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Abstract

Diffusion Models have shown remarkable performance
in image generation tasks, which are capable of generating
diverse and realistic image content. When adopting diffu-
sion models for image restoration, the crucial challenge lies
in how to preserve high-level image fidelity in the random-
ness diffusion process and generate accurate background
structures and realistic texture details. In this paper, we pro-
pose a general framework and develop a Diffusion Texture
Prior Model (DTPM) for image restoration tasks. DTPM
explicitly models high-quality texture details through the
diffusion process, rather than global contextual content. In
phase one of the training stage, we pre-train DTPM on ap-
proximately 55K high-quality image samples, after which
we freeze most of its parameters. In phase two, we insert
conditional guidance adapters into DTPM and equip it with
an initial predictor, thereby facilitating its rapid adaptation
to downstream image restoration tasks. Our DTPM could
mitigate the randomness of traditional diffusion models by
utilizing encapsulated rich and diverse texture knowledge
and background structural information provided by the ini-
tial predictor during the sampling process.

1. Introduction
Image Restoration tasks [37, 43, 70, 71] usually are ill-
posed problems whose solutions are not unique. While
existing methods [8, 70, 71] have achieved notable break-
throughs, they typically employ direct regression models to
produce deterministic results. A persistent challenge is that
these deterministic models [4, 70, 71] frequently yield un-
satisfactory fine-grained details (See Figure 2), as they are
trained to minimize pixel-level error, aligning output with
ground truth by Norm-based losses [30]. The emergence
of Diffusion Models (DMs) [14, 16, 51, 55] has revolution-
ized image generation, yielding realistic images replete with
fine details. This advancement motivates our investigation
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Figure 1. We use a coefficient α ranging from 0.1 to 1 to con-
trol the intensity of texture removal. As α increases, leading to
richer textures from left to right in the images, we can observe a
corresponding improvement in the scores of no-reference image
quality metrics, specifically NIQE [42] and CLIP-IQA+ [57]. Re-
garding the NIQE, lower scores indicate better quality, while for
CLIP-IQA+, higher scores represent better visual quality. This
indicates that the quality of the image’s texture details have a
significant impact on the visual perceptual quality of the im-
age.

into diffusion-based methods for image restoration, aiming
to leverage conditional DMs [17, 45, 51] to produce per-
ceptually appealing results that closely mimic natural, clean
images.

However, directly applying diffusion image generation
techniques [44, 51, 55] to image restoration tasks is often
impractical [36, 45]. The high content fidelity required in
image restoration clashes with the stochastic nature of dif-
fusion models [44, 55]. A plausible solution involves in-
tegrating physical degradation models [5, 69] with neural
networks or crafting hand-designed priors [20, 47] to mit-
igate the inherent randomness of the diffusion paradigm.
While several previous studies [17, 68, 69] have adopted
this approach with success, they lack versatility and show
limited generalization capability on real-world scenes, as
physical degradation models do not fully encompass real-
world degradation scenarios [4, 66, 67]. Additionally, the
iterative nature and complexity of the denoising process
in diffusion models necessitate extensive data and lengthy
training cycles for effective learning. The challenges and
limitations outlined above necessitate a rethinking of the
use of the diffusion paradigm in image restoration: (i) To
preserve high-level fidelity in restoration, we propose us-
ing a diffusion model to recover only texture layers. This
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Figure 2. (a) The input degraded image. (b) The result of
Restormer [70]. Restormer is a representative image restoration
method that can only produce deterministic results, which may
lack promising details. (c) The result of RainHazeDiff [45]. (d)
The result of our method. The content within the dashed rectangle
represents the corresponding ground-truth details. It’s worth not-
ing that our approach excels in generating finer details, thanks to
the incorporation of Diffusion Texture Priors we proposed.

