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Figure 1. Achieving precise control in image editing tasks can be challenging with standard 2D generative pipelines. Our Image Sculpting
framework offers the ability to interact with 3D geometry starting with a single image. This enables users to perform detailed, quantifiable,
and physically-plausible edits, including precise pose editing, rotation, translation, 3D composition, carving, and serial addition.

Abstract

We present Image Sculpting, a new framework for edit-
ing 2D images by incorporating tools from 3D geometry
and graphics. This approach differs markedly from exist-
ing methods, which are confined to 2D spaces and typically
rely on textual instructions, leading to ambiguity and lim-
ited control. Image Sculpting converts 2D objects into 3D,
enabling direct interaction with their 3D geometry. Post-
editing, these objects are re-rendered into 2D, merging into
the original image to produce high-fidelity results through
a coarse-to-fine enhancement process. The framework sup-
ports precise, quantifiable, and physically-plausible editing
options such as pose editing, rotation, translation, 3D com-
position, carving, and serial addition. It marks an initial
step towards combining the creative freedom of generative
models with the precision of graphics pipelines.

Code and project page available at this https URL

1. Introduction

Recent developments in the field of image generative mod-
eling [63, 66, 68, 89] have unlocked new potentials in cre-
ative content creation, offering unprecedented opportuni-
ties for the generation of diverse visual content by mate-
rializing ideas and concepts articulated through language
prompts. However, the integration of these models into
real-world content creation workflows still poses significant
challenges. Among the most critical is the need for users to
have detailed control over various aspects of generated ob-
jects, including their pose, shape, location, layout, and spa-
tial compositions. The precision extends to quantifiable ma-
nipulations, such as rotating an object by a specific angle or
making physically-realistic modifications, such as position-
ing a character in a way that conforms to basic anatomical
and physical principles. Interestingly, such a quest for pre-
cision and controllability aligns closely with the core prin-
ciples of computer graphics, which strive to generate pho-
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torealistic images with artistic control.
In virtual effects (VFX) and rendering pipelines, experts

meticulously craft and edit every detail within a fully con-
trollable 3D environment, striving for utmost realism. For
decades, methods for accurately manipulating and render-
ing objects have been explored, leading to the development
of numerous advanced techniques in 3D model acquisition,
rigging, posing, lighting, texturing, and scene rendering.
These methods form the bedrock of the modern computer
graphics pipeline. However, it often requires custom hard-
ware and software for (1) acquiring production-quality 3D
models or designing them from scratch, (2) making these
models possible to animate (rigging), (3) creating visually
plausible animations (animation), (4) rendering back in the
2D world after applying material and setting up the light-
ing, and (5) compositing the resulting image with a back-
ground or other objects. This process often employs teams
of artists and engineers for each one of these steps, as it re-
quires substantial manual input using specialized tools (e.g.
After Effects [2], Substance [4], and 3ds Max [29]).

In contrast, AI-based image generation avoids all this
manual work, requiring only a text prompt. Leveraging the
power of human language and large datasets of curated con-
tent, transforming a text description into a visually striking
image is more accessible than ever. Yet, when it comes to
precise object manipulation, the current 2D-based genera-
tive approach faces inherent limitations due to the lack of a
third dimension, leading to incomplete information, limited
user interaction on a flat plane, and possible ambiguities.
The gap in controllability with respect to image generation
using computer graphics techniques is striking, and closing
it is a major goal of our work.

Most interfaces for image editing frameworks rely on
text-based instructions. For example, techniques such
as Prompt-to-Prompt [26], Plug-and-Play [79], Instruct-
Pix2Pix [10], Imagic [36] and Object 3DIT [50] offer adapt-
able language control. However, achieving precise manipu-
lation through these models remains a challenge. Straight-
forward manipulations such as “changing a style to mimic
Van Gogh” are manageable. However, more specific in-
structions such as “lift the object by 5 cm and rotate it by
42 degrees.” are less likely to be successful, as current gen-
erative models cannot fulfill such detailed requests through
textual prompts alone. 2D-based interactive methods such
as DragGAN [57], FreeDrag [42], and DragDiffusion [73]
demonstrate the ability to alter part of an object through
transitions in the latent space. Despite this, they have their
limitations: 1) they can accomplish basic deformations, but
the outcomes are not entirely predictable, often leading to
results that do not align with the user’s intentions; 2) these
latent transformations operate within the 2D feature space,
which inherently limits their ability to represent 3D trans-
formations and handle occlusions accurately; 3) they lack

physics-awareness, which complicates incorporating exter-
nal constraints, such as skeletal structures.

