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Abstract

Inverse tone mapping (ITM) aims to reconstruct high

dynamic range (HDR) radiance from low dynamic range

(LDR) content. Although many deep image ITM methods

can generate impressive results, the field of video ITM is

still to be explored. Processing video sequences by image

ITM methods may cause temporal inconsistency. Besides,

they aren’t able to exploit the potentially useful information

in the temporal domain. In this paper, we analyze the pro-

cess of video filming, and then propose a Global Sample

and Local Propagate strategy to better find and utilize tem-

poral clues. To better realize the proposed strategy, we de-

sign a two-stage pipeline which includes modules named In-

cremental Clue Aggregation Module and Feature and Clue

Propagation Module. They can align and fuse frames effec-

tively under the condition of brightness changes and prop-

agate features and temporal clues to all frames efficiently.

Our temporal clues based video ITM method can recover

realistic and temporal consistent results with high fidelity in

over-exposed regions. Qualitative and quantitative experi-

ments on public datasets show that the proposed method

has significant advantages over existing methods. The code

is available at https://github.com/ye3why/VITM-TC/.

1. Introduction

Recently, high dynamic range (HDR) technology has

elicited considerable interest due to its capability to pro-

vide more vivid visual experiences. But because of the lack

of HDR content, it’s highly demanded to convert existing

low dynamic range (LDR) content to HDR. High dynamic

range imaging (HDRI) methods use fusion algorithms to

combine multi-exposure sequences and remove the ghost

artifacts caused by misalignment. However, in most situa-

tions the multiple-exposure sequences are unavailable(e.g.,

single LDR images or videos on the Internet). Therefore,

inverse tone mapping (ITM) methods are designed to esti-

mate HDR radiance directly from single LDR content.

Figure 1. (a) A real-world LDR video on the Internet, the dynamic

range of frame 0 is too wide so that details outside the window are

lost. Fortunately, we can find clues along time axis. The textures

from distant frames 81, 130, and 205 can be utilized to recover

over-exposed regions. (b) An LDR video with the corresponding

HDR ground truth from [9]. Compared to the SOTA image ITM

method [22], the proposed method can use temporal clues to re-

construct more realistic textures for frame t.

With the development of deep learning, a growing num-

ber of image ITM methods have been proposed, where

[7] [22] [26] [32] [38] learn an end-to-end model to re-

cover HDR from LDR straightforwardly and [8] [14] [18]

[19] [20] simulate the generation process of HDR images

and estimate the multi-exposure stack. Compared to the

highly sought-after image ITM, the field of video ITM has

received little attention. Although The deep image ITM

methods can generate impressive results in restoring lost

textures, directly using it to process LDR videos may en-
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counter unexpected issues. On the one hand, these methods

can only estimate HDR radiance from spatial information

of current frame, ignoring any potentially valid information

in the temporal domain. On the other hand, it may also

lead to temporal inconsistencies such as flicker. Xu et al.

[37] propose the first deep video ITM method. However,

they simply employ 3D convolution on a sequence of adja-

cent frames and still fail to completely handle flicker. The

SDRTV-to-HDRTV conversion task [15] [36] [36] has at-

tracted much attention, which aims to convert the standard

dynamic range video into HDR for displaying on advanced

televisions. However, most of them still focus on a single

frame and assume there is no severe over-exposure problem

in input content. In this paper, by analyzing the principles

of camera imaging, we believe that temporal information

can be investigated to reconstruct HDR videos with higher

quality.Upon that, we propose a novel video ITM pipeline

that can efficiently generate temporal consistent and realis-

tic HDR videos.

