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Abstract

This paper aims at achieving fine-grained building at-
tribute segmentation in a cross-view scenario, i.e., using
satellite and street-view image pairs. The main challenge
lies in overcoming the significant perspective differences
between street views and satellite views. In this work, we
introduce SG-BEV, a novel approach for satellite-guided
BEV fusion for cross-view semantic segmentation. To over-
come the limitations of existing cross-view projection meth-
ods in capturing the complete building facade features, we
innovatively incorporate Bird’s Eye View (BEV) method to
establish a spatially explicit mapping of street-view fea-
tures. Moreover, we fully leverage the advantages of mul-
tiple perspectives by introducing a novel satellite-guided
reprojection module, optimizing the uneven feature dis-
tribution issues associated with traditional BEV methods.
Our method demonstrates significant improvements on four
cross-view datasets collected from multiple cities, includ-
ing New York, San Francisco, and Boston. On average
across these datasets, our method achieves an increase in
mIOU by 10.13% and 5.21% compared with the state-of-
the-art satellite-based and cross-view methods. The code
and datasets of this work will be released at https:
//github.com/yejy53/SG-BEV .

1. Introduction
Fine-grained building attribute segmentation is a crucial

task for urban planning, environment monitoring and resi-
dential management [11, 16, 26]. Satellite images offers a
comprehensive outline of building footprints, while street-
view images contribute detailed facade features. Integrating
these two types of data has demonstrated significant poten-
tial in achieving precise attribute segmentation of buildings
[18, 32, 38, 39]. In this paper, we focus on the cross-view
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†Corresponding author.

Figure 1. Illustration of cross-view semantic segmentation of
fine-grained building. (a) Satellite imagery lacks information on
building facades, making it difficult to distinguish detailed build-
ing attributes. (b) Existing cross-view transformation methods
face issues with incomplete feature capture and uneven feature dis-
tribution. (c) Our method integrates satellite and street-view fea-
tures to precisely segment building attributes and floor numbers.

semantic segmentation of fine-grained attributes using pairs
of satellite and street-view images.

Previous studies on the semantic segmentation of fine-
grained attributes for buildings or other terrestrial objects
have predominantly relied on satellite images [16, 19, 43].
However, as shown in Figure 1(a), the satellite perspec-
tive captures only the top and outline information, making
it challenging to distinguish the fine-grained attribute dif-
ferences between different buildings [15, 38, 39]. To ad-
dress this issue, recent research has incorporated the street-
view perspective to supplement facade information of build-
ings. The typical approach involves mapping street-view
features to corresponding areas in the satellite view, thereby
creating a link between satellite and street-view images
[8, 32, 38, 39]. However, existing approaches often re-
flect only general characteristics near the area, struggling to
map street-view building features precisely to specific loca-
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tions in the satellite view, leading to subpar performance in
fine-grained attribute segmentation at the individual build-
ing level. To more effectively convey facade features from
the street view for each building, exploring a novel cross-
view feature mapping method that can continuously and
precisely map street-view features to specific satellite view
locations is necessary. The significant difference between
street and satellite views poses a substantial challenge for
precise cross-view feature mapping.

To effectively map and align features from street and
satellite imagery, some current studies employed cross-view
geometric projection methods [29, 35, 44]. However, these
methods are more suitable for analyzing central ground ar-
eas, such as road regions for applications like image local-
ization and driving planning [29, 35, 42]. In these cross-
view mapping approaches, geometric projection is typically
conducted through ground assumption and 360° panoramic
mapping relations [29, 35]. However, these methods of-
ten fail to effectively capture the facade features of taller
buildings above the viewpoint, resulting in significant dis-
tortion of features away from the center area, as illustrated
in Figure 1(b). This limitation leads to poor performance
in comprehensively capturing the facade features of build-
ings, which is particularly evident in urban environments
with high-rise structures. Such a constraint significantly re-
stricts their capability in addressing cross-view fine-grained
building attribute segmentation problems.