Our work draws inspiration from the computer graph-
ics pipeline and ventures into a novel approach for 2D
image-based object manipulation tasks. Our proposed Im-
age Sculpting framework, which metaphorically suggests
the flexible and precise sculpting of a 2D image in a 3D
space, integrates three key components: (1) single-view
3D reconstruction, (2) manipulation of objects in 3D, and
(3) a coarse-to-fine generative enhancement process. More
specifically, 2D objects are converted into 3D models,
granting users the ability to interact with and manipulate the
3D geometry directly, which allows for precision in editing.
The manipulated objects are then seamlessly reincorporated
into their original 2D contexts, maintaining visual coher-
ence and fidelity. A critical hurdle in this process is the
single-view 3D reconstruction method, a task that, despite
rapid progress [27, 41, 43–46, 62, 71], often results in rela-
tively low-fidelity, coarse geometric and texture representa-
tions. Unlike manually crafted 3D assets used for graphics,
their rendered version is far from photo-realistic. Nonethe-
less, the extracted geometries are sufficient for interactive
and precise control. To achieve high-quality final images, a
separate enhancement procedure is necessary. In summary,
our Image Sculpting pipeline has three key phases:

Phase 1. For the 3D reconstruction phase, we employ
a zero-shot single image reconstruction model (Zero-1-to-
3 [44]), which has been trained on extensive datasets [17]
of 3D objects.

Phase 2. The deformation process utilizes established
geometric processing tools, such as As-Rigid-As-Possible
(ARAP) [78] and linear-based skinning [48], enabling in-
teractive and precise manipulation of the 3D models.

Phase 3. For the generative enhancement process, we
develop a coarse-to-fine enhancement pipeline, using an
feature injection approach [79]. Our method strikes a bal-
ance between maintaining the original texture of the object
and the modified geometry, utilizing a pre-trained text-to-
image diffusion model with additional controls.

Our Image Sculpting framework showcases an array of
precise and quantifiable image editing capabilities. These
include precise pose editing, rotation, translation, multi-
object 3D composition, carving, and serial addition. This
suite of functionalities demonstrates the versatility of our
approach and its superiority in precision and control com-
pared to existing image editing methods. Our method also
outperforms various baselines in image quality, as con-
firmed by both qualitative and quantitative evaluations on
the new SculptingBench benchmark. We believe that our
method can foster new opportunities in merging the flexi-
bility of generative models with the precise controllability
inherent in traditional graphics pipelines.

4242



(a) Space Deformations (b) Shape-Aware Deformation (c) Linear Blend Skinning

Figure 2. Illustration of three mesh deformation methods applied to a 3D model. In cage-based space deformation (a), the model is placed
in a cage and deformed when the user moves the cage vertices [33]. As-Rigid-As-Possible (ARAP) [78] deformation (b) deforms the model
when user-selected blue handle points are moved towards designated red target points. Linear blend skinning (c) maps the deformation of
a skeleton to the model [32]. Following deformation, a diffusion rendering process can be added for controllable generation. Each mesh
deformation technique offers a different balance of control, speed, and precision. Our framework can use any of these techniques.

2. Related Work

Generative Image Editing In computer graphics, exten-
sive research on interactive raster image editing exists, and
we defer its detailed review to the next section. In com-
puter vision, the advent of image generative models such as
GANs [22, 34, 35] has expanded the scope of image edit-
ing to include style transfer [21], image-to-image transla-
tion [30, 91], latent manipulation [70, 84], and text-based
manipulation [1, 58, 85]. Recently, capabilities in image
editing have advanced significantly with the rise of diffusion
models [18, 59, 66]. The leading systems [51, 56, 63, 68]
allow users to generate image variations or use inpaint-
ing masks [54] to generate specific parts of scenes based
on a text prompt. Other work explores enhancing pre-
trained diffusion models with text-guided editing capabil-
ities [10, 26, 52, 79]. Yet, text-based editing has limita-
tions in precisely controlling object shapes and positions.
ControlNet [90] incorporates additional conditional inputs
such as depth [64], poses [11], and edges [86] for con-
trollable generation. For more intuitive interactions, Drag-
GAN [57] enables users to drag control points on objects
with GANs, and similar techniques have been adapted for
diffusion models [42, 73]. However, these methods are
mostly confined to 2D and face challenges in tasks requir-
ing more complex, out-of-plane transformations. 3D-aware
generative models such as EG3D [13] and StyleNeRF [23]
have explored this direction. OBJect-3DIT [50], a base-
line in our paper, studied 3D-aware editing using language
instructions. However, its effectiveness is somewhat con-
strained due to its training on a synthetic dataset.
Single-View Reconstruction Single-view 3D reconstruc-
tion is a long-standing problem in computer vision [25].
While algorithmic advancements are important, the signif-
icance of training data has been increasingly recognized.
Earlier efforts were geared towards training models [55, 76,
83, 88] using smaller, simplistic 3D datasets [14, 65]. Re-
cent approaches [61, 80] have started to utilize density dis-
tillation from pre-trained 2D diffusion models trained on
large-scale text-image datasets, lessening the reliance on 3D

