
ShapeNet dataset [3]. Our main contributions are threefold:
• We introduce CNC-Net, a pioneer self-supervised and

DNN-based approach for simulating CNC machines.
• CNC-Net learns to automatically find the sequential op-

erations required for sculpting a 3D shape and exhibits
capability akin to expert human labor without the need
for labels or any prior information.

• The experiments demonstrate that our self-supervised
CNC-Net method can precisely reproduce target objects
and outperform SOTA methods in terms of 3D recon-
struction performance based on volume-based metrics.

2. Related Works
This section covers previous studies related to our method,
divided into two categories: reverse engineering of 3D
shapes and machine learning for CNC machines.

Reverse engineering 3d shapes. Reverse engineering a
3D shape refers to understanding the features and structure
of the original object and learning how it is constructed.
With the development of deep learning, several approaches
have been proposed to investigate how a 3D shape is as-
sembled. In recent years, there has been an exploration of
the use of simple geometric primitives to approximate a 3D
shape with a pre-defined set of cubes [27, 33, 40], ellip-
soids [10]. More recent studies improve the representation
ability and surface reconstruction by introducing more flex-
ible and deformable primitives [6, 13, 28, 36]. These works
represent a shape as a union of primitives using construc-
tive solid geometry (CSG) [19], which relies on Boolean
operations applied to the primitives [9]. On the other hand,
there exist various methods [5, 8, 31] that assemble primi-
tives using a sequence of modeling operations through re-
inforcement learning (RL). These methods aim to match a
target shape in a reverse engineering manner. Furthermore,
recent supervised primitive networks [22, 32] have been de-
signed to detect and fit primitives within point clouds, which

initially identify primitive types. Subsequently, they esti-
mate their parameters or integrate spline patches, incorpo-
rating differentiable metric-learning segmentation. Addi-
tionally, CSGNet [31] is a neural network approach to form
a CSG program from a given shape, and InverseCSG [8]
solves it as a program synthesis problem. Later meth-
ods [14, 23, 29, 30, 37] learn to compact 3D computer-
aided design (CAD) models via CSG operations, including
intersection, union, and subtraction, without relying on any
ground-truth primitive assemblies. However, primitive and
implicit-based methods are often designed for static shape
reconstruction rather than dynamic processes such as mate-
rial removal in machining. Accordingly, none of the above-
mentioned methods is applicable for modeling operations
in CNC machining. In contrast, our self-supervised method
can dynamically reproduce target shapes by learning se-
quential CNC machining operations.

Machine learning for CNC machines. Computer-aided
process planning (CAPP) by utilizing machine learn-
ing (ML) approaches plays a crucial role in streamlining
and automating various stages of the manufacturing
process [17, 20]. It encompasses critical machining
processes such as toolpath optimization, feature selection,
tool selection, operation selection, etc. ML-based meth-
ods [7, 12, 21, 26, 35, 39] within CAPP have focused on
improving toolpath generation and optimization, contribut-
ing to manufacturing processes. In [12], particle swarm
optimization (PSO) is utilized to optimize randomly initial-
ized toolpaths to minimize the machining time and resource
consumption. Furthermore, a recent study [7] utilizes sup-
port vector machine (SVM) for error prediction in toolpath
generation, ensuring that the toolpaths generated meet the
quality and precision requirements. Such optimization-
based methods enhance the machining performance and
reduce production costs, but they lack the capability to
learn the CNC operations themselves. Moreover, [2, 18]
has been proposed to select the best route planning strategy
from conventional approaches, helping to generate a path
aligned with specific manufacturing objectives. However,
these methods require data preparation involving 3D CAD
models, each with corresponding labels representing the
generated toolpaths, which is time-consuming. Moreover,
such models are limited to learning only from these specific
labels and restricting their generalization to adapt and
generate toolpaths across different datasets. Consequently,
direct research on automatic search and learning to generate
CNC machining operations step-by-step has been relatively
scarce. Therefore, we introduce a novel self-supervised
framework, CNC-Net, to simulate generic CNC machines
by generating toolpaths and learning the operations sequen-
tially solely from 3D CAD models without requiring any
labeled data or prior information. Our proposed method
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(d) Path. (e) Milling. (f) Drilling. (g) Rotation.

