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Abstract

Recent Vision Transformer Compression (VTC) works
mainly follow a two-stage scheme, where the importance
score of each model unit is first evaluated or preset in each
submodule, followed by the sparsity score evaluation ac-
cording to the target sparsity constraint. Such a separate
evaluation process induces the gap between importance and
sparsity score distributions, thus causing high search costs
for VTC. In this work, for the first time, we investigate how to
integrate the evaluations of importance and sparsity scores
into a single stage, searching the optimal subnets in an effi-
cient manner. Specifically, we present OFB, a cost-efficient
approach that simultaneously evaluates both importance and
sparsity scores, termed Once for Both (OFB), for VTC. First,
a bi-mask scheme is developed by entangling the importance
score and the differentiable sparsity score to jointly deter-
mine the pruning potential (prunability) of each unit. Such
a bi-mask search strategy is further used together with a
proposed adaptive one-hot loss to realize the progressive-
and-efficient search for the most important subnet. Finally,
Progressive Masked Image Modeling (PMIM) is proposed to
regularize the feature space to be more representative during
the search process, which may be degraded by the dimension
reduction. Extensive experiments demonstrate that OFB can
achieve superior compression performance over state-of-
the-art searching-based and pruning-based methods under
various Vision Transformer architectures, meanwhile pro-
moting search efficiency significantly, e.g., costing one GPU
search day for the compression of DeiT-S on ImageNet-1K.

1. Introduction
Vision Transformers (ViTs) are developing rapidly in many
practical tasks, but they suffer from substantial computa-
tional costs and storage overhead, preventing their deploy-
ments for resource-constrained scenarios. Vision Trans-
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Figure 1. The relationship between importance and sparsity score
distributions in different search paradigms. (a) Importance scores
are fixed during sparsity search, and sparsity scores are related to
importance scores. (b) Importance scores of one submodule are also
related to the sparsity of other to-prune submodules. (c) Importance
and sparsity scores are entangled and simultaneously optimized,
thus correlated at forward and backward phases of searching.
former Compression (VTC), as an effective technique to
relieve such problems, has advanced a lot and can be divided
into several types including Transformer Architecture Search
(TAS) [5, 6, 15, 25, 32, 35, 48] and Transformer Pruning
(TP) [2, 7, 21, 27, 31, 37, 42, 51] paradigms. Although both
TAS and TP can produce compact ViTs, their search process
for the target sparsity often relies on a two-stage scheme, i.e.,
importance-then-sparsity evaluation* for units (e.g., filters)

*The importance evaluation aims at learning each unit’s contribution to
the prediction performance, while the sparsity evaluation aims at learning
each unit’s pruning choice. In general, the importance and sparsity score
distributions are correlated in the search process, as shown in Fig. 1.
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Figure 2. Different paradigms for VTC. (a): SPOS-based TAS
implicitly encodes the piecewise-decreasing importance scores
for units due to the uniform sampling in pre-training; (b): The
threshold-based TP explicitly evaluates the importance scores for
units and sets a global threshold to perform pruning; (c): DARTS
learns the importance distribution in a differentiable manner and
selects the subnet of the highest architecture score; (d): OFB pro-
poses the bi-mask score that entangles importance and sparsity
scores together, to perform the search process in a single stage.

in each dimension / submodule, which potentially hinders
search performance and efficiency of both paradigms.

As for TAS that mainly follows the Single-Path-One-Shot
(SPOS) search paradigm [18], the importance scores of units
in each submodule are implicitly encoded into the super-
net [32], as shown in Fig. 2a. This is mainly due to the
ordinal weight-sharing mechanism during the pre-training
of the pre-designed supernet [32]. In other words, the sub-
modules with small indexes are implicitly assigned higher
importance scores by uniform sampling during the supernet
pre-training. Afterwards, evolutionary algorithms are em-
ployed to search for the optimal subnet given the implicitly-
encoded importance score distribution and target sparsity
constraint [5, 17, 23, 32, 48]. Such an implicit encoding
process causes TAS limited to compressing a supernet from
scratch, thus leading to a high search cost.

On the other hand, for TP that adopts the threshold-based
pruning paradigm, the importance scores are pre-evaluated
by a designed criterion, followed by the sparsity search us-
ing a designed strategy based on the importance distribution.
However, searching for the fine-grained discrete sparsity
from the evaluated importance distribution of each dimen-
sion is intractable and identified as an NP-hard problem [49].
As visualized in Fig. 2b, the importance score distribution
of one dimension is usually continuous, with most points
distributed around the mean value. Considering that the im-
portance distribution varies in different dimensions and may
be influenced by the pruning choice of other dimensions
[32, 40], the traditional threshold-based methods can hardly
search for the optimal compact models in a global manner.
From the above analysis, the high compression costs can be

largely attributed to the separate score evaluation, and the
gap between importance and sparsity score distributions.