data. Nonetheless, for improved view-consistency, the de-
mand for high-quality 3D data is indispensable. The emer-
gence of large-scale 3D datasets, such as Objaverse [16, 17],
has spurred methods such as Zero-1-to-3 [44] to combine
2D score distillation with 3D data training. This has led to
a surge in new models in this domain, noticeably enhanc-
ing reconstruction quality [43, 62, 72, 82]. Our work is
also closely related to 3-Sweep [15] and 3D Object Manip-
ulation [37]. These pioneering studies in graphics involve
constructing a 3D model using edge information or retriev-
ing an online repository for image editing. We now employ
generative models to further enhance shape editing capabil-
ities and user experience.
3. Overview of 3D Shape Deformation

The deformation of 3D shapes has been extensively stud-
ied in the last four decades, with both traditional and data-
driven methods being proposed and successfully used in
robotics, graphics, and engineering. We review the main
approaches and their usability within our framework.
Space Deformations The older and still widely used ap-
proach is applying a volumetric warp function f : R3 !
R3 to all points of a 3D domain [69]. This approach can be
applied to explicit (triangular or polygonal meshes) or im-
plicit representations. The map can be parametrized using
splines on lattices [69], vertices on a cage [33], or neural
fields [19]. A limitation of these approaches is that they are
unaware of the object shape, making them more challenging
to use on complex articulated objects [9].
Shape-Aware Deformation Shape-aware deformations
provide a set of controls linked to the objects’ surface.
In Computer-Aided-Design (CAD), a small set of control
points define a smooth surface using spline patches [20].
Despite its flexibility and quality, extracting spline patches
from 3D models or NeRFs is a challenging and open prob-
lem [7]. Partial differential equation (PDE)-based methods
simulate the deformation of an object, representing it as a
volumetric deformable solid [75] or as a thin rubber shell
[78]. The forces guiding the deformation are applied by
moving handles selected on a surface [8], making them in-
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Figure 3. Overview of our Image Sculpting pipeline, DDIM+ represents DDIM with the DreamBooth fine-tuned and depth controlled
model. The process begins by converting the input image into a textured 3D model through a de-rendering process. This model is then
prepared for interactive deformation by creating a skeleton and calculating skinning weights. The user can modify the skeleton to deform
the model, resulting in an initial coarse image. To refine this edited image, we invert the coarse rendering Ic into the noise xc

T . We then
inject self-attention maps Ac

t and feature maps f c
t from the initial image’s denoising process into the enhanced image denoising steps.

This technique helps in preserving the geometry of the modified object while restoring the visual quality of the edited image.

tuitive to use and requiring minimal user interaction.
Linear Blend Skinning The most popular deformation
approach is linear blend skinning [32], which defines a
space deformation function as a blended average of a set
of affine transformations weighted by shape-aware scalar
functions, often computed with methods based on solutions
of PDEs on surfaces [31] or manually edited. This approach
offers complete control and flexibility, as the affine trans-
formation can be attached to points, vertexes of a cage, or
segments in a skeleton [6].
Our approach We can use any of these algorithms to pre-
cisely control the shape deformation and, thus, the rendered
image. We show an example of one representative method
for each class in Fig. 2, and we leave as future work addi-
tional automation of this step.

4. Methods

Given a single 2D image, our objective is to enable pre-
cise manipulation of the objects and their orientations in 3D
space, before converting this back into a high-quality edited
2D image. To achieve this, we have developed a novel edit-
ing pipeline tailored for image sculpting (see Fig. 3) com-
posed of three steps: (1) We initially convert the input image
into a 3D model, (2) the 3D model is edited by deforming it
in 3D space, and (3) we use a coarse-to-fine generative en-
hancement pipeline to turn the coarse rendering of the 3D
model into a high-fidelity image.