Figure 1. Overview of a generic CNC machine features.

can be applied to diverse datasets containing 3D CAD
models and shows the ability to learn the operations, even
from a single sample, using zero-shot learning.

3. Method
In this section, we first provide an overview of a generic
CNC machine by explaining its basic principles. Later, we
introduce our novel framework, CNC-Net, which takes an
input 3D model and attempts to generate the sequence of
operations required for the CNC machine to reproduce the
designated shape in a fully self-supervised manner.

3.1. CNC machine

Computer Numerical Control (CNC) is a computer-based
system used to control various machining tools such as
drills and mills. It operates using pre-programmed instruc-
tions, such as the G-code or M-code, to shape materials in
the desired shape S as Fig. 1a. These instructions include
a sequence of operations that can be created by individuals,
computer-aided design (CAD) systems, or computer-aided
manufacturing (CAM) software. In this study, we only con-
sider CNC machines that use milling and drilling processes
applied from the top of the workpiece and include rotation
capability as a typical machining operation.

3.1.1 Input material

As shown in Fig. 1b, we implicitly model the material ini-
tially provided, denoted as S0, as the bounding box B(S)
that encompasses the target object S as follows:

S0 = B(S) = max(|x
l
|, | y

w
|, | z

h
|)− 1, (1)

where l, w, and h represent the length, width, and height of
the target object S , respectively.

3.1.2 Tool

As shown in Fig. 1c, for simplicity and without loss of gen-
erality, we model milling and drilling tools T using the im-
plicit form of cylindrical primitives represented as follows:

T (c, r) = max{(x− cx)
2 + (y − cy)

2 − r2, cz − z}, (2)

where r and c = (cx, cy, cz) denote the radius of the tool
and the center of the base of the cylinder, respectively.

3.1.3 Path

The milling tool can move along a specified path to carve or
cut through the material. As shown in Fig. 1d, we represent
the path using a parametric function P as follows:

P(t) = (cx(t), cy(t), cz), (3)

where cx(t) and cy(t) represent the parametric components
for each axis X and Y, with the parameter t, respectively. It
should be noted that the component cz is constant, indicat-
ing the depth of penetration of the tool into the workpiece.

3.1.4 Milling operation

Milling is the process of removing material from a work-
piece using a rotating cutting tool, often with multiple edges
layer by layer, as shown in Fig. 1e. It is commonly used to
create complex contours, pockets, and slots. Consequently,
milling operation OM

s at step s can be defined as the process
of a tool Ts traversing a path Ps(t), expressed as follows:

OM
s = min{Ts(Ps(t), rs)}1t=0, (4)

where rs is the radius of the tool at step s and the min oper-
ator encompasses the union of the primitives Ts across path
parameterized by time steps t ranging from 0 to 1.

3.1.5 Drilling operation

Drilling is a machining process that uses a rotating drill bit
to create holes with specific sizes and depths in a work-
piece. This operation is essential to accommodate fasten-
ers such as bolts and screws in various applications. Unlike
the milling operation, which traverses along a specific path,
the drilling tool Ts at step s penetrates a designated location
cs = (cs,x, cs,y, cs,z) as shown in Fig. 1f. As a result, the
drilling operation OD

s at step s can be defined as follows:

OD
s = Ts(cs, rs), (5)

where rs represents the radius of the drilling tool at step s.
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Figure 2. Overview of our proposed framework. Subsequent of milling and drilling operations to reproduce a target 3D CAD model.

3.1.6 Rotation operation

CNC machines are equipped with the ability to rotate the
workpiece at different angles, enhancing their versatility,
precision, and effectiveness in addressing complex geome-
tries and intricate machining tasks while eliminating the
need for manual repositioning. As shown in Fig. 1g, we
assume that the machine can rotate the shape Ss at step s by
the rotation transformation Rot{θx

s ,θ
y
s} as follows:

SRot
s = Rot{θx

s ,θ
y
s}(Ss), (6)

where θxs and θys denote the counterclockwise rotation an-
gles about the X-axis and Y -axis at step s, respectively.