approach emphasizes and highlights the importance of fine
textures in visual perception (See Figure 1). By focusing
diffusion on texture recovery, we minimize randomness of
diffusion process and leverage its strength in generating re-
alistic details. (ii) Recognizing the diffusion paradigm as a
potent representation learning tool that requires extensive
data for convergence, we pre-trained our model, named the
Diffusion Texture Priors Model (DTPM), on a large-scale
dataset of high-quality images. This model, trained on ap-
proximately 55K samples, is tailored to reconstruct texture
layers, embedding texture priors within the diffusion pro-
cess. Our DTPM framework is characterized by: (a) A
novel approach in diffusion modeling that focuses on tex-
ture layers through residual learning, enhancing efficiency
in downstream restoration tasks. (b) The incorporation of
Semantic Code as a constraint, guiding the diffusion model
to produce semantically coherent textures. (c) To preserve
the integrity of the diffusion texture priors, most parameters
of the DTPM remain fixed after pre-training. We introduce
a Conditional Degradation Adapter to facilitate rapid adap-
tation to various restoration tasks without the risk of catas-
trophic forgetting.

Our extensive experiments across single-image defocus
deblurring, image motion deblurring, desnowing, de-
hazing, deraining, and raindrop removal demonstrate
that our method not only surpasses strong regression models
and recent diffusion-based models in perceptual quality but
also exhibits robust generalization across diverse restora-
tion tasks.

2. Related Works
Evolution in Image Restoration. Image restoration [4, 15,
19, 25, 39, 67, 71, 77], a pivotal research domain within the
computer vision community, has witnessed significant evo-
lution over recent years. Traditionally regarded as an ill-
posed problem, image restoration poses unique challenges
due to the multitude of potential solutions derivable from
a single degraded image. Over the last decade, there has
been a notable shift in the computer vision field from con-
ventional, handcrafted prior-based approaches [20, 47] to
a more data-centric, deep learning-driven paradigm [4, 15,
59, 70]. This transition has led to the development of ad-
vanced deep learning techniques, characterized by compli-
cated network structures [65, 70, 71] and extensive train-
ing on carefully collected datasets. These approaches excel
in learning mappings from degraded to clean data, effec-
tively tackling the complexities of image restoration. Ini-
tially, deep learning methods [9–11, 66, 67] in this area
tended to produce deterministic outcomes, which starkly
contrasted with the fundamentally probabilistic nature of
image restoration tasks [18, 46, 70]. This discrepancy has
increasingly brought generative methods [17, 27, 46, 64, 76]
to the forefront, highlighting their potential to address the
challenges inherent in image restoration.
Generative image restoration methods. Recent devel-
opments [6, 7, 17, 41, 46, 61, 64, 74] have shed light
on the fundamental flaws of earlier deep learning-driven
image restoration techniques, specifically their (i) gener-
ate deterministic outputs and (ii) inability to restore high-
quality, detailed textures, owing to their training focused on
minimizing pixel-level discrepancies. Consequently, gen-
erative approaches are gaining traction. A notable strat-
egy includes employing Generative Adversarial Networks
(GANs) [24, 29, 48]. Nonetheless, GANs pose challenges
due to their complex training procedures, instability during
training, and occasional generation of unrealistic image at-
tributes. The impressive efficacy of diffusion in image gen-
eration has introduced a promising avenue. Diffusion tech-
niques adeptly tackle the aforementioned issues, offering a
more stable training regimen and yielding images with re-
alistic textures. Applications of diffusion-based methods in
image super-resolution [52], shadow removal [17, 27], de-
blurring [60], and adverse weather removal [46] have shown
promising results. However, there remains a need for com-
prehensive research to establish a consistent, reliable frame-
work for diffusion-based image restoration tasks.