4.1. De-Rendering and Deformation

Given an image of an object, our goal is to perform 3D re-
construction to obtain its 3D model.

Image to NeRF With advancements in text-to-image
foundation models [66] and the viewpoint-conditioned im-
age translation model [44], our initial step involves seg-
menting the selected object from the input image using
SAM [38]. Building upon this, we then train a NeRF using
Score Distillation Sampling (SDS) [61].

NeRF to 3D Model We use the implementation in three-
studio [24] to convert a NeRF volume into a mesh. This
algorithm transforms the volume density into a signed dis-
tance function, extracts an isosurface [47], and parameter-
izes it [87] for texture mapping [74]. The texture is ex-
tracted by differentiable rendering [39].

3D Model Deformation After obtaining the 3D model, a
user can manually construct a skeleton and interactively ma-
nipulate it by rotating the bones to achieve the target pose.
The mesh deformation affects the vertex positions of the ob-
ject but not the UV coordinates used for texture mapping;
this procedure thus deforms the texture mapped on the ob-
ject following its deformation.

However, the resulting image quality depends on the 3D
reconstruction’s accuracy, which, in our case, is coarse and
insufficient for the intended visual outcome (Fig. 3). There-
fore, we rely on an image enhancement pipeline to convert
the coarse rendering into a high-quality output.
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Figure 4. Comparison of our final method with various baseline methods and ablations. Our approach effectively maintains the geometric
information while ensuring the texture quality. In contrast, other methods typically preserve either the texture or the geometry, but not both.
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Figure 5. Overview of the coarse-to-fine generative enhancement
model architecture. The red module denotes the one-shot Dream-
Booth [67], which requires tuning; the grey module is the SDXL
Refiner [5], which is frozen in our experiments.

4.2. Coarse-to-Fine Generative Enhancement

This section focuses on blending a coarsely rendered image
back to its original background. The aim is to restore textu-
ral details while keeping the edited geometry intact. Image
restoration and enhancement are commonly approached as
image-to-image translation tasks [81], leveraging the strong
correlation between the source and target images. Our chal-
lenge, however, presents a unique scenario: despite overall
similarities in appearance and texture between the input and
desired output, the input object’s geometry changes, some-
times significantly, after user editing.

In exploring possible solutions, one approach is to
use subject-driven personalization techniques like Dream-
Booth [67]. They aim to preserve key details from the input,
but might compromise the edited geometry. Alternatively,
image-to-image translation methods like SDEdit [49] can
be used to preserve the edited geometry, but this might dis-
turb the textural consistency with the original image. This
dichotomy was clear in our preliminary study, as shown in
Fig. 4. SDEdit can maintain the geometry, but it was un-
able to accurately replicate the textures. On the other hand,
DreamBooth produced high-fidelity outputs, but struggled
to preserve both the texture and geometry effectively.

To address the balance between preserving texture and
geometry, our approach begins by “personalizing” a pre-
trained text-to-image diffusion model. To capture the ob-
ject’s key features, we fine-tune the diffusion model with

DreamBooth on one input reference image. To maintain the
geometry, we adapt a feature and attention injection tech-
nique [79], originally designed for semantic layout control.
Furthermore, we incorporate depth data from the 3D model
through ControlNet [90]. We find this integration crucial in
minimizing uncertainties during the enhancement process.
One-shot Dreambooth DreamBooth [67] fine-tunes a
pre-trained diffusion model with a few images for subject-
driven generation. The original DreamBooth paper [67] has
shown its ability to leverage the semantic class priors to
generate novel views of an object, given only a few frontal
images of the subject. This aspect is particularly useful in
our setting, since the coarse rendering we work with lacks
explicit viewpoint information. In our application, we train
DreamBooth using just a single example, which is the input
image. Notably, this one-shot approach with DreamBooth
also effectively captures the detailed texture, thereby filling
in the textural gaps present in the coarse rendering.
Depth Control We use depth ControlNet [90] to preserve
the geometric information of user editing. The depth map is
rendered directly from the deformed 3D model, bypassing
the need for any monocular depth estimation. For the back-
ground region, we don’t use the depth map. This depth map
serves as a spatial control signal, guiding the geometry gen-
eration in the final edited images. However, relying solely
on depth control is not sufficient – although it can preserve
the geometry to some extent, it still struggles in local, more
nuanced editing, such as capturing the specific shapes of a
pumpkin’s eyes or the bent legs of a chair (Fig. 4).
Feature Injection To better preserve the geometry, we use
feature injection. As demonstrated in Fig. 3, this step be-
gins with DDIM inversion [77] (with the DreamBooth fine-
tuned, depth controlled diffusion model) of the coarse ren-
dering image to obtain the inverted latents. At each denois-
ing step, we denoise the inverted latent of the coarse ren-
dering along with the latent of the refined image, extracting
their respective feature maps (from the residual blocks) and
self-attention maps (from the transformer blocks). It has
been shown in [79] that the feature maps carry semantic in-
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Figure 6. A compilation of qualitative results from six image editing tasks. Additionally, we include additional examples (termed as
‘Mixture’ in the final row) to illustrate the versatile combination of these capabilities.
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Background