3.2. CNC-Net

In this section, we introduce CNC-Net, an innovative self-
supervised framework designed to automate the operations
of generic CNC machines. CNC-Net achieves this by au-
tonomously learning and refining essential parameters for
sequential operations, including milling, drilling, and rota-
tion, to sculpt raw materials into intricate objects precisely.
Fig. 2 provides a comprehensive visual representation of our
proposed self-supervised framework, CNC-Net. We start
with voxelizing the input material S0 as the bounding box
B(S) of the target shape S as follows:

V0(v) =

{
+1, if v ∈ (S0 − S)
−1, if v ∈ S

. (7)

Subsequently, we utilize an encoder E to extract both local
and global features from V0, where the encoded features are
concatenated with the bounding box size [l, w, h] and fed
into a long short-term memory (LSTM) network denoted
as A. This LSTM network generates hidden features for
the subsequent operational step and produces the necessary
output features to predict the parameters of the operations.
Moreover, we utilize three distinct decoders θM, RM, and
PM to generate the rotation parameters (θx1 , θ

y
1), tool ra-

dius r1, and path P1(t) parameterized by t for the first step
s = 1, respectively. Then, we construct the milling op-
eration OM

1 from the generated r1 and P1(t) and feed it

(a) Ss−1 (b) SR
s−1 (c) max(SR

s−1,−Os) (d) Ss

Figure 3. CSG operation.

along with S0 and the rotation parameters (θx1 , θ
y
1) into the

Constructive Solid Geometry (CSG) operation, executing
OM

1 and the rotation Rot{θx
1 ,θ

y
1} resulting in the generation

of S1. We continue this process with milling operations
OM

s iteratively for m steps until no further improvement is
achieved and generate the shape Sm at step s = m, wherein
we update the voxel representation as follows:

Vs−1(v) =

{
+1, if v ∈ (Ss−1 − S)
−1, if v ∈ S ∪ (S0 − Ss−1)

. (8)

When the milling operations are completed, we proceed
to perform the drilling operations similarly, where the gen-
erated shape Sm is considered as the initial material for the
drilling operations. Here, we input the updated voxel rep-
resentation Vm into the same encoder E and feed the ex-
tracted features along with the bounding box size [l, w, h]
to the LSTM network A to extract the characteristics, but
different decoders θD, RD, and CD to produce the rota-
tion parameters (θxm+1, θ

y
m+1), the drill radius rm+1, and

the drill tip coordinates cm+1, respectively. Similar to the
milling operation, Sm+1 in the subsequent step s = m + 1
can be generated by feeding Sm along with the constructed
drilling operation OD

m+1 and the generated rotation param-
eters (θxm+1, θ

y
m+1) into the CSG operation. We iterate the

drilling operations over d steps until a notable similarity is
achieved between Sm+d and the target shape S .

3.2.1 CSG

Fig. 3 shows the outline of the CSG module. To construct
the shape Ss for each step s, the initial procedure involves
applying the rotation transformation Rot{θx

s ,θ
y
s} to Ss−1 as
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in Eq. (6), where the resulting rotated shape is denoted
as SRot

s−1 . Accordingly, the shape Ss can be constructed
through the subtraction of a milling operation OM

s or a
drilling operation OD

s from the rotated shape SRot
s−1 followed

by the inverse rotation Rot−1
{θx

s ,θ
y
s}

to ensure that its orienta-
tion matches the initial orientation as follows:

Ss = Rot−1
{θx

s ,θ
y
s}
(max(SRot

s−1 ,−OM
s ))

Ss = Rot−1
{θx

s ,θ
y
s}
(max(SRot

s−1 ,−OD
s ))

or, (9)

where the max operator encompasses the subtraction.

