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Figure 1. DTC123 can generate high-fidelity and multiview-consistent 3D assets from a single arbitrary image, significantly enhancing the
original SDS pipeline through the diffusion time-step curriculum.

Abstract

Score distillation sampling (SDS) has been widely
adopted to overcome the absence of unseen views in recon-
structing 3D objects from a single image. It leverages pre-
trained 2D diffusion models as teacher to guide the recon-
struction of student 3D models. Despite their remarkable
success, SDS-based methods often encounter geometric ar-
tifacts and texture saturation. We find out the crux is the
overlooked indiscriminate treatment of diffusion time-steps
during optimization: it unreasonably treats the student-
teacher knowledge distillation to be equal at all time-steps
and thus entangles coarse-grained and fine-grained model-
ing. Therefore, we propose the Diffusion Time-step Curricu-
lum one-image-to-3D pipeline (DTC123), which involves
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both the teacher and student models collaborating with the
time-step curriculum in a coarse-to-fine manner. Extensive
experiments on NeRF4, RealFusion15, GSO and Level50
benchmark demonstrate that DTC123 can produce multi-
view consistent, high-quality, and diverse 3D assets. Codes
and more generation demos will be released in https:
//github.com/yxymessi/DTC123.

1. Introduction
We consider the problem of obtaining a 3D asset from a
single image. This endeavor holds tremendous industrial
promise, notably in realms such as AR/VR content creation
from a single snapshot and enhancing robotic navigation
through individual captures [9, 42]. However, reconstruct-
ing 3D models (e.g., NeRF [2, 28, 29] and mesh [14, 23])
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from a single image has remained a formidable challenge
due to its severely ill-posed nature, as one image does not
contain sufficient unseen views of a 3D scene.

Fortunately, recent advances in large-scale pretrained
2D diffusion models [35, 36, 61] have paved the way for
such an ill-posed challenge by synthesizing the unseen
views of quality. Pioneered by Score Distillation Sampling
(SDS) [30], we can use the 2D models as teacher to guide
the reconstruction of the 3D models as student. The key is
rooted in a symbiotic teacher-student cycle: As illustrated
in Figure 2 (Top), in the early iterations with significantly
flawed student output, the teacher provides the rough shape
of objects as guidance; as the student gradually improves,
it reciprocates with more precise conditions for the teacher,
who in turn provides more accurate and fine-grained super-
vision. Along with the teacher’s diffusion time steps, SDS
optimizes the student by minimizing the reconstruction er-
ror between the student-rendered and the teacher-generated
2D images (see details in Sec. 3.1).

However, 3D models generated by SDS have defects that
cannot be ignored. As shown in Figure 1, empirical obser-
vations indicate that they often encounter collapsed geome-
try and limited fidelity. Such issues arise primarily from the
confusion of holistic structures and local details as stated in
the field of novel view synthesis [7, 34, 51]. We conjecture
that this may be attributed to the uniform sampling of dif-
fusion time steps during the calculation of reconstruction
errors, that is, SDS treats the student-teacher knowledge
distillation to be equal at all time steps. This is counter-
intuitive, e.g., the teacher shouldn’t teach low-level details
when the student is still grappling with high-level concepts.

Our key insight is that an optimal SDS should follow
a diffusion time-step curriculum : larger time steps cap-
ture coarse-grained knowledge like geometry formation and
smaller time steps focus on enhancing fine-grained de-
tails like texture nuance. To this end, we propose the
Diffusion Time-step Curriculum 1 image to 3D pipeline
dubbed DTC123, where both the teacher and the student
model collaborate with the annealing time-step, exhibiting
a coarse-to-fine generation process. More concretely,
• Student-wise: 3D models should progress from low-

resolution concepts to high-resolution. We leverage res-
olution constraints from the hash-encoding band (NeRF)
and the tet grid (DMTet) to gradually absorb knowledge,
beginning with broader structural elements and eventually
focusing on localized textures and complex scene illumi-
nation (Sec. 4.2).