3. Our Framework
3.1. Preliminaries of Diffusion Models

Diffusion Models (DMs), as referenced in [22, 44], are a
class of generative models that gradually infuse Gaussian
noise into training data and then employ a denoiser to re-

2525



Figure 3. The overview of Our DTPM Framework. (a) Our method consists of two stages. In the stage I, under the guiding constraints of
semantic code, the diffusion model learns texture layers through residual learning from a large amount of high-quality data, which allows
us to encapsulate diverse and rich texture knowledge into the diffusion model. In the stage II, we fix most of the parameters of the trained
diffusion model and insert Conditional Guidance Adapters between each layer for efficient fine-tuning and conditional guidance on image
restoration tasks. (b) The overview of adapters and our denoising blocks.(c) The detailed design of our Conditional Guidance Adapter.

verse this noise addition. The process begins with the diffu-
sion phase, where an initial image x0 evolves into Gaussian
noise xT ∼ N (0, 1) through T steps. Each step of this
transformation is governed by:

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

where xt is the image with noise at step t, βt is a fixed
scaling factor, and N denotes the Gaussian distribution. In-
troducing αt = 1 − βt and ᾱt =

∏t
i=0 αi simplifies Eq.1

to:
q (xt | x0) = N

(
xt;

√
ᾱtx0, (1− ᾱt)I

)
, (2)

During the inference stage’s reverse process, DMs ini-
tiate with a random Gaussian noise map xT and progres-
sively denoise it to reach the refined output x0.

p (xt−1 | xt,x0) = N
(
xt−1;µt(xt,x0), σ

2
t I

)
, (3)

where the mean µt(xt,x0) = 1√
αt

(
xt − ϵ 1−αt√

1−ᾱt

)
and

the variance σ2
t = 1−ᾱt−1

1−ᾱt
βt.

3.2. Overview of DTP-IR Framework

Our aim is to create a unified framework for image restora-
tion tasks based on our Diffusion Texture Priors. As shown

in Figure 3, our DTPM framework comprises two stages: In
Stage 1, we train a conditional diffusion model with seman-
tic latent feature constraints using a large dataset of high-
resolution, high-quality natural images. During Stage 2, we
incorporate conditional guidance adapters into the condi-
tional diffusion model to facilitate the model’s adaptation
to downstream image restoration tasks.

3.3. Stage I: Learning Diffusion Texture Priors

In this section, we will first briefly introduce the core moti-
vation of our Diffusion Texture Priors, followed by the basic
structure information of the diffusion model and the seman-
tic code. Finally, we will discuss the training objective and
training data.

Motivation. Recent studies [52, 64, 74] have highlighted
the pivotal role of texture quality in shaping subjective vi-
sual perception in the realm of image restoration. Tradi-
tional methodologies, however, encounter substantial diffi-
culties in accurately restoring fine-grained textural details,
which are crucial for realistic image reconstruction. While
diffusion models have demonstrated excellence in generat-
ing lifelike images, their direct application to image restora-
tion tasks has been less than ideal, yielding mediocre re-
sults. Our approach seeks to remedy this by integrating
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Figure 4. The architecture of our fundamental denoising block
incorporates ”Channel Attention” (CA) and ”SimpleGate,” a
straightforward feature gating mechanism introduced by Chen et
al.[8]. The current timestep t is injected into the block with
Adaptive Layer Normalization [3] (AdaLN), i.e., AdaLN(fin =
γLayerNorm(fin) + β, where fin is the input features, γ and
β are converted from the timestep embedding. The ”Shift&Scale”
block means shift and scale features by generated γ, β.

texture-specific priors into the diffusion model. This inte-
gration enables the diffusion model to specifically concen-
trate on reconstructing textures, as opposed to merely fo-
cusing on degradation elimination. Such a strategy lever-
ages the diffusion model’s inherent strengths and miti-
gates its weaknesses, allowing us to exploit a vast repos-
itory of high-quality natural images for prior knowledge.
This method not only significantly enhances the model’s
generalization capabilities but also markedly improves the
efficiency of the sampling process.