3.3. Loss functions

We set up various loss functions for self-supervised train-
ing of our model. For simplicity, we represent ||.|| as the
L2 norm, vxyz ∈ R3 as the 3D coordinates of the corre-
sponding voxel v, vRot

xyz ∈ R3 and vRot
xy ∈ R2 as the 3D

and 2D coordinates of the rotated vxyz by rotation opera-
tion Rot{θx

s ,θ
y
s}, and σ(x) = tanh(wx) as a smooth sign

function, with w serving as a large scaling factor. First,
we design the milling loss LM to ensure that the implicit
shape Sm obtained after sequential milling precisely ap-
proximates the target shape S . Consequently, Sm is ex-
pected to produce negative and positive values for voxels
v ∈ V0 inside and outside the target shape S as follows:

LM =
1

|V0|
∑
v∈V0

||σ(Sm(vxyz))− V0(v)||2, (10)

where |V0| denotes the total number of voxels in V0.
We further define the drilling loss LD to facilitate the

drilling operations to remove the remaining regions after the
sequential milling operations as follows:

LD =
1

d

m+d∑
s=m+1

1

|V+
s−1|

∑
v∈V+

s−1

||σ(OD
s (vRot

xyz )) + 1||2, (11)

where V+
s−1 is the subset of Vs−1 whoes values are posi-

tive (+1) and |V+
s−1| denotes its number of voxesls.

To ease training and improve performance, we also intro-
duce a shape loss LS and a center loss LC as complemen-
tary losses for both operations. LS ensures that the regions
inside the target shape S are not removed by any milling
or drilling operations, and therefore S is preserved after se-
quential operations. Therefore, we need to ensure that the
milling or drilling operation Os at each step s produces pos-
itive values for the voxels inside S as follows:

LS =
1

|V−
0 |

m+n∑
s=1

∑
v∈V−

0

||σ(Os(v
Rot
xyz ))− 1||2, (12)

where V−
0 is the subset of V0 whose values are nega-

tive (−1) and |V−
0 | denotes its number of voxels. Fur-

thermore, LC is applied from the top of the workpiece to

ensure that the decoders PM and CD generate tooltip co-
ordinates around the remaining regions that are yet to be
removed. This loss simplifies the training process by nar-
rowing down the search space for the decoders PM and
CD, facilitating the generation of tip coordinates. Conse-
quently, we minimize the Chamfer distance between the
2D coordinates Cxy

s of the tools tips at each step s, e.g.,
Cxy

s = {(cs,x(t), cs,y(t))}1t=0 for the milling path and
Cxy

s = (cs,x, cs,y) for the drilling tip and the 2D coordi-
nates vRot

xy of the positive-valued voxels V+
s−1 as follows:

LC =
1

m+ d

m+d∑
s=1

(
1

|Cxy
s |

∑
cxy
s

∈Cxy
s

min
v∈V +

s−1

||cxys − vRot
xy ||2

+
1

|V+
s−1|

∑
v∈V +

s−1

min
cxy
s

∈Cxy
s

||vRot
xy − cxys ||2)

, (13)

where |Cxy
s | denotes the number of points inside Cxy

s .
The total loss LT is a summation of the defined loss func-

tions LM, LD, LS , and LC , expressed as follows:

LT = LM + LD + LS + LC . (14)

3.4. Implementation details

We utilize the same encoder network of CapriNet [37] as
E and a two-layer LSTM with a hidden size of 256 as
A. Furthermore, the decoders θM, RM, θD, RD, and
CD are structured with a fully connected (FC) of size 256
layer followed by ReLU activation, five consecutive ResNet
blocks [11] of 256, and another FC layer. To ensure that
the angle values fall within the range of [−π, π], we em-
ploy tanh on the output of the decoders θM and θD and
multiply the results by π. Since there is no continuous
size of the tools, we consider a predefined radius range
r ∈ radius = {0.025, 0.05, 0.075, 0.1} for milling tools
and r ∈ radius = {0.01, 0.02, 0.03, 0.04} for drilling
tools. To allow the decoders RM and RD to differen-
tially select among the tool radius, we employ softmax
on the output of the decoders and multiply them by the
vector radius. On the other hand, the path decoder PM

has two branches, one to generate the depth of tool pene-
tration cz using features obtained from A, while the sec-
ond branch, by the same features, receives the time step
t ∈ {0, 0.01, 0.02, . . . , 0.99} as input to generate (cx, cy).
Both branches have network architectures similar to those
of the other decoders. In all experiments, we set the resolu-
tion of voxels Vs as 64×64×64, pick a large scaling factor
w = 1000. We continue milling and drilling, each up to a
maximum of 20 steps, until the difference of the loss LM

and LD between steps s and s− 1 exceeds the threshold of
1e − 4, respectively. All experiments are carried out with
PyTorch 1.12.0 and Quadro RTX 8000 GPUs.
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CSG-Stump [29] ExtrudeNet [30] CAPRI-Net [37] SECAD-Net [23] CNC-Net (Ours) Target (GT)

Figure 4. Qualitative results on ABC [16] dataset. All reproduced shapes are visualized using marching cubes (MC) with 256 resolution.