• Teacher-wise: diffusion models should prioritize on
coarse shape to visual details. We employ a pose-aware
prior, Zero-1-to-3 [22], to establish a coarse-grained
structure that aligns with the reference image. Subse-
quently, we harness the combined guidance of Zero-1-to-
3 and Stable Diffusion, with LLM-augmented prompt and

multi-step sampling (Sec. 4.3), to further provide fine-
grained texture intricacies.
In addition, we introduce several geometric regulariza-

tion to alleviate the Janus Face [12, 27] and high-frequency
surface artifacts (Sec. 4.4). As illustrated in Figure 1, by in-
tegrating the time-step curriculum, which includes three co-
herent parts — time-step schedule, progressive student rep-
resentation and teacher guidance with the aforementioned
regularization techniques, DTC123 significantly enhances
the geometry quality and texture fidelity of the SDS-based
pipeline. We demonstrate the superiority of DTC123 on
NeRF4 [28], RealFusion15 [26], GSO [5] and our bench-
mark Level50. Comprehensive quantitative and qualitative
evaluations clearly show that DTC123 can efficiently gener-
ate multi-view consistent, high-fidelity, and diverse 3D as-
sets, continually outperforming other state-of-the-art meth-
ods. Furthermore, DTC123 enables wide range of applica-
tions, e.g., multi-instance generation and mesh refinement.
In summary, we make three-fold contributions:
• We develop an end-end one image-3D pipeline DTC123,

boosting the efficiency, diversity and fidelity of SDS-
based methods in real-world and synthetic scenarios.

• Diffusion time-step curriculum is a plug-and-play training
principle that could further unleash the potential of SDS-
based teacher-student models.

• We systematically and theoretically validate the proposed
diffusion time-step curriculum.

2. Related Work
Text-3D Generation focuses on generating 3D assets from
a given text prompt. The core mechanism of such ap-
proaches is the score distillation sampling (SDS) proposed
by [30], where the diffusion priors are used as score func-
tions to supervise the optimization of a 3D representa-
tion. Recent advancements aim to enhance the training
stability and generation fidelity via advanced shape guid-
ance [19, 39, 62], disentangled 3D representation [3, 52, 57]
and loss design [15, 49, 54, 64]. Note that some concurrent
works [13, 44, 64] also leverage annealed time-step sched-
ule for efficient training, but they fail to combine such time-
step sampling schedule with the teacher-student knowledge
transfer, i.e., thus have not fully unleashed the potential of
their symbiotic cycle.
Image-3D Generation focuses on generating 3D assets
from a given reference image, which can also be consid-
ered as an ill-posed single-view reconstruction problem [4].
The above text-to-3D methods can be directly adapted for
image-to-3D generation with image captioning, e.g., Re-
alfusion [26] and NeRDi [4] directly adapted SDS [30]
into Image-to-3D with textual inversion of the given image.
Magic123 [31] and Consistent123 [50] combine Zero-1-to-
3 [22] with RealFusion [26] to further improve the gen-
eration quality. One-2-3-45 [22] and Dreamgaussian [44]
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Figure 2. (a) SDS embraces an symbiotic teacher-student cycle with the training iteration progresses (Top). However, it entangles coarse-
grained and fine-grained modeling with uniform sampling of time steps (Bottom) and equal treatment of student and teacher, where k1 . . . k3
denotes the training iteration from early to late. (b) Our DTC123 follows the diffusion time-step curriculum, where larger time steps capture
coarse-grained concept and smaller time steps focus on fine-grained details.

adopted NeuS [47, 48] and Generative Gaussian Splat-
ting [16] as the 3D representation respectively, significantly
reducing the generation time at the expense of the gen-
eration quality. We build upon these optimization-based
approaches by implementing a coarse-to-fine optimization
strategy that explores the diffusion time-step curriculum
they overlooked, which enables efficient generation of high-
fidelity, multi-view consistent 3D assets from one image.

3. Preliminary
Given a single image of an object, our goal is to optimize a
coherent 3D model (e.g., NeRF, mesh) so that it can restore
the given image from the reference view πref and generate
a highly plausible image from any unseen view π with the
supervision of the diffusion model. Here, we mainly intro-
duce Score Distillation Sampling (SDS) [30] with student
3D models, teacher diffusion models (see Appendix) that
will help to build up our approach.