Basic Denoising Block. We have engineered a denoising
block based on NAFNet [8] block, designed to enhance
model adaptability for a broad spectrum of natural image
content. This block aims to balance peak model perfor-
mance with reduced computational demands and easy-to-
handle varying input resolutions. As delineated in Figure 4,
our denoising block capitalizes on depth-wise convolution
as its cornerstone, complemented by several 1× 1 convolu-
tion layers and LayerNorm [3], to facilitate efficient denois-
ing. To incorporate the time condition, we utilize MLPs
for transforming the time embedding into channel-specific
scale and shift parameters. Additionally, to maintain the se-
mantic consistency between x0 and ys, we integrate an MLP
layer for semantic condition, which amalgamates semantic
code as a pivotal conditioning factor.

Semantic code. To enable the diffusion model to pro-
duce realistically textured details, we utilize a pre-trained
ResNet-18 [21] for extracting semantic embeddings as a
global semantic code, which is then integrated into each de-

noising block as shown in Figure 4. This approach of em-
ploying semantic code imposes robust semantic constraints,
rather than solely depending on adjacent context informa-
tion, allowing our model to generate textures in alignment
with the contextual semantics. Consequently, this ensures
high-fidelity results of our diffusion model.

Training objective. To prioritize texture reconstruction
over content of the image, our diffusion model is designed
to capture the residual distribution of ys. The training ob-
jective for Stage I is thus defined as: LStageI(θ) =

E

∥∥∥∥∥∥∥ϵ− fθ

√
γ

xg − ys︸ ︷︷ ︸
residual

+
√

1− γϵ,ys, γ


∥∥∥∥∥∥∥ , (4)

here, ϵ ∼ N (0, I) represents the noise vector, and fθ is our
diffusion model. The term γ ∼ p(γ) denotes a distribution
associated with the noise schedule. In this context, xg sym-
bolizes the high-quality input image, whereas ys denotes its
corresponding smoothed image. ys is obtained by utilizing
an edge-preserving smoothing method [63] to eliminate a
majority of the texture while retaining the contextual con-
tent.

Training data for Stage I. Inspired by previous code-
book prior-based image restoration studies [61, 64, 74],
our training stage I employs high-quality images from the
widely-recognized DIV2K [2] and Flickr2K [35] datasets.
Each image is cropped into multiple patches of 512 ×
512 resolution, followed by an edge-preserved smooth
method [63] to diminish textural details. This process re-
sults in a training dataset comprising 55,558 paired in-
stances (xg, ys).

3.4. Stage II: Finetuning Diffusion Texture Priors
Model with Adapters

This section describes the initial predictor and the Condi-
tional Guidance Adapter, along with the rationale behind
their integration. We also detail the architecture of the
adapters. Finally, the training objectives are outlined.

Initial Predictor. In the pursuit of augmenting the diffu-
sion model’s adaptability for downstream tasks in its second
stage (see Figure 3), we draw from the DvSR, integrating a
compact and lightweight U-Net to generate an initial out-
put. This initial step efficiently seizes deterministic com-
ponents of the ultimate restored image, crucial for captur-
ing essential structural information. Moreover, this initial
output serves as a pivotal guiding element for the diffusion
model, forming an effective complement with our Diffusion
Texture Priors Model.
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Table 1. Image Desnowing.

Snow100K-S [40] Snow100K-L [40]
Method

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SPANet [58] 29.92 0.8260 0.104 23.70 0.7930 0.210
JSTASR [12] 31.40 0.9012 0.059 25.32 0.8076 0.152
RESCAN [34] 31.51 0.9032 0.054 26.08 0.8108 0.106
DesnowNet [40] 32.33 0.9500 0.070 27.17 0.8983 0.101
DDMSNet [72] 34.34 0.9445 0.058 28.85 0.8772 0.098
MPRNet [71] 34.97 0.9457 0.049 29.76 0.8949 0.091
NAFNet [8] 34.79 0.9497 0.051 30.06 0.9017 0.086
Restormer [70] 35.03 0.9487 0.047 30.52 0.9092 0.083
SnowDiff64[45] 36.59 0.9626 0.035 30.43 0.9145 0.069
SnowrDiff128[45] 36.09 0.9545 0.038 30.28 0.9000 0.067

DTPM-4 Step 37.01 0.9663 0.034 30.92 0.9174 0.063
DTPM-10 Step 36.44 0.9521 0.033 30.32 0.9024 0.055
DTPM-50 Step 36.19 0.9483 0.029 30.02 0.8901 0.053

Table 2. Image Deraining & Dehazing.