The dynamic range in the real world is so wide that even

the most advanced camera today can only record a part of

that brightness range. In order to capture the most important

information from a scene, cameras usually choose an appro-

priate exposure value based on the lighting conditions, the

subject and so on. As shown in Fig. 1(a), when shooting

the dim indoor scene, the exposure value is relatively high,

resulting in a severe over-exposure outside the window. As

the scene changes, the exposure value changes accordingly,

and the details outside the window are revealed. Thus, it

is possible that areas that are over-exposed in current frame

are exposed normally in other frames, providing valid infor-

mation for recovering lost textures in the current one. This

phenomenon is named as temporal clues in this paper. The

most straightforward ideas to leverage temporal clues are

using temporal models, such as sliding windows [34], 3D

convolution [37] or recurrent model [31]. However, such a

exposure changing process tends to be designed to be very

slow and smooth in order to ensure filmed video not flicker,

which makes it difficult to find useful temporal clues. A

short sequence of adjacent frames may not cover valid in-

formation while a long one may lead to a significant in-

crease in computational complexity and also makes it more

difficult to find and utilize temporal clues from long-term

information.

In this paper, we propose a novel video ITM pipeline

which can effectively and efficiently find and leverage tem-

poral clues from a long sequence to recover natural textures

in over-exposed areas with high fidelity. Specifically, we

propose a Global Sampling and Local Propagation strat-

egy, which firstly sample some reference frames from the

whole input sequence with a large stride, and extract use-

ful temporal clues from these reference frames to recover

key frames. And then propagate information in key frames

to their neighbors. In order to get meaningful temporal

clues more effectively, we propose an Incremental Clue

Aggregation Module which can fuse temporal clues with

target key frames in a incremental way. In this module,

we design a flow correction convolution to align frames

with different luminance under ITM circumstances and we

also utilize deformable convolution[5] and swin transformer

block[23] to align local and global features respectively. Af-

ter key frames are fused with temporal features, a BiRNN-

like module, namely Feature and Clue Propagation Mod-

ule is used to propagate features of these key frames to

their adjacent frames while ensuring temporal consistency.

Fig. 1(b) shows results from the state-of-the-art image ITM

method [22] and the proposed method. [22] can not re-

cover lost details by only using spatial information. On

the contrary, with the temporal clues from the entire se-

quence, the proposed method can utilize more information

and generate impressive results.In addition, due to the lack

of HDR video datasets, we design a novel method to synthe-

size HDR video dataset based on available HDR images and

LDR video datasets. Experimental results demonstrate that

the model trained with this synthetic dataset can achieve

good performance on several publicly available real-world

HDR video testsets.

In summary, this paper has the following main contribu-

tions:

(1) we analyze the temporal clues in LDR videos and

propose a novel video ITM pipeline with the Global Sam-

pling and Local Propagation strategy which can exploit tem-

poral clues effectively and recover over-exposed areas with

high fidelity efficiently.

(2) We design a two-stage pipeline, it includes an Incre-

mental Clue Aggregation Module to align and fuse frames

with brightness changes under ITM problem. And it in-

cludes an efficient Feature and Clue Propagation Module

which propagate features of the key frames to their neigh-

bors and generate temporally consistent results.

(3) we propose a novel dataset synthesis method to ob-

tain HDR video training dataset only using available HDR

images and LDR video dataset.

(4) Experiments demonstrate that the proposed method

outperforms the state-of-the-art methods both on quantita-

tive and visual quality.

2. Related Work

Multi-exposure HDR reconstruction HDRI technology

fuses the stack of multi-exposure images into the HDR ra-

diance. Recently, many deep-learning-based methods have

been proposed to generate ghost-free HDR images or videos

from multi-exposure sequences. Chen et al. [4] propose

a coarse-to-fine framework for HDR video reconstruction

from alternating exposures based on optical flow and de-

formable alignment. In contrast, we focus on reconstructing
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an HDR video from a single LDR video.