3.1. Score Distillation Sampling (SDS)

SDS [30] distills 2D priors from a pre-trained conditional
diffusion teacher model ϵϕ(·) into differentiable 3D stu-
dent representations θ. In particular, given a certain cam-
era parameter π, we randomly select a diffusion time-step
t and perturb the student-rendered xπ

+σtϵ−−−→ xt by adding a
Gaussian noise ϵ, and reformulate SDS from the perspective
of reconstruction by calculating:

∇θLSDS(θ, t) =Eϵ

[
ω(t) (ϵϕ (xt; t,y)− ϵ)

∂x

∂θ

]
=Eϵ

[
ω̄(t) (xπ − x̂0)

∂x

∂θ

]
, (1)

where x̂0 = xt − σtϵϕ (xt;y, t), can be considered as
single-step de-nosing output with starting point xt; y is
the condition (e.g., text, camera pose) and depends on the

types of teacher diffusion models; ω̄(t) = ω(t)/σt, denotes
the weight function. Thus, we reveal that the crux of this
teacher-student optimization process is directly determined
by such perturbed-and-denoised output, i.e., the quality of
the teacher-generated x̂0. As illustrated in Figure 2(a), in-
tuitively, not all time-steps t can provide useful and valid
guidance x̂0, which motivates the following proposed dif-
fusion time-step curriculum.

4. DTC123
In this section, we introduce our diffusion time-step cur-
riculum one-image-to-3D pipeline, called “DTC123”, with
a theoretical justification in Appendix. As shown in Fig-
ure 3(a): We start by taking a reference image and extract-
ing its geometric estimation and text description. Then the
optimization procedure can be categorized into unseen view
guidance and reference restoration:
• For the unseen view, we employ our diffusion time-

step curriculum, where larger time-steps capture coarse-
grained concepts, and smaller time-steps focus on fine-
grained details. Specifically, we implement such a cur-
riculum with an annealed time-step sampling schedule
(Sec. 4.1), progressive student representation (Sec. 4.2),
and coarse-to-fine teacher guidance (Sec. 4.3).

• For the reference view, we basically penalize the 3D
model to align with the given image, employing tradi-
tional reconstruction constraints.

Moreover, DTC123 incorporates several techniques
(Sec. 4.4) to enhance generation efficiency, geometric
robustness, and alleviate the Janus Face problem.

4.1. Annealed Time-Step Schedule

We develop a time-step annealed sampling schedule for our
time-step curriculum, thereby facilitating teacher-student
knowledge transfer in a progressive, coarse-to-fine manner.
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Figure 3. (a) Overall pipeline of DTC123, which have two optimization stages and includes the reference view reconstruction and unseen
view imagination. (b) The zoom-in diagram of unseen view imagination with the proposed diffusion time-step curriculum.

Please refers to Appendix for its theoretical justification. In
particular, we use an annealed interval [tmid−∆, tmid+∆] to
randomly select the time-step t, with the interval midpoint
tmid decreasing monotonically. The interval radius ∆ nar-
rows progressively during optimization, and the midpoint
tmid is determined by the current iteration k:

tmid := tmax − (tmax − tmin) · log
(
1 +

⌊k/l⌋ · l
N

)
, (2)

where tmax and tmin refers to the entire diffusion time-step
range; l and N denotes the step length and total training
iteration, respectively. This schedule not only introduces
local randomness to preserve the vibrancy of the model’s
coloration but also allocates more iterations to smaller time-
steps for in-depth detail exploration.