To tackle the above issues induced by the two-stage VTC
scheme, we propose to conduct the ViTs search in a one-
stage manner, where the importance and sparsity scores are
learned simultaneously and entangled, to learn a discrete
sparsity distribution from the entangled distribution adap-
tively. To achieve this, inspired by the differentiable search
strategy in DARTS [8, 24, 41], we relax the sparsity score to
a differentiable variable, and formulate a bi-mask score that
entangles the importance and sparsity scores of each unit, to
jointly assess the unit’s prunability. Secondly, to optimize
the bi-mask score, we introduce an adaptive one-hot loss
function to adaptively convert the continuous bi-mask score
into a binary one, i.e., the unit’s pruning choice, as shown
in Fig. 2d. Finally, during the search, we further develop a
Progressive Masked Image Modeling (PMIM) technique, to
regularize the dimension-reduced feature space with negligi-
ble additional costs. Our main contributions are:
• To our best knowledge, our method is the first to explore

the entanglement of importance and sparsity distributions
in VTC, which relieves the bottleneck of searching the
discrete sparsity distribution from the continuous impor-
tance distribution, highlighting the search efficacy and
effectiveness of various ViTs compression.

• We develop a novel one-stage search paradigm containing
a bi-mask weight-sharing scheme and an adaptive one-
hot loss function, to simultaneously learn the importance
and sparsity scores and determine the units’ prunability.
Moreover, a PMIM regularization strategy is specially
designed during searching, which gradually intensifies the
regularization for representation learning as the feature
dimension continues to be reduced.

• Extensive experiments are conducted on ImageNet for
various ViTs. Results show that OFB outperforms existing
TAS and TP methods with higher sparsity and accuracy,
and significantly improves search efficiency, e.g., costing
one GPU search day to compress DeiT-S on ImageNet.

2. Related Works
Transformer Architecture Search. Recently, with various
Vision Transformers spawning [9, 12, 26, 34], several works
have explored searching for the optimal Transformer-based
architecture. Existing Transformer Architecture Search
(TAS) works [5, 32, 48] mainly follow the SPOS NAS [18]
scheme, which first trains the supernet from scratch by iter-
atively training the sampled subnets, then searches for the
target optimal subnet, followed by retraining the searched
model. These methods focus on either designing the search
space or the training strategy for the randomly initialized
supernet, yet the supernet training is still time-consuming
due to the numerous randomly initialized parameters to be
fully trained. To address this, TF-TAS [48] provides a DSS
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indicator to evaluate the subnet performance without training
all supernet parameters. Compared with prior methods, our
work highlights the one-stage search for compact architec-
tures in off-the-shelf pre-trained ViTs, thus saving high costs
for supernet training and an extra sparsity search.

Vision Transformer Pruning. Unlike the pruning for Con-
volutional Neural Networks (CNNs) [33, 38], the pruning for
ViTs contains more prunable components, e.g., Patch Em-
bedding, Patch Token, Multi-Head Self-Attention (MHSA),
and MLPs, etc. S2VITE [7] presents a pruning-and-growing
strategy with 50% ratio to find the sparsity in several dimen-
sions. WDpruning [42] performs TP via binary masks and
injected classifiers, meanwhile designing a learnable pruning
threshold based on the parameter constraint. ViT-Slim [2]
employs soft masks with ℓ1 penalty by a manually-set global
budget threshold for TP. UVC [43] jointly combines different
techniques to unify VTC. Compared with previous methods,
our method features the entanglement of importance and
sparsity distributions to jointly determine the prunability of
each unit, and the adaptive conversion from the continuous
score distribution into a discrete one, thus being able to better
balance the sparsity constraint and model performance.

Masked Image Modeling. Masked Image Modeling (MIM)
[20, 39] is a self-supervised learning strategy for augment-
ing pre-training models, aiming to reconstruct the masked
patches in the input image. Several works have explored the
representation learning ability of MIM in the pre-training
models for downstream tasks[1, 14, 16, 46], by predicting
the patch- or feature-level labels. Differently, our work tar-
gets at the compression of pre-trained ViTs, and focuses
on utilizing the representation learning ability of MIM to
progressively improve the dimension-reduced feature space.

3. The Proposed Approach
We first revisit the two-stage search paradigm and identify its
problem, then propose a one-stage counterpart containing a
bi-mask weight-sharing scheme with an improved optimiza-
tion objective, to learn importance and sparsity scores simul-
taneously. Finally, PMIM is designed to boost the dimension-
reduced features and enhance search performance.

3.1. Problem Formulation
Prior VTC works mainly focus on searching for an optimal
sub-network given a supernet and the resource constraint.
Let N (A,W ) denote the supernet, where A and W refer to
the architecture search space and weights of the supernet,
respectively. The search for the optimal architecture can be
generally formulated as a two-stage problem in Eq. (1).