Single HDR image reconstruction There are many deep-

learning-based image ITM methods. The direct learning

method aims to generate the HDR radiance from an end-

to-end model. Eilertsen et al. [7] focus on restoring the

lost information in the saturated image areas by an end-to-

end network. Liu et al. [22] utilize the LDR image for-

mation pipeline to reverse it and reconstruct the HDR im-

age step by step. Zheng et al. [38] propose an ultra-high-

definition HDR reconstruction method via a collaborative

learning manner. The stack-based methods change the ex-

posure of the input image and estimate the multi-exposure

stack. Endo et al. [8] estimate LDR images with different

exposures by 3D convolution. Lee et al. [19] use the gen-

erative adversarial network (GAN) to recursively generate

the exposure-changed image. Kim et al. [14] propose a dif-

ferentiable HDR synthesis layer that forms the end-to-end

stack-based ITM network.

HDR video reconstruction Rempel et al. [29] propose

the video ITM method by contrast stretching and saturated

brightness enhancement. However, the lost details of the

over-exposed areas are not recovered. Recently, SDRTV-

HDRTV conversion has attracted much attention. Kim et al.

[15] joint handle the super-resolution and inverse tone map-

ping by a single model. Xu et al. [36] propose a frequency-

aware modulation network that can reduce the structural

distortions in the translated low-frequency regions. How-

ever, these methods usually deal with a single frame of

video and assume there are no severely over-exposed re-

gions. Xu et al. [37] use a 3D convolutional neural network

to perform the video ITM, which simply processes a batch

of adjacent frames, where the exposure settings are rela-

tively close and little available information can be found to

help the recovery. Different from the above methods, we

generate the linear luminance HDR video based on tempo-

ral clues.

3. Method

3.1. Overview

Given an input LDR video {Lt, t = 1...T}, our goal is to

reconstruct the corresponding HDR video {Ht, t = 1...T}.

As with [7][32], we focus on the reconstruction of the over-

exposed regions, which is the most difficult part during

HDR conversion. Specifically, we fuse the linearized LDR

frame f−1(Lt) and the output of the proposed method Yt by

a soft over-exposed mask αt to get the reconstructed result

Ĥt:

Ĥt = (1− αt)f
−1(Lt) + αtYt, (1)

where f−1 is the inverse camera curve which transforms the

LDR frame into the linear domain, and Yt is the output of

the proposed method at time step t. The soft over-exposed

mask αt is calculated as in [7][32].

Figure 2. Global Sampling and Local Propagation Strategy for

temporal clues. Orange frames such as Lt clue contains useful

temporal clues for recovering over-exposed regions in target key

frame Lkey and usually Lt clue is far away from Lkey . We sample

key frames and reference frames from the whole LDR sequence,

and aligns these references with each Lkey . And then propagate

aligned temporal clues to the neighbors of Lkey .

Because of the video filming process, it’s difficult to

make full use of temporal information. Instead of recon-

structing all of the frames directly, we use an effective and

efficient recovery strategy called Global Sampling and Lo-

cal Propagation strategy. Firstly, we only focus on the re-

covery of some keyframes with the help of global refer-

ence frames and then propagate the restored keyframes lo-

cally to their neighbor frames. To better find useful tem-

poral clues from global-sampled reference frames and re-

construct keyframes, we design the Incremental Clue Ag-

gregation Module with flow correction convolution which

can align and fuse frames with brightness changes under

the circumstances of ITM problem . After that, we utilize

the proposed Feature and Clue Propagation Module which

transfers the information from reconstructed keyframes to

their neighbors and generates temporally consistent results.

We will describe each component in detail in the following.

3.2. Strategy of Temporal Clues

During video filming, as the exposure value changes, ob-

jects that are over-exposed in current frame may become

normally exposed in following frames. This phenomenon

makes it possible to recover realistic textures for over-

exposed regions by using valid information provided by

other frames, which are the temporal clues. However, such

a exposure changing process tends to be designed to be very

slow and smooth in order to ensure filmed video not flicker,

which makes it difficult to find and utilize temporal clues.

Current ITM strategies can not fully utilize temporal clues.