Outdoor-Rain [33]
Method

PSNR ↑ SSIM ↑ LPIPS ↓

CycleGAN [75] 17.62 0.6560 -
pix2pix [23] 19.09 0.7100 -
HRGAN [33] 21.56 0.8550 0.154
PCNet [26] 26.19 0.9015 0.132
MPRNet [71] 28.03 0.9192 0.089
NAFNet [8] 29.59 0.9027 0.085
Restormer [70] 29.97 0.9215 0.074
RainHazeDiff64[45] 28.38 0.9320 0.067
RainHazeDiff128[45] 26.84 0.9152 0.071

DTPM-4 Step 30.99 0.934 0.0635
DTPM-10 Step 30.92 0.932 0.0617
DTPM-50 Step 30.48 0.921 0.0540

Table 3. Removing Raindrops.

RainDrop [48]
Method

PSNR ↑ SSIM ↑ LPIPS ↓

pix2pix [23] 28.02 0.8547 –
DuRN [38] 31.24 0.9259 –
RaindropAttn [50] 31.44 0.9263 0.068
AttentiveGAN [48] 31.59 0.9170 0.055
CCN [49] 31.34 0.9286 0.066
IDT [62] 31.87 0.9313 0.059
RainDropDiff64[45] 32.29 0.9422 0.058
RainDropDiff128[45] 32.43 0.9334 0.058

DTPM-4 Step 32.72 0.9440 0.0577
DTPM-10 Step 31.84 0.9370 0.0477
DTPM-50 Step 31.44 0.9320 0.0439

Conditional Guidance Adapter. DPTM encapsulates
rich and diverse prior knowledge. We hope that DPTM
can fully utilize this knowledge in adapting to downstream
image restoration tasks, rather than forgetting it. There-
fore, we freeze most of the parameters in DPTM and in-
troduce a flexible and parameter-efficient adaptation mech-
anism through the Conditional Guidance Adapter as shown
in Figure 3 (b) and (c). The design of the Conditional Guid-
ance Adapter brings two benefits: (i) Parameter-efficient
learning. Since most of the parameters of DPTM have been
sufficiently trained, our model will converge faster and bet-
ter on downstream tasks after introducing the adapter. (ii)
Introducing additional conditions. Introduction of coarse
structural information output by the initial predictor, pro-
viding the model with more flexible conditional informa-
tion, thereby producing texture details that better align with
expectations. Our Conditional Guidance Adapter could be
formally written as:

CG-Adapter(fin, yϵ) = fin+Mout(Min(fin)+Conv(yϵ)),
(5)

where M denotes an MLP layer to scale the dimension c of
the input feature f c

in to dimension r× c, and yϵ denotes the
output of initial predictor ϵθ, thus yϵ = ϵθ(yd).

Training objective. The training objective for Stage II is
defined as: LStageII(θ) =

E
∥∥∥ϵ− fθ

(√
γ (yg − ϵθ(yd)) +

√
1− γϵ,yd, γ

)∥∥∥ . (6)

where ϵθ represents the initial predictor, illustrated in Figure
3. It is important to note that ϵθ does not necessitate addi-
tional supervisory loss or pre-training. This is because the
gradient from the aforementioned loss propagates through
fθ and subsequently influences ϵθ.

4. Experiments

4.1. Settings

Our method is assessed on five specific image restora-
tion tasks: image motion deblurring, single-image defocus
deblurring, image deraining&dehazing, image desnowing,
and image raindrop removal. In the initial stage, we de-
velop a comprehensive Diffusion Texture Prior model, and
in the subsequent stage, we fine-tune individual full models
tailored to each task.