Stage 1. SA = f(W ;A);

Stage 2. min
α∈A,W

Lval(α,W ;SA), s.t. g(α) ≤ τ, (1)

where f denotes the criterion to evaluate (e.g., TP) or preset
(e.g., TAS) the importance score of each unit SA based on

Model Q-K-V ratio MLP ratio Head number P. E. ratio
DeiTs [34] (1/4, 1, 1/8) (1/4, 1, 1/8) (1, num_heads, 2) (1/2, 1, 1/32)
Swin-Ti [26] (1/4, 1, 1/8) (1/4, 1, 1/8) (1, num_heads, 2) (1/2, 1, 1/32)

Table 1. Search spaces of DeiTs [34] and Swin-Ti [26]. Tuples in
parentheses denote the lowest value, the highest value, and step size.
Note: the step size of P. E. is smaller for its more significant impact
on multiple layers (See Fig. 3) and compression performance.
the search space, and Lval denotes the loss on the valida-
tion dataset. The g and τ represent the computation cost
and the corresponding constraint, respectively. In the first
stage, the importance distribution is globally learned from
the weights of the supernet (e.g., TP) or naturally encoded
in the training mode of the supernet (e.g., TAS). Based on
the (piecewise) continuous importance distribution, the ar-
chitecture parameter α is optimized to satisfy the sparsity
constraint via the global threshold or evolutionary algorithms
in the second stage, which can be viewed as a discretization
process. Since the importance distribution is fixed during
the search, the gap between the importance distribution and
the searched discrete sparsity distribution (pruned or not
pruned) may cause the sub-optimal search result. In other
words, the pre-assessed importance score may change with
the discretization of other units, and cannot fully represent
the actual importance distribution in the searched model.
Therefore, a better indicator to assess the unit’s prunability
could be an adaptively discretized score, that bridges the gap
between the importance and sparsity distributions.

Inspired by DARTS [24], which designs a differentiable
scheme to relax the pruning choice of each subspace to a
softmax-activated probability over all subspaces in one di-
mension, we further develop a bi-mask scheme to learn the
prunability of units in the pre-trained ViTs. In this scheme,
the importance and sparsity scores are learned simultane-
ously in a differentiable manner to jointly determine the
unit’s prunability. In other words, the search objective is
formulated into a one-stage problem, as shown in Eq. (2).

min
S,V,W

Ltrain(S,V,W ), s.t. g(V) ≤ τ, (2)

where importance scores S, sparsity scores V , and supernet
weights W are continually optimized to find the optimal
subnet. Consequently, the model is evaluated and searched
in a single stage, which is different from the prior works sep-
arately evaluating and searching subnets. The optimization
of Eq. (2) comprises a bi-mask weight-sharing strategy to
assign units with prunability scores, and an adaptive one-hot
loss to achieve the target sparsity (See Sec. 3.2 and 3.3).

Search Space. We first follow the TAS paradigm to con-
struct a discrete search space for all units in each prunable
submodule, including Q-K-V ratio, MLP ratio, Head num-
ber, and Patch Embedding (P. E.), as described in Table 1.
Then, the search space is relaxed in a differentiable manner.

3.2. Bi-mask Weight-sharing Strategy
In order to assess the prunability of each unit, we introduce a
bi-mask weight-sharing strategy in the search process. Each
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Figure 3. The overview of OFB search framework, including the design of search space, search scheme, and regularization scheme. (a) For
the search space, we consider four types of submodules. (b) For the search scheme, we simultaneously learn the importance score S and the
sparsity score V based on the bi-mask weight-sharing strategy, under the guidance of an adaptive one-hot loss. (c) The PMIM technique is
developed to augment the pruned feature space, which introduces a progressive masking strategy to MIM for better regularization.

prunability score is represented by the value of the designed
bi-mask mij that considers both the importance score and
the sparsity score, which can be illustrated as follows:

mij (t) = λ (t)Sij + [1− λ (t)]Vij (α) , (3)

where the subscript index ij denotes the j-th unit in the i-th
prunable submodule. λ(t) denotes the time-varying weight
coefficient of the importance score. Specifically, λ linearly
changes from one to zero until the model finishes searching.
The motivation behind this is two-fold. From the lens of
score optimization, i.e., the backward process, the sparsity
score of each unit is related to its importance rank among all
units in the same submodule. Therefore, before transmitting
a large gradient to the sparsity score, more attention should
be paid to learning a reliable importance score. Since the
model weights W are well trained in the supernet, the impor-
tance score could be learned appropriately in several epochs,
thus providing a relatively accurate importance rank for the
assignment of the sparsity score to each unit. After obtaining
a relatively accurate importance score, optimization should
be focused more on the sparsity score to make the pruning
decision. From the lens of the discretization process, i.e., the
forward process, the search target is to learn a discrete score
for each unit; thus, the searched score should approach an
approximately binary (0/1) distribution, which is exactly the
desired distribution of the sparsity score V . Therefore, the
learning focus of the prunablility score should be gradually
transferred from importance to sparsity during searching.