Bird’s Eye View (BEV) methods represent another cate-
gory of cross-view feature mapping, commonly used in au-
tonomous driving or robot navigation [10, 12, 13, 17, 21–
24, 33]. Compared with the geometric projection methods
mentioned previously, BEV methods, leveraging 3D scene
estimation, can capture more complete features of build-
ing facade. We plan to introduce the BEV approach to
map street-view features onto satellite images, represent-
ing a novel attempt at fine-grained building segmentation
tasks in cross-view scenarios. However, as street-view im-
ages are captured from a ground perspective, they struggle
to fully perceive the complete outline of building footprints.
When converting street-view images to BEV, features are
mainly concentrated and stacked at the visible parts of roads
and building wall edges [17, 23] (as shown in Figure 1(b)).
This results in uneven BEV feature distribution, limiting its
performance in fusion with satellite features. We note that
satellite images provide complete building contours, hence
we introduce a Satellite-Guided Reprojection (SGR) mod-
ule. This module relocates features from building edges to
interiors, effectively addressing uneven feature distribution.

In this work, we introduce SG-BEV, a satellite-guided
BEV fusion method for cross-view semantic segmentation.
Unlike previous cross-view transformation approaches, our
method establishes a clear spatial mapping relationship
from the street-view to the satellite perspective, overcoming

the limitations of geometric projection methods in capturing
building facade features, and the uneven feature distribution
issue of traditional BEV methods.

Our main contributions are summarized as follows:
• We innovatively apply BEV paradigm to the task of cross-

view semantic segmentation of fine-grained building at-
tributes, achieving a complete and continuous mapping
of street-view features to a top-down perspective.

• We develop a Satellite-Guided Reprojection (SGR) mod-
ule to further address the issue of features unevenly con-
centrated at the edges of buildings in BEV methods.

• Our method is evaluated on four cross-view datasets from
cities including New York, San Francisco and Boston. On
average across these datasets, it demonstrates an improve-
ment of 10.13% and 5.21% in mIOU compared to the
state-of-the-art satellite-based and cross-view methods.

2. Related work
2.1. Semantic Segmentation of Ground Objects

In the studies on semantic segmentation of ground ob-
jects, high-resolution satellite imagery has significantly
contributed to the advancement of a variety of tasks, in-
cluding urban road extraction [1, 3], land use classifica-
tion [5, 41], and building extraction [4, 31]. Prior research
focused on buildings and other terrestrial objects, has pri-
marily utilized satellite imagery as the main source of data,
achieving notable results [19, 43]. However, these ap-
proaches were somewhat limited in achieving fine-grained
semantic segmentation, as they lacked facade information
typically contained in street-view images. To address these
limitations, Wojna et al. [37] introduced a method for pro-
jecting geometric attributes of buildings. Workman et al.
utilized a backbone network to extract feature vectors repre-
senting the overall features of street views, using the spatial
location of street-view images to diffuse these into the satel-
lite view feature space [39]. Another approach involved
creating a geospatial attention mechanism using distance
and angle information, mapping street-view feature vectors
onto the satellite view [38]. However, these feature map-
ping methods result in feature loss during the mapping pro-
cess and sparse street-view features in the satellite perspec-
tive.Our method addresses these challenges by enabling ac-
curate spatial mapping and efficient transfer of dense fea-
tures from street views to the satellite view, thereby bridg-
ing the gap between different observational viewpoints.

2.2. Cross-View Projection Methods

Cross-view projection methods play a crucial role in
bridging the gap between different perspectives in image
localization and driving planning [20, 27, 28, 30, 34]. Tech-
niques like polar transformations [28] were employed by to
map features from satellite views to ground views. These
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Figure 2. Overview of our proposed SG-BEV framework. In Satellite Feature Extraction branch, we extract features of input satellite
imagery, meanwhile output building footprint segmentation results for further processing. In Street-View to BEV Conversion branch,
we map street-view features to BEV space using estimated depth information combined with building footprints. In Cross-View Feature
Fusion module, we align and fuse satellite features with BEV features to achieve fine-grained segmentation of building attributes.

transformations are crucial for tasks such as image retrieval
and street-view generation. However, for the fine-grained
building attribute segmentation from a top-down perspec-
tive that we aim to achieve, this method may not be suitable.
In addition, several previous studies [29, 35], assumed a ge-
ometric relationship between the viewpoint and the ground
plane to establish feature mapping relationship. However,
these methods fail to capture features above the viewpoint
and also create feature distortion away from the center area.
Our approach overcomes the incomplete feature mapping in
cross-view geometric projection methods, achieving com-
prehensive mapping of building facade information.