4. Experiments

This section provides comprehensive information on train-
ing and evaluation datasets, training configurations, and a
deeper analysis of our proposed method, CNC-Net.

4.1. Dataset

ABC. The ABC [16] dataset comprises one million 3D
Computer-Aided Design (CAD) models, particularly in
manufacturing CAD objects, which serves as a valuable re-
source for developing geometric deep-learning methods and
applications. To pre-train our method, we follow CAPRI-
Net [37], sampling 5, 000 normalized single-part CAD ob-
jects. Given the time-consuming nature of fine-tuning for
each shape, we randomly sample 50 shapes from 1, 000 test
samples for fine-tuning and evaluation.
ShapeNet. Additionally, we utilize a broader spectrum of
objects sourced from the ShapeNet Core (V1) [3] dataset.
In our training and evaluation, we use the watertight shapes
derived from ONet [24]. Following CAPRI-Net [37], we
subsample 35k shapes across 13 categories for pre-training,
and further, we randomly select 10 shapes from the test set
of each category for fine-tuning and evaluation.

4.2. Evaluation metrics

Quantitative evaluations encompass widely used met-
rics, including volume-based metrics Intersection over
Union (IoU) [38] and F1 [30], and surface-based metrics
symmetric Chamfer Distance (CD) [25] and Normal Con-
sistency (NC) [4]. To measure IoU and F1 for all methods,
we voxelize the box [−0.5, 0.5]3 ⊂ R3 into 2563 voxels and
evaluate their occupancies from the reconstructed meshes.
For CD and NC measurements, following CAPRI-Net [37],
we uniformly sample 8k points on the surface of each ob-
ject, where all CD values are multiplied by 1, 000.

4.3. Training and evaluation

While pre-training provides foundational knowledge and
learning generic features, fine-tuning adapts the model to
specific samples, enhancing its effectiveness. Initially,
we pre-train our model with the self-supervised objec-
tives defined in Sec. 3.3. This pre-training phase in-
volves 100 epochs on training samples from ABC [16] and
ShapeNet [3] datasets, taking 0.5 and 1.5 hours per epoch,
respectively. Later, given the fully self-supervised nature
of our method, proceed to fine-tune the pre-trained model,
following prior approaches [23, 29, 30, 37] for 12, 000
iterations on each test sample individually, which takes
around 30 minutes per sample. We utilize ADAM [15]
optimizer with a learning rate of 1 × 10−4 for both pre-
training and fine-tuning experiments on both ABC [16] and
ShapeNet [3] datasets.

We conduct various quantitative and qualitative experi-
ments on both ABC [16] and ShapeNet [3] datasets to com-
pare our reconstruction performance in contrast to state-of-
the-art (SOTA) 3D CAD reconstruction methods including
CSG-Stump [29], ExtrudeNet [30], CAPRI-Net [37], and
SECAD-Net [23]. For fair comparisons, we use the ex-
isting pre-trained models of CAPRI-Net [37] and SECAD-
Net [23], while we pre-train CSG-Stump [29] and Extru-
deNet [30] using their official implementations. Further-
more, the fine-tuning process for all methods involves the
same number of iterations.