As for the importance score S, inspired by ViT-Slim [2],
we introduce a soft mask that is randomly initialized and
learnable in each unit, to indicate its contribution to supernet
performance. The importance score is normalized to vary

between (0, 1) via sigmoid. As for the sparsity score V , we
leverage the architecture parameter α to generate the sparsity
score of each unit. Given α, V is computed via softmax to
indicate the preserving potential, as formulated in Eq. (4):

Vij(α) =

∑∥αi∥0
k=⌊j/∆i⌋

exp (αik)∑∥αi,:∥0
k=0 exp (αik)

=
∑∥αi∥0

k=⌊j/∆i⌋
pik, (4)

where αi is the architecture parameter vector of the i-th
submodule to parameterize the sub-space into a continuous
space. pik and ∆i represent the step-wise normalized ar-
chitecture score and the step size in the search space of the
i-th submodule, respectively, where pik = softmaxk (αik).
Note that the weights in all sub-spaces of the submodule are
shared as DARTS [24] does; therefore, the sparsity score of
each unit is the sum of those shared architecture scores, mak-
ing the sparsity distribution piecewise continuous. Unlike
previous differentiable search methods uniformly initializing
α for the randomly initialized supernet, our method ran-
domly initializes α to reduce the inductive bias.

As for the weight-sharing strategy in differentiable search,
considering the units with higher importance scores are more
likely to be preserved, sparsity scores of more important
units should be correspondingly higher than those less im-
portant (a high sparsity score means high preserving poten-
tial). Thus, at forward steps, the units in each submodule are
reorganized w.r.t. their importance score rank and assigned
sparsity scores in a descending order, as shown in Fig. 2d.

3.3. Adaptive One-hot Loss

Given bi-masks as introduced above, which soft mask units
to indicate the prunability during searching, the optimization

5581



target of these masks is another important issue. In Sec 3.3,
we present an adaptive one-hot loss to solve this problem.

Considering m is derived from S and V , the optimization
could be decomposed into two parts. As for the importance
score, the aim of S is to learn an importance rank according
to the unit’s impact on model performance under the sparsity
constraint. Thus, we follow ViT-Slim [2] to regularize S
with ℓ1 norm to drive unimportant units towards low-ranking
and zero-score distribution, i.e., LS = ∥S∥1.

As for the sparsity score, the aim of V is to learn a binary
distribution as the unit pruning choice. In other words, the
target label of each pi is ideally designed as a progressively
shrunk one-hot vector, with no prior information about the
one-hot index, thus being difficult to impose a definite target
to V and α. To address this, we propose to regularize the
sparsity score by introducing an alternative constraint that
aligns the entropy and variance of pi with one-hot vectors.
The motivation stems from the invariance of the two prop-
erties in one-hot vectors, regardless of the one-hot index.
Especially, the entropy of any one-hot vector always equals
zero, while the variance solely depends on the dimension
number. The regularization w.r.t. p is formulated as follows:

R (p) =

M∑
i=1

[H (pi) + Ψ (pi)]

=

M∑
i=1

[
−pTi log (pi) + tan

(π

2
− πωi

)]
,

(5)

where M denotes the number of searchable submodules in
N (A,W ), ωi = σi/σ

t
i with σi, σt

i , and ωi meaning the mea-
sured, target and normalized variances of pi, respectively,
where σt

i =
(
∥αi∥0 − 1

)
/ ∥αi∥20 . (See Appendix A for more

detailed explanations). In addition to Eq. (5), V is also con-
strained by the sparsity constraint, τ . Therefore, the total
regularization objective of V is formulated as follows:

LV = µ1R (p) + µ2 ∥g (V)− τ∥2, (6)

where µ1 and µ2 are the weight coefficients to balance two
items. Note that during search, the ground-truth value σt

would change with the decrease of ∥α∥0 when the pruning
happens in α. Thus, LV is adaptive to the pruning process
in the search stage. The pruning process in one dimension
(e.g., the i-th submodule) is triggered by the condition that
(pi)min ⩽ η · p̄i, where η is the scaling factor and p̄i is the
mean of pi, i.e., p̄i = 1/ ∥αi∥0. By Eq. (6) and the proposed
pruning strategy, the units with the lowest mask values can
be progressively removed, thus accelerating search process.