2.3. Bird’s Eye View methods

The Bird’s Eye View (BEV) methods have been widely
used in autonomous driving and robot navigation [13, 21,
22, 24], which are mainly for road area analysis and effec-
tive segmentation of targets like vehicles and lanes [10, 14,
22, 23]. The Lift, Splat, Shoot (LSS) [23] method mapped
two-dimensional features to three-dimensional space by
predicting depth distribution to acquire BEV features. BEV-
Former [17] startded from BEV queries and maps back
to two-dimensional features for interaction. Additionally,
BEVFormer enhanced the ability to capture features of tall
objects by selecting multiple three-dimensional reference
points along the Z-axis. However, street-view images fail
to capture the complete outline of building footprints, lead-
ing to effective features being concentrated at the edges of
depth-estimated dense areas (the building walls). In the LSS
method, effective features were primarily concentrated at
wall locations with the highest depth probabilities, while in
BEVFormer, after average pooling along the Z-axis, fea-

tures were also predominantly focused on the walls. The
inconsistent distribution between BEV and satellite fea-
tures, with strong features on building walls but sparse
elsewhere, may degrade performance in subsequent tasks.
Our designed Satellite-Guided Reprojection (SGR) module
utilizes the footprint information provided by satellite im-
agery, combined with the estimated depth information, to
guide the concentrated BEV features towards the interior of
building footprints, effectively overcoming the issue of un-
even BEV feature distribution.

3. Methods

As shown in Figure 2, this paper introduces a novel
method for cross-view fine-grained attribute segmentation
of buildings, named SG-BEV. In our comprehensive work-
flow, we employ two distinct branches to extract features
from satellite and street-view images, respectively, and then
merge them using a feature fusion module. In the satel-
lite branch, we apply a backbone network to extract the
satellite feature Fsat and output preliminary segmentation of
the building footprint to guide the subsequent BEV features
(Section 3.1). In the street-view branch, we initially map us-
ing depth estimation information, then optimize the feature
distribution with the Satellite-Guided Reprojection (SGR)
module, , and finally produce BEV features Fbev with de-
formable attention [17, 36] (Section 3.2). In the Cross-View
Feature Fusion module, we integrate Fsat with Fbev in a uni-
fied top-down view space (Section 3.3). The decoder then
processes these integrated features to produce fine-grained
building attribute segmentation results, effectively captur-
ing detailed attributes in the cross-view scenario.
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Figure 3. Illustration of Satellite-Guided Reprojection Module.
We utilize satellite features to generate building footprint informa-
tion, followed by calculating α. Based on depth information d and
α, we calculate magnitude of the offset ∆ to adjust the initial point
cloud for uniform distribution within the building area and discard
points that exceed the building’s footprint.

3.1. Satellite Feature Extraction

Satellite images provide a comprehensive outline of
buildings from a top-down perspective, effectively compen-
sating for the limitations of street-view images in perceiving
the overall form of buildings and capturing areas obscured
in street views. We deployed a feature extractor to process
satellite images, thus obtaining the satellite features Fsat.
Since satellite images inherently offer a top-down perspec-
tive, they can be directly applied to subsequent Cross-View
Feature Fusion. The final building contour features primar-
ily originate from the satellite branch, which has a simpler
structure. This shorter pathway design facilitates the back-
propagation of loss.

Furthermore, the obtained satellite features will be pro-
cessed through an additional decoder to produce segmen-
tation results of building footprints, distinguishing between
building and non-building areas. Our subsequent SGR mod-
ule will leverage the advantages of multiple perspectives,
guiding the sensible mapping of street-view features using
the output building footprints to prevent BEV features from
concentrating solely on building edges.

3.2. Street-View to BEV Conversion

Initial Point Cloud Generation. By utilizing estab-
lished monocular depth estimation algorithms [2], we are
able to derive depth maps from street-view images. Based
on depth estimation results and the geometric relation-
ship of panoramic images, we obtained a three-dimensional
XYZ estimation of the scene [33]. With this, we established
an index mapping relationship between the 3D scene and

panoramic images, facilitating the preliminary mapping of
street-view features.

Θi,j =
iπ

H
, Φi,j = −2πj

W
+ π (1)

i = {0, . . . ,H − 1}, j = {0, . . . ,W − 1}
Here, Θ and Φ are angle matrices of panoramic im-

ages with size H × W , consisting of two-dimensional
Euler angular equivariant series, where i and j represent
row and column numbers, respectively. Given the repre-
sentation in spherical coordinate systems, each 3D point
(Xi,j , Yi,j , Zi,j) in the camera coordinate system will be
obtained through the calculation in Eq. (2), where Di,j is
the panoramic depth information.