Denoising Loop

Mask-Filled Latent Denoised Latent

Figure 7. Our blend-in process. At every denoising step, we mask
the background areas and blend them with the unmasked regions
from the denoised latent. This process helps maintain visual co-
herence and preserve the background.

Figure 8. Our blend-in process yields visually harmonious results.
Top: Results from direct copy-pasting. Bottom: Our results.

formation, while the self-attention maps contain the geom-
etry and layout of the generated images. By overriding the
feature and self-attention maps during the enhanced image
denoising steps with those from the coarser version, we en-
sure the geometry of the enhanced image can reflect those
of the coarse rendering. The pseudo code for our genera-
tive enhancement is detailed in Appendix A. Note that our
method differs from the original Plug-and-Play use cases:
we use feature injection to preserve the geometry during
the coarse-to-fine process rather than translating the image
according to a new text prompt. We present the injection
layer selection and the replacement schedule in Section 5.
Background Blend-In To maintain the consistency of the
background between the input and edited images, we first
inpaint the area initially occupied by the object in the input
image, thus obtaining an unobstructed background. How-
ever, another challenge arises in merging the edited object
into this background smoothly. Merely copy-pasting it onto
the background leads to an unrealistic visual effect, such
as the improper water reflections over the fish and the ab-
sence of shadow casting from the truck (Fig. 8). To over-
come this, as demonstrated in Fig. 7, our approach involves
masking the background areas during the denoising steps
to preserve their original background. This means we retain
the unedited background by blending the unmasked (edited)
regions from the denoising step with the masked (original)
background. We use SDXL [60] as our pre-trained text-
to-image model, which includes a refiner module by de-
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Figure 9. Comparisons with OBJect-3DIT [50] on object transla-
tion, rotation, and composition tasks.

Drag Control DragDiffusion [73] Openpose Control ControlNet [90] Ours

Figure 10. Comparisons with DragDiffusion [73] and Control-
Net [90] on pose editing. These techniques face difficulties in
handling complex pose modifications.
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Figure 11. Comparisons with InstructPix2Pix [10] and
DALL·E 3 [56] on serial addition. These text-based editing meth-
ods fail to follow precise and quantifiable instructions.

fault. We keep this module in our pipeline, as empirically it
slightly enhances the results by reducing artifacts.

5. Experiments

Experimental Setup We follow [24] to obtain the initial
NeRF representation and to extract the textured 3D model.
We use Instant-NGP [53] and a grid size of 256 for the 3D
model extraction from NeRF. During the coarse-to-fine gen-
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Injecting more layers

Figure 12. Ablation studies on feature injection layers. From left to right, progressively injecting more self-attention layers can result in
increasingly improved alignment with user edits.

Methods DINO" D-RMSE#

Original Coarse Rendering 0.758 0.00
SDEdit [49] (t0 = 0.4) 0.788 1.71
SDEdit [49] (t0 = 0.6) 0.800 2.12
Ours w/o Feature Injection 0.848 2.33
Ours w/o Depth Control 0.851 2.15

Ours 0.853 1.99

Table 1. Ablation studies of the enhancement methods on Sculpt-
ingBench. DINO score measures the textural details, and D-RMSE
measures the geometric fidelity. Depth control and feature injec-
tion enhance texture quality while maintaining geometric fidelity.

erative enhancement process, for one-shot DreamBooth, we
fine-tune the SDXL-1.0 [60] model using LoRA [28] for
800 steps with a learning rate of 1e-5. For feature injection
stage, we utilize all the self-attention layers of the SDXL
decoder and the first block of the SDXL’s upsampling de-
coder. The SDXL refiner is applied after t = 0.1T . For
background inpainting, we use Adobe generative fill [3].
Qualitative Results We showcase qualitative results in
Fig. 6, covering six precise image editing tasks. Detailed
descriptions of these tasks are presented in Appendix B.
Qualitatively, our method combines the creative freedom of
generative models with the precision of graphics pipelines
to achieve precise, quantifiable, and physically plausible
outcomes for object editing across a variety of scenarios.