Based on the above analysis, the regularization items
for the bi-mask can be summarized as, Lm(V,S) = LV +

µ3LS = µ1R (p) + µ2 ∥g (V)− τ∥2 + µ3∥S∥1, where µ3 de-
notes the weight coefficient of LS . Consequently, the objec-
tive in Eq. (2) is transformed into the following equation:

Algorithm 1 Once for Both (OFB).
Input: Pre-trained ViT N , Decoder Fd, Search Space A, Dataset

D, Masking Ratio γ, Pruning Interval ∆T, Target Pruning
Ratio τ ;

1: Initialize Importance Score Set {S} and Architecture Parame-
ter Set {α} according to A;

2: Compute m via Eq. (3) and insert m to units in the search
space as soft masks;

3: for each training iteration t do
4: Sample bt ∼ D and random mask γ patches;
5: Forward [N (W ;m); Fd] with masked bt;
6: Update S, V,W by optimizing Eq. (8);
7: Linearly update γ and λ;
8: Update m via Eq. (3);
9: if not finish search and (t mod ∆T == 0) then

10: for each submodule αi in A do
11: if (pi)min ⩽ η · p̄i then
12: Prune the units whose pi ⩽ η · p̄i;
13: end if
14: end for
15: end if
16: end for
17: return the pruned ViT satisfying the target sparsity.

min
S,V,W

Ltrain(S,V,W ) + Lm(V,S). (7)

3.4. Progressive MIM

As discussed above, during the search, pruning units can
reduce training costs but may impair model performance.
Consequently, the evaluation of the importance and sparsity
scores for the remaining units may be unreliable, especially
in aggressive compression scenarios where a large proportion
of units are pruned. To address this, we propose to further en-
hance the representative capability of the remaining features
using the MIM technique [39] during the search. Yet, deploy-
ing MIM in a well-trained ViT requires considering the char-
acteristics of VTC. Specifically, using a large masking ratio
similar to SimMIM [20, 39] may be inappropriate for VTC
as the model would deviate from the original classification-
oriented feature space to the reconstruction-oriented space,
losing the original contextual information. Motivated by this,
we propose a progressive MIM strategy for searching, where
the masking ratio gradually increases until reaching the pre-
set threshold. Consequently, as the pruning ratio gets larger,
the feature regularization is strengthened with negligible ad-
ditional cost [39], thereby maintaining the representation
ability and a reliable prunability evaluation of the remaining
units. Then, the optimization objective is updated to:

min
S,V,W

Ltrain(S,V,W ) + Lm(V,S) + Lrec(S,V,W ; γ), (8)

where Lrec, γ denote the reconstruction loss and the masking
ratio, respectively. Alg. (1) shows the overall algorithm.
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Method Model #Param (M) FLOPs (B) Top-1 (%) Top-5 (%) GPU Days

DeiT-S

Baseline DeiT-S [34] 22.1 4.6 79.8 95.0 -

TP

SSP-T† [7] 4.2 0.9 68.6 - -
S2ViTE-T† [7] 4.2 0.9 70.1 - -
WDPruning-0.3-12† [42] 3.8 0.9 71.1 90.1 -
S2ViTE-S [7] - 2.1 74.8 - -

TAS ViTAS-B [32] - 1.0 (↓78%) 72.4 (↓7.4) 90.6 (↓4.4) 32

OFB 4.4 (↓80%) 0.9 (↓80%) 75.0 (↓4.8) 92.3 (↓2.7) 1

TAS
AutoFormer-Ti [5] 5.7 (↓74%) 1.3 (↓72%) 74.7 (↓5.1) 92.6 (↓2.4) 24
ViTAS-C [32] 5.6 (↓75%) 1.3 (↓72%) 74.7 (↓5.1) 91.6 (↓3.4) 32
TF-TAS-Ti [48] 5.9 (↓73%) 1.4 (↓70%) 75.3 (↓4.5) 92.8 (↓2.2) 0.5

Lightweight DeiT-Ti [34] 5.7 1.3 72.2 91.1 -
TNT-Ti [19] 6.1 1.4 73.9 91.9 -

OFB 5.3 (↓76%) 1.1 (↓76%) 76.1 (↓3.7) 92.8 (↓2.2) 1

TP

SSP-S [7] 14.6 (↓34%) 3.1 (↓33%) 77.7 (↓2.1) - -
S2ViTE-T [7] 14.6 (↓34%) 2.7 (↓41%) 78.2 (↓1.6) - -
ViT-Slim [2] 11.4 (↓48%) 2.3 (↓50%) 77.9 (↓1.9) 94.1 (↓0.9) 1.8
WDPruning-0.3-12 [42] - 2.6 (↓43%) 78.4 (↓1.4) - -

Lightweight HVT [28] - 2.4 78.0 - -
PVT-Ti [36] 13.2 1.9 75.1 - -

OFB 8.0 (↓64%) 1.7 (↓63%) 78.0 (↓1.8) 93.9 (↓1.1) 1

DeiT-B

Baseline DeiT-B [34] 86.6 17.5 81.8 95.6 -

TAS

AutoFormer-S [5] 22.9 (↓74%) 5.1 (↓71%) 81.7 (↓0.1) 95.7 (↑0.1) 24
ViTAS-F [32] 27.6 (↓68%) 6.0 (↓66%) 80.5 (↓1.3) 95.1 (↓0.5) 32
GLiT-S [4] 24.6 (↓72%) 4.4 (↓75%) 80.5 (↓1.3) - -
TF-TAS-S [48] 22.8 (↓74%) 5.0 (↓71%) 81.9 (↑0.1) 95.8 (↑0.2) 0.5