Image ITM methods like [7][14][22] don’t utilize temporal

clues. Because of temporal clues often in distant frames,

the sliding window based strategy in [34] which only look

at a short sequence of adjacent frames may not reach valid

temporal clues. Although the RNN-based strategy like in

[2] can cover long-term information in a sequence while it
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Figure 3. The proposed pipeline can be divided into two stages (above). In the first stage, we sample reference frames and key frames

from input LDR sequence. And then extract and align temporal clues to reconstruct keyframes by ICAM (lower left). In the second stage,

we utilize the restored keyframes with aligned temporal clues to propagate information to their neighbors to generate the full sequence by

FCPM (lower right). The dashed lines of ICAM indicate skip connections and the reference frames are utilized incrementally to perform

clue aggregation.

Figure 4. The details of the Local Feature Alignment Block.

may lead to a significant increase in computational com-

plexity and when propagates information, useful temporal

clues may fade gradually and errors also be accumulated.

To address these problems, we propose a Global Sam-

pling and Local Propagation strategy as Fig. 2 shows.

Specifically, we uniformly sample Tkey keyframes from a

input video, and split the entire input sequence into several

equal-length groups of pictures (GOP). A key frame is the

center frame of a GOP. We reconstruct these key frames

with the help of temporal clues. To get valid temporal clues

we sample Tref reference frames with large stride glob-

ally from the input LDRs. And then we align these refer-

ence frames with each key frame to obtain aligned temporal

clues. After that, we propagate aligned temporal clues of

each key frame locally among its GOP to generate HDR

results.Note that choosing the best matching references for

temporal clues may produce better results, but it will lead

to very cumbersome and inefficient frame-by-frame search-

ing calculation, thus reducing the practical application value

of the algorithm. Due to the smooth changes of exposure

value, a preset stride to sample reference frames is sufficient

for exploiting temporal clues and this makes a good balance

between performance and complexity. There is some over-

lap among GOPs, so each input LDR frame will be taken

care of by several reconstructed key frames, which not only

ensure consistency locally among GOP but also conveys

consistency globally across the whole input sequence.

3.3. Incremental Clue Aggregation Module

Note that the number of reference frames corresponding

to a key frame is not fixed. For example, if there is no

camera motion or light condition change in the video, there

will be no temporal clue. To adapt to different situations,

we propose the ICAM which can borrow useful temporal

clues from global reference frames in an incremental way.

As shown in Fig. 3, ICAM is designed based on 5-level

U-Net[30]. However, a simple U-net cannot meet the re-

quirements of extracting and aligning temporal clues. So

we design the local and global feature alignment blocks for

aligning reference frames with current key frame spatially.

3.3.1 Local Feature Alignment Block

Flow Correction Convolution To align temporal clues

with over-exposed regions in current key frame, at first, we

calculate the optical flow between them by the pre-trained
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optical flow estimation network GMA [13]. But typical op-

tical flow methods like GMA estimate optical flows based

on the assumption that the observed brightness of any ob-

ject point is constant over timeline. Unfortunately, for ITM

task, there may be huge differences in the luminance among

frames. What’s worse, it is hard to find corresponding pix-

els for over-exposed regions due to the lack of textures in

these regions, which will result in an inaccurate optical flow.

To overcome this limitation, we design a flow-correction

block which takes as input the optical flow estimated by

pre-trained optical flow net F and the corresponding fea-

tures extracted by encoders and predict a corrected optical

flow. Specifically, at first we use the pre-trained GMA [13]

as F to predict the initial optical flow from the current key

frame Lcur to reference ones Lref :

fc→r = F(Lcur, Lref ). (2)

Then we use the estimated optical flow fc→r to warp the lo-

cal feature F l
ref of Lref extracted by the first encoder block

of ICAM to be aligned with F l
cur. We design a correction

convolutional block C which consists of several 3 × 3 con-

volutional layers to refine the initial optical flow:

f̃c→r = C(F l
cur, F

l
ref ,W(F l

ref , fc→r)) + fc→r, (3)

where W denotes the warp operation. To train the cor-

rection convolutional block with supervision, we generate

the corresponding LDR frames from the ground truth HDR

frames by the global tone mapping operator as in [35],

which can preserve details in highlight regions and ensure

lighting consistency. Then we use pre-trained GMA [13]

to estimate the ground truth optical flow fgt for them and

calculate the flow correction loss:

Lflow =
∣

∣

∣
f̃ − fgt

∣

∣

∣
. (4)

Flow Guided Deformable Convolution Due to possible

large motions between the key frame and long-distance ref-

erences, the corrected optical flow isn’t enough to handle

all of this complicated situation. So we further incorporate

the deformable convolutional block D [5] to get more accu-

rately aligned features. We also employ f̃c→r to guide the

deformable convolutional block as in [3]:

F̂ l
ref = D(F l

cur, F
l
ref ,W(F l

ref , f̃c→r), f̃c→r), (5)

where F̂ l
ref is the final aligned feature.

Feature Fusion Convolution Before fusing F̂ l
ref with

F l
cur, we calculate a filter mask M l

ref for F̂ l
ref by two 3

× 3 convolutional layers and adopt Sigmoid to determine

if the feature is valuable or not for the current key frame.

Finally, we fuse the above features by the fusion convolu-

tional block Fu which consists of three dense blocks [11] to

get the aligned local feature F̃ l
cur:

F̃ l
cur = Fu(F

l
cur, F̂

l
ref ·M l

ref ). (6)

3.3.2 Global Feature Aggregation Block

As we know, global spatial information is also important

for ITM task. Therefore, on the basis of aligned local spatial

features, we introduce a global feature aggregation block to

further utilize global spatial information in the smallest res-

olution of the Unet. In terms of implementation, we refer

to the transformer block used in [23] [21] which can cap-

ture long-distant dependencies by the self-attention mech-

anism, which is helpful to model high-level semantic fea-

tures and aggregate textures for over-exposed regions. We

extract global features F̂
g
ref from the aligned F̂ l

ref by four 3

× 3 convolutional layers with stride 2. Then we concatenate

these features with the global features F g
cur of the current

key frame in the channel dimension, and utilize four swin

transformer blocks S to get aggregated global features F̃ g
cur

of the current key frame:

F̃ g
cur = S(F g

cur, F̂
g
ref ), (7)

After alignment locally and globally in space, there are

four decoder blocks with skip connections to obtain tempo-

ral clues and reconstruct the HDR key frame. The details of

each proposed component can be found in the supplemen-

tary material. Overall, the proposed ICAM takes the cur-

rent keyframe Lcur and reference frames Lrefj ,j=1...Tclues

as input and obtain temporal clues and predict HDR key

frames Xcur. Note that the Local Feature Align block and

the Global Feature Aggregation block are used repeatly if

there is more than one reference frame. We train ICAM

with losses between Xcur and Hcur, that’s the L1 pixel loss

Lpix and the perceptual loss Lper by the VGG-16 [33] pre-

trained on ImageNet [6]. Therefore, the total training loss

of ICAM is:

LICAM = Lpix + λperLper + λflowLflow, (8)

where λper and λflow are set to 0.1 and 0.05 separately.

3.4. Feature and Clue Propagation Module

To convert the whole input LDR sequence to HDR se-

quence, the most straightforward idea is to regard all input

frames as key frames and process them one by one using

above proposed ICAM. However, This straightforward way

has two drawbacks. First, this way only considers global

temporal clues but neglects local adjacent frames, which

may ignores valuable information and cause the tempo-

ral inconsistency problem. Second, ICAM involves com-

plicated feature manipulations, processing all frames by

it introduces much computational cost. Considering that

the exposure usually changes smoothly, the reconstruction

of neighbor frames in a GOP should be nearly consistent.