Our approach introduces new editing features through
precise 3D geometry control, a capability not present in ex-
isting methods. We compare our method with the state-of-
the-art object editing techniques for a comprehensive anal-
ysis. In Fig. 9, we show that 3DIT [50], designed for 3D-
aware editing via language instructions, faces limitations
when applied to real, complex images, largely because its
training is based on a synthetic dataset. In Fig. 10, we com-
pare the pose editing ability with DragDiffusion [73] and
ControlNet [90]. This comparison reveals that these meth-
ods encounter difficulties with complex pose manipulations
because they are constrained to the 2D domain. Further-
more, in Fig. 11, we show how text-based editing methods

like InstructPix2Pix [10] and DALL·E 3 [56] struggle with
precise and quantifiable instructions.
Ablation Studies We create a new dataset SculptingBench
to evaluate our new image editing capabilities. This dataset
contains 28 images covering six categories: pose editing,
rotation, translation, composition, carving, and serial addi-
tion (see Appendix C). We perform quantitative studies us-
ing different coarse-to-fine enhancement methods. To mea-
sure the visual similarity between the edited images and the
original ones, particularly in terms of maintaining textu-
ral details through the editing process, we employ DINO
score [67] as our metrics. This choice is motivated by
the self-supervised training objective of DINO [12], which
encourages distinction of unique features of a image. To
evaluate the geometric fidelity of user edits after enhance-
ment, we introduce a novel metric, D-RMSE. This metric
is specifically created to evaluate how well geometric in-
formation is retained after the enhancement procedure. D-
RMSE measures the discrepancies between the depth maps
of the coarse renderings and their enhanced counterparts:

D-RMSE =
p
E [(depthcoarse � depthenhanced)

2]

where depthcoarse, depthenhanced denote the depth maps Mi-
DaS [64] estimates, for the coarse rendering and the en-
hanced output image, respectively. In Table 1, we show
that without any enhancement, the textural quality metrics
(DINO score) are quite low. SDEdit effectively preserves
the edited geometry with a low D-RMSE, yet the visual
quality significantly deteriorates compared to the original
image (see Fig. 4). Our method offers a more advantageous
balance, significantly enhancing texture quality as demon-
strated by higher DINO score, while preserving geometric
consistency, evidenced by a low D-RMSE score. We ob-
serve that both feature injection and depth control contribute
to enhanced geometric consistency and can lead to further
improvement when used together. Additionally, we conduct
an empirical study to explore the number of self-attention
layers for injection. Fig. 12 shows that more layers improve
alignment with user edits. We use all layers for injection.
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[64] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. TPAMI, 2020. 3, 8

[65] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,
Luca Sbordone, Patrick Labatut, and David Novotny. Com-
mon objects in 3D: Large-scale learning and evaluation of
real-life 3D category reconstruction. In ICCV, 2021. 3

[66] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 1, 3, 4

[67] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. DreamBooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In CVPR, 2023. 5, 8, 12

4250



[68] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. In NeurIPS, 2022. 1, 3

[69] Thomas W. Sederberg and Scott R. Parry. Free-form defor-
mation of solid geometric models. In Computer Graphics.
ACM, 1986. 3

[70] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Inter-
preting the latent space of gans for semantic face editing. In
CVPR, 2020. 3

[71] Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu,
Chao Xu, Xinyue Wei, Linghao Chen, Chong Zeng, and Hao
Su. Zero123++: a single image to consistent multi-view dif-
fusion base model. arXiv:2310.15110, 2023. 2

[72] Yichun Shi, Peng Wang, Jianglong Ye, Long Mai, Kejie Li,
and Xiao Yang. Mvdream: Multi-view diffusion for 3d gen-
eration. arXiv:2308.16512, 2023. 3

[73] Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vin-
cent YF Tan, and Song Bai. DragDiffusion: Harnessing
diffusion models for interactive point-based image editing.
arXiv:2306.14435, 2023. 2, 3, 7, 8

[74] Peter Shirley and Steve Marschner. Fundamentals of Com-
puter Graphics. AK Peters, 2009. 4

[75] Eftychios Sifakis and Jernej Barbic. Fem simulation of
3d deformable solids: A practitioner’s guide to theory, dis-
cretization and model reduction. TOG, 2012. 3

[76] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
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