Xi,j = Di,j · sin(Θi,j) · sin(Φi,j),

Yi,j = Di,j · cos(Θi,j), (2)

Zi,j = Di,j · sin(Θi,j) · cos(Φi,j).

Satellite-Guided Reprojection. In our cross-view se-
mantic segmentation task, we aim to reproject street-view
features into building interiors completely and continuously
with minimal alterations. We observe that while BEV fea-
tures concentrate on building walls in the XY plane, they
are dispersed and extended in the Z-axis, corresponding to
street-view features from the facade base to the top. Using
depth information d as a positively correlated offset factor
in this context can factor effectively maintains the visual
continuity and integrity of the facade features. With this
method, features at the bottom of the building facade are
guided closer to the center area, while the top features are
relatively distanced from the center area.

Additionally, we extract building footprint information
from satellite images to calculate the adjustment coefficient
α to control the intensity of the offset. Specifically, the
satellite image is divided into a 3 × 3 grid, and the pro-
portion of building pixels in each grid is calculated to set
the value of α. In our approach, a higher value of the ad-
justment coefficient α indicates a larger footprint area of
the building, necessitating a greater degree of offset. The
specific magnitude of the offset ∆ is jointly constructed by
depth and α, as illustrated in Eq. (3).

∆ = log(1 + d− d0)× α (3)

Here, d means depth, and d0 is a predefined hyper-
parameter. ∆ is adjusted using a logarithmic function, aim-
ing to reduce discontinuities in the point cloud on the same
building facade caused by the rapid increase in depth with
height. When d < d0, no offset occurs. Next, we determine
the direction of the point cloud offset. Considering that the
camera is situated at the center, the point cloud should off-
set away from the center. The offset direction is determined
by the following Eq. (4):
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D⃗ =

[
Xi,j − cx
Yi,j − cy

]
(4)

Here, cx and cy represent the coordinates of the center
position. Utilizing the calculated offset direction and dis-
tance, we accordingly adjusted the XY coordinates of the
point cloud. Our method combines information from satel-
lite imagery and depth data to effectively optimize the dis-
tribution of the initial point cloud by shifting it as Eq. (5).[

X ′
i,j

Y ′
i,j

]
= ∆ · D⃗ +

[
Xi,j

Yi,j

]
(5)

Subsequently, we use the index information carried by
the point cloud, which indicates the correspondence be-
tween the spatial positions in BEV space and the locations
on the panorama. By integrating with deformable attention
mechanisms [17, 36], we map the perspective features of
the street-view onto the BEV plane. More visualization
information can be found in the supplementary materials.
More information on our street-view feature mapping vi-
sual comparison with other methods, and the α parameter
can be found in the supplementary materials.

3.3. Cross-View Feature Fusion

By acquiring satellite features and street-view BEV fea-
tures as described above, we have unified features from two
different views under a top-down perspective. Recognizing
the challenges posed by depth estimation errors and posi-
tional inaccuracies, our Cross-View Feature Fusion model
first addresses aligning these diverse features [7]. The align-
ment process begins by generating a 2D flow field Ω, which
is calculated based on the spatial discrepancies between Fsat
and Fbev. This involves using convolutional layers to predict
coordinate offsets. The calculated flow field Ω is then used
to warp Fbev to align with Fsat, which can be mathematically
formulated as:

Faligned = [Warp(Fbev,Ω), Fsat] (6)

where [·, ·] denotes the concatenation along the channel di-
mension, Warp is a function applying the calculated offsets
using bilinear interpolation, ensuring the spatial alignment
of the features. Ω is the deformation field predicted by a
convolutional network.

The next step is to the integration of the feature sets. We
initiate a spatial fusion process by applying a 3×3 convolu-
tion layer, crucial for enhancing the spatial representation of
the features. The output of this layer serves as the input for
our adaptive integration function. As illustrated in Figure
2, the refined features from the convolution layer are first
globally averaged pooled and then employ a linear trans-
formation. This transformation is implemented via a 1 × 1
convolution. Our cross-view feature fusion module captures

essential information from both satellite and BEV features
while minimizing their alignment errors.