Datasets&Metrics. The GoPro dataset [43], as recom-
mended by DvSR [60], is utilized for training and test-
ing in the domain of image motion deblurring. Adher-
ing to Restormer’s approach [70], the DPDD dataset [1]
is employed for single-image defocus deblurring. For im-
age desnowing, we align with WeatherDiff [45] using the
Snow100K dataset [40]. The Outdoor-Rain dataset [33]
is used for image deraining&dehazing, following Weath-
erDiff [45]. Lastly, for single image raindrop removal, we
adopt the practices from IDT [62] and WeatherDiff [45],
employing the Raindrop dataset [48] for training and test-
ing. We utilize PSNR, SSIM, and MAE as metrics for
distortion-based image quality assessment, complemented
by LPIPS [73] and FID for evaluating perceptual image
quality. Adhering to the methodology outlined in Whang
et al. [60], we extract image patches and compute FID at
the patch level to ensure more consistent and reliable eval-
uation results.

Training Details We implemented our DTPM using the
Pytorch framework, leveraging four NVIDIA RTX 4090
GPUs. Training encompasses two stages: Stage I with
800K iterations and Stage II with 600K iterations. We em-
ployed the Adam optimizer, setting momentum values at
0.9 and 0.999. The initial learning rate was established
at 1.5 × 10−4, employing a cosine annealing strategy for
gradual learning rate reduction. The diffusion process is
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Figure 5. Image deraining&dehazing visual comparison on the Ourdoor-Rain dataset [48]. Our DTPM method generates rain-free and
haze-free image with better details and without artifacts. The ”-4s” and ”-50s” denotes our DTPM method with a DDIM [55] sampling
schedule of 4 steps and 50 steps.

Figure 6. Single-image motion deblurring comparison on the GoPro Dataset [43]. Compared to the other methods, our DTPM more
effectively removes blur and preserving better structural information. The ”-4s” and ”-50s” denotes our DTPM method with a DDIM
sampling schedule of 4 steps and 50 steps.

structured over 1,000 steps (denoted as T ), incorporating
a noise schedule β(t) that linearly escalates from 0.0001 to
0.02 throughout the training. Input data consistently utilized
256× 256 cropped patches. Data augmentation techniques,
including horizontal flipping and random image rotation at
45◦ and 90◦, were applied during training. We utilize De-
noising Diffusion Implicit Models (DDIM) [55] to imple-
ment our diffusion model, thereby significantly enhancing
our sampling speed.

4.2. Main Results

Comparative Analysis of Deraining&Dehazing. As
shown in Table 1 in outdoor hazy and rainy image restora-
tion, DTPM’s 4 Step variant outperforms RainHazeDiff’s
25-step process, achieving higher PSNR (30.99), SSIM
(0.934), and lower LPIPS (0.0635). DTPM demonstrates
superior perceptual quality enhancement, as indicated by its
LPIPS and PSNR metrics. The DTPM-10 and DTPM-50
Step versions further reduce LPIPS to 0.0617 and 0.0540,
respectively, while maintaining high SSIM, establishing
DTPM’s methodological advantage and benchmark in high-
fidelity restoration.

Comparative Analysis of Single-image Defocus Deblur-
ring. DTPM markedly outperforms other methods in de-
focus deblurring on the DPDD dataset as shown in Table
4, with its 4 Step iteration achieving high LPIPS (0.153)
and SSIM (0.823) scores, thus maintaining image structural
integrity. The DTPM-50 Step model further enhances per-
ceived quality, achieving an LPIPS of 0.139, closely resem-
bling ground truth. Visual evidence in Figure 7 corroborates
DTPM’s superior detail recovery and structural fidelity.