TP DynamicViT-S⋆ [29] 22.0 4.0 79.8 - -
ViT-Slim⋆ [2] 17.7 3.7 80.6 95.3 3

Lightweight DeiT-S [34] 22.1 4.6 79.8 95.0 -

OFB 17.6 (↓80%) 3.6 (↓79%) 80.3 (↓1.5) 95.1 (↓0.5) 2.9

TAS
AutoFormer-B [5] 54.0 (↓38%) 11.0 (↓37%) 82.4 (↑0.6) 95.7 (↑0.1) 24
GLiT-B [4] 96.0 (↑11%) 17.0 (↓3%) 82.3 (↑0.5) - -
TF-TAS-S [48] 54.0 (↓38%) 12.0 (↓31%) 82.2 (↑0.4) 95.6 (↓0.0) 0.5

TP

VTP [50] - 10.0 (↓43%) 80.7 (↓1.1) 95.0 (↓0.6) -
S2ViTE-B [7] 56.8 (↓34%) 11.7 (↓33%) 82.2 (↑0.4) - -
ViT-Slim [2] 52.6 (↓39%) 10.6 (↓39%) 82.4 (↑0.6) 96.1 (↑0.5) 3
WDPruning-0.3-11 [42] - 9.9 (↓43%) 80.8 (↓1.0) 95.4 (↓0.1) -

OFB 43.9 (↓49%) 8.7 (↓50%) 81.7 (↓0.1) 95.8 (↑0.2) 4

Table 2. Compression results of DeiT models on ImageNet-1K. † and ⋆ indicate that the compression model is based on DeiT-Ti and DeiT-S
[34], respectively. ↑ / ↓ refers to the increase/decrease ratio.

Figure 4. Performance of the searched DeiT models with/without
retraining by employing/not employing PMIM during searching.

4. Experiments

We first present the compression results for DeiTs [34] and
Swin Transformer [26] on ImageNet-1K [11]. Next, we an-
alyze the generalization ability of the searched models on
downstream benchmarks. Lastly, we explore the contribu-
tion of each individual component to search performance,
followed by visualizations of the search process and results.
The implementation details are described in Appendix C.

4.1. Results on ImageNet
We summarize the main results of the DeiT family in Ta-
ble 2 and compare them with various existing TAS and TP
methods. For a fair comparison, we refer to the results of
other works from official papers. It can be observed that,
in general, the compressed models based on OFB achieve
higher accuracy and larger compression ratios. On low-
accuracy regimes, OFB achieves the highest accuracy and
compression ratio for DeiT-S among all compression meth-
ods and lightweight models, obtaining at most 2.6% accuracy
increase than TAS-based methods with ∼80% FLOPs reduc-
tion. On high-accuracy regimes, the compressed DeiT-B
based on OFB also outperforms both TAS- and TP-based
methods. In particular, OFB achieves 0.9% higher Top-1
than WDPruning [42], and controls the accuracy decrease at
0.1% Top-1 with 50% reductions in parameters and FLOPs.
The other compression results also validate the consistent
effectiveness and versatility of our method in different DeiT
models. As for search efficiency, we report the search time
cost of several TAS- and TP-based methods in the last col-
umn of Table 2 for comparisons. Compared with Auto-
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Model #Param FLOPs Top-1 Top-5 GPU
(M) (B) (%) (%) Days

Swin-Ti [26] 28.3 4.5 81.3 95.5 -
OFB 6.1 (↓78%) 1.0 (↓78%) 76.5 (↓4.8) 93.1 (↓2.4) 1.1
OFB 16.4 (↓42%) 2.6 (↓42%) 79.9 (↓1.4) 94.6 (↓0.9) 1.3

ViT-Slim [2] 19.4 (↓31%) 3.4 (↓24%) 80.7 (↓0.6) 95.4 (↓0.1) -
OFB 18.9 (↓33%) 3.1 (↓31%) 80.5 (↓0.8) 94.8 (↓0.7) 1.4

Table 3. Compression results of Swin-Ti [26] on ImageNet-1K.

Model F. C10 C100 Model F. mIoU mAcc aAcc
(B) (%) (%) (B) (%) (%) (%)

DeiT-S [34] 4.6 98.6 87.8 SETR-S [47] 4.6 73.0 81.4 95.1
OFB 1.7 98.7 88.4 OFB 3.6 73.9 83.1 95.2

Table 4. Performance of DeiT-S [34] and compressed models on
CIFAR-10 (C10), CIFAR-100 (C100) [22] and Cityscape [10].