4. Experiments
4.1. Datasets

OmniCity Dataset (OmniCity) [15] encompasses street-
level and satellite imagery from the Manhattan area in New
York, with each street-view precisely corresponding to its
satellite counterpart. This dataset provides detailed urban
attributes such as land use and floor level, tailored for fine-
grained cross-view semantic segmentation tasks.
Expanded Vigor Dataset (Vigor) [45] includes the near-
est street-satellite image pairs centered on satellite imagery,
which are selected from the original dataset and supple-
mented with land use information provided by DataSF1 in
the San Francisco area, to extend its application from ge-
ographic localization to cross-view semantic segmentation.
As street-view and satellite images are not center-aligned,
the provided offset values will be used for subsequent BEV
feature translation to move them to the appropriate position.
Brooklyn-Manhattan Dataset (Brooklyn) combines
street and satellite imagery from Brooklyn and Manhattan,
utilizing land use and floor level information provided by
PLUTO2. Building upon the OmniCity, we have optimized
the data collection step size to reduce overlap in satellite
imagery, expanded the coverage of dataset, and selected
higher-quality street-view images.
Boston Dataset (Boston) contains street-satellite image
pairs across the entire city of Boston, supplemented with
land use information provided by Boston Maps3. The
dataset maintains the same rigorous selection and division
criteria as the Brooklyn.

To comprehensively evaluate the robustness and gener-
alization capabilities of models, all datasets are strictly di-
vided according to geographic regions, with a 4:1 training
to test set ratio. We have provided a comparison of different
data partition methods in the supplementary materials.

4.2. Experimental Settings

Evaluation Metrics. Our study utilizes mean intersec-
tion over union (mIOU) and overall accuracy (Acc) to eval-
uate our cross-view semantic segmentation task. mIOU
measures the overlap between the model’s predicted regions
and the true regions, while Acc assesses the proportion of
samples correctly predicted by the model. In our task, it
involves perceptive segmentation of two fine-grained at-
tributes of buildings: land use and the number of floors.

1https://data.sfgov.org/Housing-and-Buildings/
Land-Use/us3s-fp9q

2https://www.nyc.gov/site/planning/data-maps/
open-data/dwn-pluto-mappluto.page

3https : / / data . boston . gov / dataset / boston -
buildings-with-roof-breaks
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Figure 4. Comparisons of SG-BEV (Ours) and Satellite-Based Methods for Fine-Grained Segmentation. The first two rows show
results of OmniCity on land use (first row) and floor level (second row) segmentation tasks. The third row presents land use predictions of
Vigor. The street-view panoramas, from left to right, correspond to a 360-degree clockwise rotation starting from the north direction in the
satellite imagery.

Table 1. Comparison with satellited-based semantic segmentation methods on different datasets, in terms of mIoU and Acc metrics (%).

Method
OmniCity Brooklyn Boston Vigor

Land use Floor Land use Floor Land use Land use

mIOU Acc mIOU Acc mIOU Acc mIOU Acc mIOU Acc mIOU Acc

FarSeg [43] 26.27 68.62 17.42 71.75 31.71 80.08 26.93 72.31 28.62 72.08 28.49 74.49
SAN [40] 24.49 65.48 19.89 70.66 31.83 75.41 25.39 69.69 29.05 77.63 29.03 72.95
SegNext [9] 31.38 70.31 25.27 72.27 36.85 76.68 34.55 76.01 32.55 76.81 34.92 76.13
Ours 37.54 76.13 40.64 77.82 47.19 78.43 49.51 79.00 39.72 77.39 41.70 76.81

Comparison Methods. Our comparison methods are di-
vided into two categories: The first category involves seg-
menting satellite imagery using state-of-the-art methods, in-
cluding FarSeg [43], SAN [40] and SegNext [9]. The sec-
ond category comprises cross-view methods that transform
street view imagery into a satellite view and then combine
it with satellite features, specifically Spherical Transform
(ST) [35], Geometric Projection (GP) [29] and BEVFormer
[17]. For these three cross-view methods, we consistently
use the same satellite feature extraction and fusion module
as in our approach. In our comparisons, we do not apply ST
and GP to the Vigor dataset because these methods require
the use of centrally aligned street view images for projec-
tion, which is not the case with the Vigor dataset. Further-
more due to the lack of temporal information in our data, we
retain the Z-direction expansion capability in BEVFormer
but only utilize its spatial attention module. All comparison
methods follow the best settings.