4.2. Student: Progressive 3D Representation

The student 3D model adheres to the diffusion time-step
curriculum by initially representing coarse-grained fea-
tures at larger time-steps and subsequently fine-grained de-
tails at smaller time-steps. Due to computational mem-
ory constraints [20, 31], we leverage NeRF [29] for low-
resolution scene modeling in the first stage, and then adopt
DMTet [38] for high-resolution mesh fine-tuning in the sec-
ond stage. Recall that grid-based 3D models embrace the
inherent multi-resolution representation [41, 48, 60], where
the lower-level spatial grids (e.g., hash grid, tetrahedral
grid) store the general contours while the higher-level coun-
terparts store the finer textures and scene illumination. Ac-
cordingly, we employ progressive resolution constraints in
both stages, which allows the student to initially assimilate
the correct geometry structure information with a smooth

coarse-grained signal and later shifts to learn a high-fidelity
scene representation. More concretely:
Progressive bundle for NeRF. The design of hash encod-
ing captures both low and high-resolution features, which
might inadequately represent basic geometry at large time-
step as inaccurate and diverse finer details could over-
shadow essential structural information. To mitigate this
issue, given the hash-grid encoding (HE), we gradually reg-
ularize the visible resolution bands by applying a dynamic
soft feature mask:

mi(k,N,L) =

{
1, if i ≤ 4 + min

(⌊
10k
N

⌋
, L− 4

)
0, otherwise

(3)

where i denotes the HE feature level from coarsest to finest
and L denotes the total number of feature levels.
Progressive Tetrahedral Grid for DMTet. As shown in
Figure 3(b), we initially convert [43] the neural density field
to a signed distance function (SDF) field and re-use the
neural color field for texture representation, progressing to
higher resolutions e.g., 64 × 64 → 512 × 512 for detailed
surface rendering. To circumvent issues like mesh distor-
tion or topology errors from abrupt resolution changes, we
employ a graded approach, scaling up the tetrahedral grid
size, i.e. 32 → 64 → 128, and the rasterizing resolution
progressively with the reducing time-step. This strategy en-
sures a seamless transition from initialized structural cap-
ture to rendering sophisticated surface nuances.

4.3. Teacher: Coarse-to-fine Diffusion Prior

The teacher diffusion model should follow the diffusion
time-step curriculum by initially offering a rough silhouette
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of the object in the desired pose in larger time steps, sub-
sequently prioritizing intricate texture refinement in small
time steps. A natural question follows : What is the suit-
able teacher for the time-step curriculum? Empirical ev-
idence1 suggests: the view-conditioned Zero-1-to-3 serves
as a coarse-grained teacher by providing a more accurate
geometry structure at large time-step. Conversely, the Sta-
ble Diffusion is suitable for a fine-grained teacher as it
yields realistic texture details at smaller time-step.

Such evaluation drives our search for the following uti-
lization of teacher guidance that makes the best use of both
diffusion priors [58]. As illustrated in Figure 3(b), in the
first stage, we use Zero-1-to-3 solely for efficient coarse-
grained contour and structural guidance. Subsequently, in
the second stage, a collaborative diffusion guidance with
dynamic prior reweighting is leveraged, wherein Zero-1-
to-3 guides SDF field geometry optimization supervised by
textureless shading; Stable Diffusion aids in the optimiza-
tion of color field respectively at smaller time-steps. For
clarity, we denote the Zero-1-to-3 guidance as Lgeo

SDS(θ, t)
and the Stable Diffusion guidance as Ltex

SDS(θ, t)
2. The dif-

fusion objective for the time-step curriculum can then be
formulated as:

∇θLDTC(θ, t) = ∇θLgeo
SDS(θ, t) +∇θλLtex

SDS(θ, t), (4)

where the time-step t follows the sampling schedule in
Sec. 4.1; λ is the trade-off hyper-parameter, set as 0 in the
first stage and gradually increase with the reducing time-
step in the second stage. We apply DDIM sampling [6, 40]
for multi-step de-nosing process, i.e., xt → xt−r . . . → x̂0

instead of the imprecise single-step de-noising in the last
few iterations for both efficiency and performance concerns.
Empirically, it equips the teacher-generated x̂0 with more
decent details and mitigates issues like texture flickering or
overly saturated color blocks at smaller time-steps. In ad-
dition, we propose the following approaches to further im-
prove the fine-grained supervision quality in scenarios with
sophisticated textures by clarifying the ambiguous inferred
text description and alleviating the Janus face problem.
LLM-augmented Prompts. Previous methods [20, 27, 45]
directly utilize ambiguous view-dependent prompts within
{front, back, side} as the condition for Stable Diffu-
sion. Paralleled to [46], we notice that more specific lan-
guage prompts force the image distribution of Stable Dif-
fusion to be narrower and more beneficial to the mode-
seeking SDS algorithm. To this end, we instead leverage