4.3.1 Results on ABC dataset

The results shown in Tab. 1 on ABC [16] dataset illustrate
the superior performance of our self-supervised method in
accurately reproducing target 3D CAD models by simulat-
ing CNC machining operations. In particular, compared
to other 3D CAD reconstruction techniques, our CNC-Net
method can improve the performance of CSG-Stump [29],
ExtrudeNet [30], CAPRI-Net [37], and SECAD-Net [23]
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by 4.7%, 7.2%, 7.3%, and 6.2% of IoU metric, respec-
tively. We observe an inferior performance of our method
compared to other methods when considering surface-based
metrics CD and NC. This discrepancy arises because prior
methods generate shapes by combining several smooth
primitives, while our approach carves a cube to approximate
the shape. Consequently, our approach struggles to achieve
the same level of smoothness in the reproduced shapes.

Method IoU↑ F1↑ CD↓ NC↑

CSG-Stump [29] 0.787 0.879 0.428 0.884
ExtrudeNet [30] 0.769 0.875 0.505 0.871
CAPRI-Net [37] 0.768 0.866 0.312 0.914
SECAD-Net [23] 0.776 0.867 0.398 0.900

CNC-Net (Ours) 0.824 0.901 0.509 0.893

Table 1. Quantitative results on ABC [16] dataset.

Moreover, we provide a visual comparison of our results
with those of CSG-Stump [29], ExtrudeNet [30], CAPRI-
Net [37], and SECAD-Net [23] on ABC dataset [16] de-
picted in Fig. 4. For equitable comparison, all reconstructed
CAD models are visualized using marching cubes (MC) at
a resolution of 256. Qualitative comparisons highlight the
superiority of our CNC-Net in faithfully reproducing the
overall shape of the target CAD models while exhibiting
exceptional precision in preserving more local details, set-
ting it apart from other methods. Specifically, taking ad-
vantage of designed carving and rotation operations, our
method adeptly generates holes via drilling, a capability not
achieved by CSG-Stump [29] and ExtrudeNet [30]. Fur-
thermore, CNC-Net has the advantage of preserving parts
that CAPRI-Net [37] and SECAD-Net [23] might damage.
This aspect is beneficial as our reproduced shapes can be
further refined through post-processing.

Therefore, the precise reproduction from 3D CAD mod-
els achieved by our CNC-Net method, as evident in quanti-
tative and qualitative experiments, emphasizes its practical
applicability in shaping desired objects from raw materi-
als by learning CNC machine operations. We provide more
qualitative results in our supplementary material.

4.3.2 Results on ShapeNet dataset

The quantitative and qualitative comparisons of our method
over SOTA 3D CAD reconstruction methods [23, 29, 30,
37] on the ShapeNet [3] dataset are shown in Tab. 2 and
Fig. 5, respectively. Although the objects in this dataset
are generally unions of object parts, e.g., chairs composed
of legs, back, seat bottomland, etc., and cannot be easily
processed using generic CNC machines, our method still
demonstrates superior performance in terms of IoU and F1
metrics. As our method carves the shapes, it performs in-

ferior compared to methods that construct shapes through
unions in terms of surface-based metrics CD and NC. We
provide more visual results in our supplementary material.

Method IoU↑ F1↓ CD↓ NC↑

CSG-Stump [29] 0.697 0.827 0.521 0.866
ExtrudeNet [30] 0.607 0.773 0.918 0.844
CAPRI-Net [37] 0.700 0.824 0.447 0.895
SECAD-Net [23] 0.650 0.784 2.405 0.852

CNC-Net (Ours) 0.740 0.850 1.562 0.863

Table 2. Quantitative results on ShapeNet [3] dataset.

CSG-Stump [29] ExtrudeNet [30] CAPRI-Net [37] SECAD-Net [23] CNC-Net (Ours) Target (GT)

Figure 5. Qualitative results on ShapeNet [3] dataset. All re-
produced shapes are visualized using marching cubes (MC) with
256 resolution. The 1st to 4th rows visualize the results of sampled
shapes from the car, sofa, rifle, and vessel categories, respectively.

4.4. Ablation study

We further comprehensively analyze our proposed CNC-
Net through a series of ablation studies. In these studies, we
illustrate the learned milling paths and the zero-shot learn-
ing capability, explore the effect of various loss functions,
and investigate the impact of each operation.

4.4.1 Milling paths

We visualize the learned path Ps for steps s = 1, . . . , 4 and
the generated shape Ss after applying the milling operation
in Fig. 6. The results indicate that the decoder PM gener-
ates a path that outlines the boundary of the target object to
form its overall shape in the first step and shorter paths in
later steps to reach the fine details.