Therefore, we propose the Feature and Clue propagation

module which can broadcast recontructed textures and ag-

gregated temporal clues in HDR keyframes to their neigh-

bor frames. Our method can release the burden of repeat
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computation of temporal clues and keep consistency along

time axis. Specifically, for each frame Lt of input LDR

video, we regard it in five nearest GOPs. Upon that, five

according HDR keyframes Xngbj , j = 0...5 reconstructed

by ICAM are warped to Lt using the optical flow estimated

by the proposed flow correction block. And a combination

masks Mngbj is predicted by a combination convolution

block, which extracts the local, dilated, and global features

and fuses them into the output features like ExpandNet[26].

Then we generate the merged result X̂t:

X̂t =

4
∑

j=0

Mngbj · W(Xngbj , ft→ngbj ). (9)

In this way, the restored textures and temporal clues in

Xngbj can be propagated into preliminarily reconstructed

result X̂t. And thus reducing computational cost compared

with directly processing Lt by ICAM. Furthermore, to uti-

lize the local information which may be ignored by ICAM,

we perform the bidirectional features and clues propagation

among the input frames like BasicVSR [2]. To further adapt

ITM task, we use the corrected optical-flow and devise the

basic block as the combination block:

hb
t = Fb(X̂t, X̂t+1,W(hb

i+1, ft→t+1)), (10)

h
f
t = Ff (X̂t, X̂t−1,W(hf

i−1
, ft→t−1)), (11)

where hb
t and h

f
t denote the corresponding features of the

backward propagation block Fb and forward propagation

block Ff in time step t. Then the forward and backward

features are concatenated and fused by two 3 × 3 convolu-

tional layers to predict the residuals, which are added into

the preliminary image X̂t to get the final reconstructed re-

sults:

Yt = Fu(h
f
t , h

b
t) + X̂t. (12)

The training loss of FCPM also contains pixel reconstruc-

tion loss and perceptual loss. Besides, the generative adver-

sarial loss has been proven to improve perceptual quality by

forcing the distribution of generated results closer to that of

ground truth. Therefore, we also incorporate the 3D patch-

GAN [12] as the discriminator to distinguish the predicted

sequences by FCPM from the corresponding ground truth

HDR sequences. We adopt the least-square GAN [25] as

the adversarial loss LGAN . Therefore, the total training loss

of FCPM is:

LFCPM = Lpix + λperLper + λganLGAN , (13)

where λper and λgan are set to 0.1 and 0.05 separately.

3.5. Dataset Synthesis

Since there are few publicly available HDR video

datasets, we propose an HDR video data synthesis method

that can utilize existing HDR image and LDR video

datasets. Firstly, we convert the pixel values of existing

LDR image datasets such as REDS [27] Lreds to the lin-

earized domain by inverse camera response curve mapping.

Then the linearized image is multiplied by a randomly sam-

pled value T to simulate the exposure duration T. Finally,

we clip the pixel to [0,1] and use the camera response curve

to map them back to the pixel domain as the input of the

network Ireds by the following equation:

Oreds = f(clip(f−1(Lreds) · T )), (14)

where f denotes the camera response curve and we use

the gamma function with 1/2.2 here. However compared

to the real HDR, the fake HDR data generated using LDR

images still has a large gap in dynamic range and infor-

mation magnitude. Besides datasets from LDR videos, we

use HDR image datasets like SICE dataset [1] to simulate

HDR videos. As specified before, one of the main reasons

that cause the exposure setting to change is camera motions.

Therefore, we perform a random perspective transformation

on the HDR images to simulate camera motions, which we

use as the HDR video clip and follow Eq. 14 to generate

the input LDR frames except for the inverse camera curve

mapping.

We utilize the video characteristics of LDR videos and

the HDR characteristics of HDR images to generate HDR

video datasets. Experimental results show that networks

trained by our dataset can achieve good performance on

real-world HDR video testing datasets. Examples of the

synthetic datasets can be found in the supplementary mate-

rial.

4. Experiments

4.1. Implementation details

Dataset The HDR image dataset used to generate syn-

thetic data is SICE [1], which contains 589 HDR images.