Former [5] and ViTAS [32], OFB reduces search time greatly
at various budgets, meanwhile achieving comparable or bet-
ter performance. Compared with the efficient compression
methods, e.g., TF-TAS [48] and ViT-Slim [2], OFB can
achieve comparable within similar search time. One thing to
note is that for the compressed DeiT-B-8.7B, after searching,
it already reaches the same high performance as the retrained
one. As visualized in Fig. 4, we compare the model perfor-
mance with and without retraining process by employing or
not employing PMIM. It is observed that the performance
gap of the models with PMIM before and after retraining is
significantly smaller than that of the models without PMIM.
Therefore, when considering the cost induced by retraining,
OFB is more efficient than TF-TAS and ViT-Slim, saving the
retraining cost meanwhile maintaining high performance.

As for the compression of Swin Transformer [26], we
choose Swin-Ti as the baseline model to validate the effec-
tiveness of OFB. The results are listed in Table 3. From
the table, it can be observed that the compression perfor-
mance of Swin-Ti is similar to that of DeiT-S. For example,
when the model is compressed with nearly 80% reductions
in FLOPs and parameters (Line 7 in Table 2 and Line 2 in
Table 3), they both drop 4.8% in Top-1 accuracy, while Swin-
Ti drops 0.3% less than DeiT-S in Top-5 accuracy, which
further validates the effectiveness of OFB in different ViT
structures.4.2. Transfer Learning Results
To evaluate the generalization ability of the compressed mod-
els by OFB, we further fine-tune the compressed models on
downstream datasets, e.g., CIFAR-10, CIFAR-100 [22] for
image classification, and Cityscape [10] for semantic seg-
mentation. Specifically, we choose DeiT-S [34] and SETR-
DeiT-S [47] as our baselines. The hyper-parameter setting
follows the official fine-tuning strategy in DeiT and SETR
[47]. As presented in Table 4, the compressed models sig-
nificantly outperform baselines in both accuracy and com-
putation costs, indicating a good generalization ability to
downstream datasets for the compressed models by OFB.
4.3. Ablation Study
Effectiveness of Weight-sharing Strategy. The weight-
sharing strategy decides both importance and sparsity distri-

Case T1 T5 F. P.
Ordinal 75.8 92.6 1.2 5.7
Bi-mask 76.1 92.8 1.1 5.3

(a) Weight-sharing Strategy.

Case T1 T5 F. P.
None 75.4 92.5 1.0 5.1
Cons. 75.8 92.8 1.1 5.2
PMIM 76.1 92.8 1.1 5.3

(b) Masking Stategy.

Case Bi-mask PMIM Top-1
(%)

Top-5
(%)

FLOPs
(B)

#Param
(M)w/o w/ w/o w/

Baseline ✓ ✓ 67.5 88.2 1.18 5.7

Bi-mask ✓ ✓
69.2 89.2 1.04 5.1

(+1.7) (+1.0) (-0.14) (-0.6)
Bi-mask 72.8 91.4 1.09 5.3
+ PMIM ✓ ✓ (+3.6) (+2.2) (+0.05) (+0.2)

(c) Combinatorial Contributions.
Regularization Strategy Top-1

(%)
Top-5
(%)

FLOPs
(B)

#Param
(M)H(α) Ψ(α) LS

✓ 76.1 92.9 1.2 5.6
✓ 74.1 91.7 0.8 4.0

✓ 74.8 91.9 1.0 4.9
✓ ✓ 74.3 91.9 0.8 4.0

✓ ✓ 76.3 93.0 1.2 5.6
✓ ✓ 75.6 92.6 1.1 5.2
✓ ✓ ✓ 76.1 92.8 1.1 5.3

(d) Regularization Strategy.
Table 5. Ablation studies with DeiT-S on ImageNet. We report
retraining accuracy with target sparsity as 1BFLOPs except for (c),
where accuracy w/o retraining is reported to analyze the component
contribution in search process. Default settings are marked in gray.

DeiT-S
Throughput

(img/s)
Latency

(ms)
DeiT-B

Throughput
(img/s)

Latency
(ms)

ViTAS-B 2637 74 Auto-S 735 503
OFB-1.0B 3008 (2.6x) 50 (3.7x) ViTAS-F 762 153
Auto-Ti 1808 183 DeiT-S 1011 183
ViTAS-C 2712 85 OFB-3.6B 1152 (3.7x) 252 (3.9x)
DeiT-Ti 2613 61 DeiT-B 313 982
OFB-1.1B 2737 (2.4x) 57 (3.2x) Auto-B 357 1068
OFB-1.7B 1996 (2.0x) 81 (2.3x) OFB-8.7B 567 (1.8x) 741 (1.3x)

Table 6. Throughput and latency results of searched models. ‘Auto’
refers to AutoFormer [5]. The number suffixed with ‘x’ in parenthe-
ses denotes the acceleration multiple relative to the original model.

butions, as discussed above. To validate the effectiveness of
our bi-mask weight-sharing strategy, we compare the search
performance with the ordinal-sharing strategy employed in
previous TAS methods and present results in Table 5a. From
the table, our method obtains more compact models with
higher performance than the counterpart, indicating the bi-
mask scheme can evaluate unit prunability more accurately.
Considering the weight-sharing strategy is only employed at
the search stage, we further report the performance gain at
the search stage in Table 5c. Compared with the baseline, the
bi-mask weight-sharing strategy achieves 1.7% performance
gain, meanwhile reducing 0.14 BFLOPs and 0.6 MParams.