4.4.2 Zero-shot learning on a single shape

Based on the fully self-supervised nature of our method, we
show the advantage of our CNC-Net to train in a zero-shot
manner for each sample individually, eliminating the need
for a large-scale training dataset. Consequently, we train the
model individually for each 50 and 130 test sample from the
ABC [16] and ShapeNet [3] datasets, respectively. Compar-
isons between zero-shot and fine-tuned results indicate that
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P1,S1 P2,S2 P3,S3 P4,S4

Figure 6. Ablation study for milling paths. The 1st and 3rd rows
display the path P in steps s = 1, . . . , 4 from the top view. The
2nd and 4th rows depict the reproduced shapes in each step.

our method can reproduce target shapes without significant
degradation performance, as shown in Tab. 3. In subsequent
ablation studies, we show the results for the models trained
in a zero-shot manner.

Training ABC [16] ShapeNet [3]
IoU↑ F1↑ CD↓ NC↑ IoU↑ F1↑ CD↓ NC↑

Fine-tuning 0.824 0.901 0.509 0.893 0.740 0.850 1.562 0.863
Zero-shot 0.780 0.878 1.127 0.870 0.698 0.812 2.155 0.845

Table 3. Ablation study for zero-shot training.

4.4.3 Effect of losses

We evaluate the effect of our defined loss functions in
Sec. 3.3 on the test samples of ABC [16] dataset detailed in
Tab. 4. The results demonstrate that our method can be ef-
fectively trained using only the essential loss functions LM

and LD, while the collaboration of LS and LC serves as a
guiding factor to improve the reconstruction performance.

LM LD LS LC IoU↑ F1↑ CD↓ NC↑
0.721 0.845 5.202 0.837
0.686 0.820 5.138 0.831
0.755 0.847 7.184 0.859
0.780 0.878 1.127 0.870

Table 4. Ablation study for loss functions.

4.4.4 Effect of operations

We further explore the individual impact of milling OM,
drilling OD, and rotation Rot operations by excluding each
one during both the training and testing phases. The re-
sults in Tab. 5 on the ABC dataset [16] underscore the sig-

nificant role of milling and rotation operations in shaping
target objects. In contrast, drilling slightly contributes to
more precise shape reconstruction. We observe that remov-
ing the drilling operation results in almost twice the value
for the CD metric. The reason is that to generate a hole in
the shape, the milling operation has to function as a drilling
process, resulting in a non-smooth shape.

OM OD Rot IoU↑ F1↑ CD↓ NC↑
0.460 0.630 8.315 0.701
0.525 0.677 10.826 0.738
0.776 0.876 2.098 0.869
0.780 0.878 1.127 0.870

Table 5. Ablation study for operations.

5. Conclusion
We propose CNC-Net, a novel self-supervised DNN-based
framework designed to simulate a generic CNC machine.
CNC-Net provides a sequence of learnable modeled man-
ufacturing operations with implicit representation to con-
struct desired objects from raw materials. Our quantitative
and qualitative reconstruction results demonstrate the supe-
rior performance of our method compared to the most state-
of-the-art 3D CAD reconstruction techniques.

Limitation and future work. One remaining limitation is
that no dataset contains the sequential operations required to
serve as a reference for our learned milling and drilling op-
erations. This absence makes it challenging to assess the ef-
ficiency of our method and determine whether it represents
an optimal solution. On the other hand, finding multi-stage
execution for CNC machines is an NP-hard problem, so it is
not time-efficient and requires expensive specialized human
labor. In future work, we plan to enhance our method by in-
corporating a decision-making process to select the appro-
priate type of operation at each step. Although cylindrical
tools are common, it is important to note that tool shapes are
diverse and designed for specific machining operations and
applications. Our future endeavors include exploring tools
with various shapes, such as broaches, gear, and fly cut-
ters, and incorporating a broader range of operations such
as grinding, turning, and lapping. Additionally, our cur-
rent focus on the input raw material as a bounding box can
be expanded to encompass shapes with various geometry in
future investigations.
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