And we use the “sharp” training dataset of REDS [27] as

the LDR video dataset. As for the testing dataset, at first,

we evaluate the performance of the synthetic data generated

from the validation dataset of REDS [27]. Then we use

three public real-world HDR video datasets: HDM-HDRv

[9], LiU-HDRv [17], and MPI-HDRv [10]. Because there is

no corresponding LDR version for these datasets, we gen-

erate the LDR videos from them by simulating the camera

imaging pipeline. The details of the datasets can be found

in the supplementary material.

Experiment setup The implementation environment is Py-

Torch 1.9 version and the Adam optimizer is applied to train
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Figure 5. Visual comparisons on the frame of “fishing longshot” sequence from HDM-HDRv [9] (above) and “sb-tunnel-exr” sequence

from MPI-HDRv [10] (below). (Zoom in for a better view).

Table 1. Quantitative comparison on HDR videos with existing methods. The scores here are HDR-VDP-3/HDR-VQM, where a higher

score of HDR-VDP-3 and a lower score of HDR-VQM mean better. Red text indicates the best and blue text indicates the second best

result, respectively.

REDS-val [27] HDM-HDR [9] LiU-HDR [17] MPI-HDRv [10]

HDRCNN [7] 6.774/0.452 5.822/0.467 7.884/0.545 6.733/0.053

Diff HDRI [14] 6.820/0.502 5.703/0.514 7.751/0.594 6.501/0.061

Single HDRI [22] 7.059/0.492 6.346/0.481 8.143/0.569 7.225/0.058

FMNet [36] 6.895/0.483 5.847/0.496 7.974/0.572 6.847/0.057

Deep VITM [37] 7.106/0.458 5.992/0.445 8.036/0.553 7.104/0.049

Bascivsr++ [3] 7.254/0.443 6.131/0.427 8.265/0.547 7.119/0.052

Proposed 7.891/0.398 6.754/0.356 8.591/0.522 7.970/0.037

Figure 6. Visual comparison on the frame of a real-world LDR

video shot by iPhone 13.

the model with a learning rate of 0.0002. We first resize the

training pairs in the training dataset to 512 × 512 and aug-

ment them by randomly cropping to 384 × 384. The train-

ing images are randomly flipped and rotated. The frames

of testing datasets are resized to 512 × 512 for evaluation.

For each video sequence, we sample keyframes uniformly

with the stride of six and find six temporal clues for each

keyframe in the forward and backward direction respec-

tively with the stride of 15.

Evaluation metrics We evaluated the estimated HDR in

terms of HDR-VDP-3 [24] which is a commonly used met-

ric to measure the quality of single HDR image reconstruc-

tion, and HDR-VQM [28] which is designed for evaluating

the quality of HDR videos.

4.2. Comparisons on the predicted HDR videos

The proposed method is compared with three image ITM

methods (HDRCNN [7], Differentiable HDR [19], and Sin-

gle HDR [22]), one SDRTV-HDRTV conversion method

FMNet [36], one video ITM method Deep VITM [37], and

one video restoration method BasicVSR++ [3]. For fair

comparisons, we re-train these models with the same train-

ing dataset. (For the first four methods, only a single frame

is taken as input, and for the last two , we feed them with

frames as the proposed methods and only reconstruct the

over-exposed regions too.)

Visual comparisons. Fig. 5 show the results of these ITM

methods on two LDR images with severely over-exposed

regions. The single-frame-based methods (HDRCNN [7],

Differentiable HDR [19], Single HDR [22], and FMNet

[36]) can not restore textures from the rare available tem-

poral information. Deep VITM [37] performs 3D convo-

lutions directly and fails to model the correlation between

frames. BasicVSR++ [3], due to the lack of explicit exploit,

temporal clues fade gradually when propagated. On the

contrary, based on full use of temporal clues, the proposed

method can generate impressive results with high fidelity.