Concise Analysis of DTPM in Single-image Motion De-
blurring. As shown in Table 5,on the GoPro dataset, the
DTPM 4 Step variant achieves a PSNR of 32.09, SSIM of
0.932, LPIPS of 0.084, and FID of 10.02, demonstrating a
balance in distortion reduction and perceptual quality. The
10 Step version improves these metrics, with an LPIPS of
0.081 and a leading FID of 8.52, despite slight decreases
in PSNR and SSIM. The DTPM-50 Step variant, achieving
the best perceptual outcomes with the lowest LPIPS (0.073)
and FID (7.69), slightly reduces PSNR to 31.11 and SSIM
to 0.919, illustrating our method’s ability to the best percep-
tual quality.
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Figure 7. Single-image defocus deblurring results on the DPDD dataset [1]. The ”-4s” and ”-50s” denotes our DTPM method with a DDIM
sampling schedule of 4 steps and 50 steps. Compared to the other approaches, our DTPM generate better structures and details.

Table 4. Single-image Defocus Deblurring comparisons on the DPDD
testset [1].

Distortion PerceptualMethod PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓
EBDB [28] 23.45 0.683 0.049 0.336
DMENet [31] 23.41 0.714 0.051 0.349
JNB [53] 23.84 0.715 0.048 0.315
DPDNet [1] 24.34 0.747 0.044 0.277
KPAC [54] 25.22 0.774 0.040 0.227
IFAN [32] 25.37 0.789 0.039 0.217
Restormer [70] 25.98 0.811 0.038 0.178

DTPM-4 Step 25.98 0.823 0.038 0.153
DTPM-10 Step 25.76 0.815 0.039 0.140
DTPM-50 Step 25.45 0.803 0.040 0.139

Table 5. Single-image Motion Deblurring comparisons on the GoPro
testset [43].

Distortion PerceptualMethod PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
MPRNet [71] 32.66 0.959 0.089 20.18
MIMO-UNet+ [13] 32.45 0.957 0.091 18.05
SAPHNet [56] 31.89 0.953 0.101 19.06
Restormer [70] 33.20 0.963 0.084 19.33
DvSR [60] 30.66 0.941 0.084 12.20

DTPM-4 Step 32.09 0.932 0.084 10.02
DTPM-10 Step 31.82 0.929 0.077 7.52
DTPM-50 Step 31.11 0.919 0.061 6.61

Comparative Analysis of Raindrop Removal. As illus-
trated in Table 2, we can observe that various versions of
DTPM have demonstrated outstanding performance in the
task of image raindrop removal. In comparison to Rain-
DropDiff, our approach has achieved superior performance,
with the LPIPS metric significantly outperforming that of
RainDropDiff.

Comparative Analysis of Snow Removal. As shown in
Table 1, we can observe that various versions of DTPM have
demonstrated excellent performance in the task of image
desnowing. In comparison to SnowDiff, our approach has
achieved superior LPIPS metrics.

5. Discussion and Analysis

Figure 8. Trade-off between PSNR and LPIPS in DTPM: This
plot illustrates the inverse relationship between PSNR (pixel-wise
distortion) and LPIPS (perceptual similarity) across various sam-
pling steps, highlighting the equilibrium achieved between distor-
tion and perceptual quality in our method.

For the analysis of various aspects of our model, we per-
form our experiments on the image deraining& dehazing
dataset as it’s a more chanllenging settings than others.

5.1. Sampling Steps and Distortion-Perceptual
Trade-off

In Figure 8, we evaluate the results of our DTPM through
the lens of two critical image quality metrics: PSNR and
LPIPS1. As the sampling steps increase, the PSNR values
initially experience a precipitous drop, decreasing from just
above 31 dB to below 30.70 dB by the 10th step. This sub-
stantial early decline indicates that sampling steps in the
early phase degrade image fidelity. Beyond this point, the
PSNR decline slows, entering a phase of more gradual de-
scent before plateauing after the 30th step, suggesting that
the method begins to stabilize in terms of distortion loss. In