Effectiveness of Regularization Strategy. There are three
components for the bi-mask optimization, including the
ℓ1 regularization LS for importance scores S, the entropy
H(α), and variation regularization Ψ(α) for sparsity scores
V . We test their individual and combinatorial contributions
to the search performance, and present results in Table 5d.
It can be concluded that the entropy regularization H(α)
and the ℓ1 regularization LS play the more important role in
maintaining high performance, while the variation regular-
ization Ψ(α) drives the model to approach the target sparsity
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(a) Learning process of the bi-mask for an MLP layer.
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(b) Learning process of the bi-mask for an MHSA layer.
Figure 5. Visualization of bi-mask search process. Each line/sur-
face is a descendingly-ordered distribution learned after one-epoch
search, with the lighter color denoting a later learned distribution.

more closely. (See Appendix B for theoretical analysis)

Effectiveness of MIM Strategy. The MIM effectiveness has
been partially demonstrated in Fig. 4. For clear comparisons,
we report search performance with PMIM before retraining
in Table 5c. From the table, PMIM can further improve ac-
curacy by 3.6% Top-1 with a slight increase in computation
overhead (+0.05 BFLOPs, +0.2 MParams). In addition, we
further analyze the progressive masking strategy in PMIM.
As shown in Table 5b, we compare PMIM with a constant
masking scheme (const.) adopted in [20, 39], which keeps
masking 25% patches as aligned with the final masking ratio
in PMIM. It is observed that PMIM improves accuracy at
the same FLOPs, thus further validating its effectiveness.

4.4. Inference Speedup Results
The throughput and latency results of compressed models are
listed in Table 6, where the model checkpoints are obtained
from official repositories. The GPU throughput is measured
on a Tesla V100 GPU with a batch size of 1024, and the
latency is measured on Intel(R) Xeon(R) Gold 5218 CPU
with one batch size. It shows that OFB achieves superior
speedup on different devices. Specifically, the throughput of
the compressed DeiT models is accelerated by 1.8x∼3.7x on
GPU, while the latency on CPU is reduced by 25%∼ 74%.

4.5. Mask Visualization
The search process of bi-masks is visualized in Fig. 5 for bet-
ter understanding, where we take the compressed DeiT-S-1B
as an example. It is observed that in the early stage, the bi-
mask score (right) is closer to the importance score (left), and
the sparsity score distribution changes little, thus the initial
learning focuses more on importance evaluation. Whereas,
with search going on, the bi-mask score distribution gets pro-
gressively closer to the sparsity score distribution, indicating
the bi-mask learning focuses more on the sparsity evalua-
tion. As for the pruning, we can find that those units with
scores in the small step intervals will be integrated into one
step interval, and will be pruned if the sparsity scores drop
significantly, which is performed in an adaptive manner.

(a) MHSAs @1.7BFLOPs. (b) MHSAs @1.1BFLOPs.

(c) Layerwise MLP dimensions. (d) Patch Embedding dimension.
Figure 6. Structure configurations B&A compression.

4.6. Architecture Visualization

Fig. 6 shows several searched architectures of DeiT-S. Fig.
6a and 6b list the searched results of MHSA modules. There
are 12 MHSA layers in DeiT-S, with six heads in each layer
and 64 channels in each head. The numbers inside grids
denote Q-K-V channels of the head. Here, we jointly as-
sess the prunability of Q-K-C channels for all heads at the
same layer to achieve structural acceleration. It is noted that
shallow and middle layers consistently need higher Q-K-V
dimensions at different budgets, while the head numbers can
be reduced. Fig. 6c shows the searched MLP dimensions.
Similarly, MLPs are preserved more in middle layers and
continually pruned in deep layers, indicating more redun-
dance in deep layers. Fig. 6d shows the searched Patch
Embedding dimensions, which are carefully searched with
more channels preserved. It is reasonable since Patch Em-
bedding is skip-connected to all encoder blocks in DeiT.

5. Conclusion

We introduce OFB to tackle the VTC problem. To determine
the unit prunability in ViTs, for the first time, OFB explores
how to entangle the importance and sparsity scores during
search. And a PMIM regularization strategy is specially
designed for the dimension-reduced feature space in VTC.
Extensive experiments have been conducted to compress
various ViTs on ImageNet and downstream benchmarks,
indicating an excellent compression capability for ViTs.
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