Fig. 6 shows an example of a real-world LDR video shot

by iPhone 13, where compared to the SOTA image ITM

method [22], the proposed method can reconstruct realistic

and natural textures with the help of temporal clues in ref-

erence frame. All of the HDR frames are tone mapped by

the [16] for display on LDR devices.

Quantitative comparisons. Table 1 shows the average

scores of HDR-VDP-3 and HDR-VQM on the REDS-val

[27], HDM-HDRv [9], LiU-HDRv [17], and MPI-HDRv

[10] datasets. The proposed method performs favorably

against the state-of-the-art methods on all four datasets.
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Figure 7. Visual comparison on reconstructed result with different

temporal clues.

(a) Non-local frames (b) Pre-trained Flow (c) Corrected Flow (d) Ground Truth Flow

Figure 8. Visual comparison between the pre-trained and corrected

optical flow.

4.3. Ablation studies

Incremental Clue Aggregation. We validate the effective-

ness of the incremental aggregation. As shown in Fig. 7,

with more temporal clues, ICAM can learn the desired tex-

tures from the clues in an incremental way and generates

increasingly realistic and natural details.

Components of the ICAM. We evaluate the effectiveness

of the modules in Incremental Clue Aggregation Module.

The results of HDR-VQM scores on HDM-HDR dataset

are shown in Table 2. The proposed flow correction convo-

lution and according flow-guided deformable convolution

both contribute to generate more accurate results. Mean-

while, the global feature aggregation can also imporve the

performance. Fig. 8 shows optical flows of two frames with

large motion and different exposure.

Flow Correction. The pre-trained flow is estimated by pre-

trained GMA [13], corrected flow is estimated by the flow

correction block, and the ground truth flow is generate by

pre-trained GMA [13] for the tone mapped images with

consistent luminance and no over-exposed regions.

Components of the FCPM. We conduct experiment to ver-

ify the effect of different feature propagation methods on

the results. Specifically, we first obtain preliminary re-

sults by warping and combining neighboring reconstructed

HDR keyframes. Then we perform forward, backward, and

bidirectional feature propagation respectively to fine-tune

the preliminary reconstructed frames using inter-frame in-

formation, and the HDR-VQM scores on the HDM-HDR

dataset are shown in Table 3.

Temporal consistency. Fig. 9 shows the comparison be-

tween the results of all generated by ICAM and generated

Figure 9. Visual comparison between the reconstructed adjacent

frames. (a)-(c) all generated only by ICAM. ((d)-(f)) generated by

the proposed pipeline with FCPM and reconstructed key frames.

Table 2. Ablation study of aggregation components. HDR-VQM

scores of (a)pre-trained flow, (b)corrected flow, (c)flow-guided

Deformable Convolution and (d)global aggregation.

w/o align (a) (b) (c) (d)

0.418 0.396 0.380 0.367 0.356

Table 3. Quantitative ablation study of the propagation methods.

w/o FCPM Warp Forward Backward FCPM

0.383 0.376 0.369 0.366 0.356

by the proposed pipeline. only using ICAM generates tem-

poral inconsistent textures while the proposed pipeline can

avoid this problem and reconstruct more realistic result.

Running Time. We also compare the average running time

processing a 512 × 512 frame on Tesla V100 GPU of only

using ICAM for entire sthe equence (1236ms) and the pro-

posed pipeline (521ms).

5. Conclusions

In this paper, we analyze the characteristics of LDR

videos, and propose a novel global sampling and local prop-

agation strategy to fully exploit Temporal Clues. In order

to better server the proposed strategy, we design the In-

cremental Clue Aggregation Module and Feature and Clue

Propagation Module. These modules can make full use of

temporal clues to recovery details with high fidelity mean-

while ensure temporal consistency. In addition, we devise

an HDR video dataset synthesis method to train our method.

Experimental results show that the proposed video ITM

method outperforms the state-of-the-art methods in both

quantitative and qualitative evaluations.
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