Implementation Details. Our network employs Seg-

Next with it variant MSCAN-B2 [9] with pre-trained
weights on Cityscapes [6] as the feature extractors
for street-view and satellite imagery utilizing non-share
weights. Satellite images and the BEV transformations de-
rived from ground images are uniformly sized at 256 × 256
across all datasets, corresponding to a sensing range of ap-
proximately 70 × 70 meters. Ours models are trained on
Nvidia GeForce RTX 3090 GPUs, starting with an initial
learning rate of 6e−5, which is adjusted according to a step
strategy over 50 epochs. We use AdamW as the optimizer,
with an epsilon of 1e−8, a weight decay of 0.01. Informa-
tion about the depth estimation method used in the paper
can be found in the supplementary material. More informa-
tion on depth estimation and BEV dimension settings can
be found in the supplementary materials.

4.3. Performance Comparison

Compare to Satellite-Based methods. As shown in
Table 1, our cross-view segmentation results demonstrate
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Figure 5. Comparisons of SG-BEV (Ours) and Other Cross-View Methods for Fine-Grained Segmentation. The first two rows
display results of Brooklyn on land use (first row) and floor level (second row) segmentation tasks. The bottom row illustrates land use
segmentation predictions of Boston. The street-view panoramas, from left to right, correspond to a 360-degree clockwise rotation starting
from the north direction in the satellite imagery.

Table 2. Comparison with cross-view transformation methods on different datasets, in terms of mIoU and Acc metrics (%).

Method
OmniCity Brooklyn Boston Vigor

Land use Floor Land use Floor Land use Land use

mIOU Acc mIOU Acc mIOU Acc mIOU Acc mIOU Acc mIOU Acc

ST [35] 27.07 70.06 18.06 69.11 37.65 79.11 32.72 75.23 27.02 76.95 - -
GP [29] 33.28 71.98 27.66 74.91 39.70 79.60 36.09 77.05 32.43 78.53 - -
BEVFormer [17] 32.17 71.17 30.81 75.88 42.96 78.32 44.59 76.11 37.16 78.63 37.33 76.23
Ours 37.54 76.13 40.64 77.82 47.19 78.43 49.51 79.00 39.72 77.39 41.70 76.81

significant improvements over segmentation using satellite
imagery alone. In experiments across four datasets, our
method showed an increase in mIOU for building cate-
gory prediction and floor count prediction tasks by 7.61%
and 15.16%, respectively, compared to the best satellite-
based segmentation method. Predicting floor counts from a
satellite view is more challenging than classifying building
types, as floor count information is primarily concentrated
on the facades. Our approach is more effective in this task,
highlighting the efficacy of integrating street-view data for
fine-grained building attribute segmentation tasks. As ob-
served in Figure 4, other methods using only satellite im-
agery could delineate building outlines but struggled with
fine-grained attribute perception of buildings. Our method
achieves multi-perspective perception of building attributes,
not only effectively segmenting building contours but also
distinguishing between different building attributes.

Compare to Cross-View methods. As shown in Table
2, we compare our method with other Cross-View meth-
ods. Compared to geometric projection methods, our ap-

proach showed an average increase in mIOU of 6.35% and
13.20%, respectively. As evident from Figure 5, the two
cross-view geometric projection methods maintain good ge-
ometric fidelity only near the camera, showing significant
distortion in farther areas, leading to loss of street-view
feature projection and reduced segmentation performance.
Among the methods implemented through geometric pro-
jection, Geometry Projection (GP) performed better than
Spherical Transform (ST), as it directly projects features in-
stead of converting them into image projections.

Additionally, compared to BEVFormer, our method,
with the addition of the SGR module, demonstrates a sig-
nificant improvement, with an average increase in mIOU
of 4.13% and 7.38%. From Figure 5, it is observed that
BEVFormer approach may correctly identify the category
at the building edges, but not accurately inside the building.
This is linked to BEVFormer’s limitation in effectively pro-
jecting features only to building edges. More visualization
results will be shown in the supplementary materials.
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Table 3. Ablation study on Satellite-Guided Reprojection mod-
ule, in terms of mIOU metrics (%).