1The PSNR, measured in decibels (dB), is a traditional metric for as-
sessing the fidelity of the reconstructed images against an original high-
quality image. The LPIPS metric, on the other hand, offers an assessment
of perceptual similarity, which correlates more closely with human visual
perception.
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Figure 9. The first row in the figure shows the images, while the
second row shows zoomed-in details. From left to right, they are:
(a) input image, (b) the output of the initial predictor, (c) the
final result of our method, (d) the ground-truth.

contrast, the LPIPS score improves markedly with each in-
cremental sampling step, indicating that the perceived qual-
ity of the images is becoming more aligned with human vi-
sual perception. The steepness of the LPIPS improvement
mirrors the PSNR decline, reflecting a pronounced trade-off
between fidelity and perceptual quality up to the 10 step.
After this inflection point, although the PSNR values level
off, suggesting a saturation of fidelity loss, the LPIPS val-
ues continue to improve but at a diminished rate, plateauing
around the 40 step. The intersecting trends of these metrics
underscore a distinct trade-off: optimizing for perceptual
likeness through more sampling steps comes at the expense
of traditional fidelity measures. However, the stabilization
of both metrics after a certain number of sampling steps
suggests a convergence towards an equilibrium between the
two qualities.

5.2. Output of the Initial Predictor

Given the significance of the initial predictor as a key com-
ponent of our methodology, we have undertaken detailed
explorations and analyses of it. Despite the absence of an
explicit loss constraint in our initial predictor, it achieves re-
sults that closely resemble a clean background, as evidenced
in Figure 9. The initial predictor, though not detailed in its
finer aspects, effectively produces a reasonably clear im-
age. This provides practical assurance for incorporating
the output of the initial predictor as one of the enhanced,
additional conditions for diffusion.

5.3. More Ablation Studies

In this section, we conduct ablation studies to analyze the
impact of different design choices in our DTPM framework.
w/o Stage I Training. This variant, absent the initial train-
ing phase, exhibits a decrease in both image reconstruction
quality and perceptual similarity relative to the complete
model. This underscores the significance of the early train-
ing stage in establishing baseline performance.
w/o Initial Predictor. Removing the Initial Predictor re-
sults in a notable decline in both objective image quality
and perceptual accuracy. This component’s role is evidently

Table 6. The ablation studies on Image Deraining&Dehazing
dataset [48].

Model PSNR ↑ LPIPS ↓
w/o Stage I Training 28.90 0.074
w/o Initial Predictor 26.91 0.079
w/o Semantic Code 29.79 0.0653

Fine-tune Enc. w/o Adapters 29.20 0.0667
Fine-tune Dec. w/o Adapters 28.91 0.0691
Fine-tune Enc.&Dec. w/o Adapters 29.13 0.0712

Ours(DTPM-4S) 30.99 0.0635

crucial for enhancing the clarity and fidelity of the images.
w/o Semantic Code. The removal of the Semantic Code
somewhat improves both image quality and perceptual sim-
ilarity. This could suggest that the Semantic Code poten-
tially adding informative features.
Fine-tune Enc. w/o Adapters. Fine-tuning just the en-
coder of DTPM without adapters leads to a slight reduction
in performance. This indicates that while the encoder is a
robust component, the adapters contribute to optimizing its
function.
Fine-tune Dec. w/o Adapters. Solely fine-tuning the de-
coder of DTPM without adapters also reduces model effi-
cacy. The adapters appear more integral for the decoder,
possibly enabling more nuanced adjustments that refine re-
sults.
Fine-tune Enc.&Dec. w/o Adapters. Fine-tuning both the
encoder and decoder without adapters does not match the
performance of the complete model. This suggests a com-
plex interplay between these components that adapters help
to fine-tune effectively.

6. Conclusion and Limitations
This study presents a comprehensive conditional framework
for image restoration, integrating Diffusion Texture Priors
for producing high-quality images with promising details.
While achieving significant performance, it identifies po-
tential improvements: accelerating sampling via advanced
techniques and optimizing the model size.
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