Method OmniCity Brooklyn

Land use Floor Land use Floor

UNet [25] 27.07 34.13 37.04 39.61
UNet [25] + DGR 32.52 37.01 42.33 45.06
UNet [25]+ SGR 36.67 40.53 47.10 48.55

SegNext [9] 32.10 30.56 42.43 43.55
SegNext [9] + DGR 35.49 37.64 45.16 48.17
SegNext [9] + SGR 37.54 40.64 47.19 49.51
DGR: Depth-Guided reprojection, utilizes only depth.
SGR: Satellite-Guided reprojection, utilizes both satellite and depth.

Table 4. Ablation Study on Cross-View Feature Fusion module,
in terms of mIOU metrics (%).

Method OmniCity Brooklyn

Land use Floor Land use Floor

ConcatFusion 31.78 29.34 42.12 42.28
Cross-View Fusion 32.10 30.56 42.43 43.55

DGR + ConcatFusion 33.85 35.13 43.08 46.19
DGR + Cross-View Fusion 35.49 37.64 45.16 48.17

SGR + ConcatFusion 36.74 39.69 46.73 49.28
SGR + Cross-View Fusion 37.54 40.64 47.19 49.51

4.4. Ablation study

Satellite-Guided Reprojection Performance. In our
ablation experiments, we employed UNet [25] and Seg-
Next [9] as image encoders to validate the contribution of
our proposed Satellite-Guided Reprojection module (SGR).
And in order to more fully verify the role of our SGR, we
also extract the Depth-Guided Reprojection (DGR) module
in SGR separately for experiments. When using the DGR
module, α was set to a fixed value, and satellite footprint
range restrictions were not applied. We will compare our
method SGR with two different approaches: directly using
BEV feature projection, and the second using DGR in the
BEV feature projection, while maintaining the same sub-
sequent feature fusion steps. As shown in Table 3, with
the DGR module, the mIOU for U-Net improved by 4.77%,
and for SegNext by 4.46%. This shows that using depth
information effectively disperses street-view features, con-
centrated on building edges, throughout the building area.
The addition of the Satellite-Guidance further increased the
mIOU for U-Net by 3.98% and for SegNext by 2.40%,
demonstrate the importance of the supporting role of satel-
lite information. Additionally, the performance of our SGR
module was significantly enhanced in both SegNext and
UNet architectures, convincingly demonstrating the SGR
module’s outstanding role in optimizing BEV feature dis-
tribution, resolving the issue of concentrated building edge
features, and substantially improving task performance.

Cross-View Feature Fusion. To demonstrate the effec-
tiveness of our proposed fusion strategy, we conducted a se-
ries of ablation experiments on the OmniCity and Brooklyn
datasets. We will use a feature fusion method that directly
concatenates satellite and BEV features along the channel
dimension (ConcatFusion) as the baseline for comparison.
Additionally, we further explore the impact of the reprojec-
tion module on the feature fusion module. We compared the
performance of the Cross-View feature fusion module with-
out using any reprojection module, and when using DGR
and SGR modules. As shown in Table 4, the Cross-View

feature fusion module improved the performance of both
tasks, with the mIOU averaging 0.78%, 2.05% and 0.61%
improvements respectively. We found that the most signifi-
cant improvements occurred when using the DGR module.
This is because the offsets generated by the DGR module
can be unstable, potentially causing features to exceed the
boundaries of buildings, leading to misalignment. Our fea-
ture fusion module includes an alignment process that ef-
fectively mitigates this issue. However, as SGR is guided
by satellite information, the misalignment between differ-
ent features is less pronounced, leading to a reduced per-
formance improvement from Cross-View fusion. These re-
sults validate the effectiveness of our feature fusion module,
with more efficient feature integration enhancing task per-
formance under various conditions.

5. Conclusion

In this paper, we proposed SG-BEV, a novel satellite-
guided BEV fusion method for cross-view semantic seg-
mentation, focusing on the fine-grained attributes of build-
ings. Utilizing BEV method coupled with our proposed
Satellite-Guided Reprojection module, our method pre-
cisely converts features from the street view to satellite
view, subsequently merging them with satellite imagery fea-
tures, producing fine-grained building attribute segmenta-
tion results. Our SG-BEV demonstrates significant perfor-
mance improvements compared to state-of-the-art satellite-
based methods and cross-view methods, with an mIOU in-
crease over 10.13% and 5.21% averaged on four datasets.
SG-BEV represents a novel attempt at cross-view semantic
fusion, achieving a comprehensive understanding of build-
ings from different perspectives. We hope that our work
will inspire further research into cross-view semantic seg-
mentation tasks.
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