1To answer this question, we quantitatively analyze two most popu-
lar teacher diffusion models by investigating the contour exploration con-
sistency via MaskIoU and the perceptual generation quality computed by
CLIP-R [21] in the OmniObject3D [53] dataset. See detailed experimental
results in Appendix.

2Note that the weight function ω̄(t) is calibrated relative to the spher-
ical distance from the reference view, as 3D models tend to reconstruct
more accurately near the reference view, requiring less teacher-guided
imagination.

instruction-tuned large language models (LLMs) [33] with
carefully designed task prompts to specify unseen view de-
scriptions from the original text description. The core ob-
jective of LLM-augmented prompts is to intricately enhance
multi-view descriptions by integrating additional details,
e.g., ‘The back of Ironman helmet, with metallic sheen’,
while meticulously avoiding description conflict among dif-
ferent views. Detailed instruct-LLM design is in Appendix.
Camera Pose De-biasing. When the given object is hu-
man / animal-like, the intrinsic pre-trained bias [1, 12, 22]
of diffusion models always causes the Janus face prob-
lems. Empirical observations suggest that Zero-1-to-3 tends
to generate a Janus face on the backside, tends to ’copy’
the conditioned front face to the back view with symmet-
ric contour, whereas Stable Diffusion is more prone to
this issue on the sides. To mitigate these anomalies in
the second stage, we dynamically employ gradient clipping
and randomized dropout for ∇θLc

SDS(θ, t) within the az-
imuth range

[
11π
12 , 13π

12

]
and ∇θLf

SDS(θ, t) within the az-
imuth range ±

[
π
6 ,

π
4

]
, respectively.

4.4. Advanced Regularization Techniques

Due to the ambiguity and inconsistency guidance of
diffusion-based 3D generation [8, 44], high-frequency arti-
facts often appear on the crisped surface of the student ren-
derings. To counteract this, following [43, 63], we basically
improve the smoothness of the normal map by calculating
the normal vector using finite depth differences and incor-
porate additional continuous connection from the input co-
ordinate for hash-based NeRF regularization. As for DMTet
and mesh exportation, we apply Laplacian-based regular-
ization [59] to achieve mesh smoothness, capitalizing on
the uniform Laplacian matrix derived from the mesh ver-
tices and adjacent faces, as well as removal and calibration
of unreferenced vertices and faces. We denote the above
smoothness regularization as Lreg in both stages.

4.5. Training Objective

Our final objective then comprises three key terms:

∇θL = ∇LDTC + λreg · ∇Lreg + λrec · ∇Lrec , (5)

where LDTC represents the time-step curriculum diffusion
prior objective for unseen views; Lrec denotes the tradi-
tional reconstruction objective for reference views, which
aligns the given image in depth space with Pearson correla-
tion [37] and the RGB, mask space through mean squared
error (MSE) [25]; Lreg is the regularization term ensuring
the geometrical smoothness. By synergistically integrat-
ing these objectives, our DTC123 pipeline demonstrably
achieves a high degree of geometric robustness and supe-
rior texture quality.

9952



5. Experiments

5.1. Implementation Details

Pipeline Settings. We consistently applied the same set of
hyper-parameters across all experiments. DTC123 was im-
plemented in PyTorch with a single NVIDIA A100 GPU.
We trained both the first and second stages for 3,000 it-
erations using the Adan [55] optimizer with 1e-3 learning
rate and 2e-5 weight decay, which cost approximately 20-
25 minutes for the entire pipeline. In the first stage, we
adopted Zero123-XL [22] (cfg=5) as the only teacher model
to supervise an Instant-NGP [29] with three MLP layers and
hash-encoder. Then Stable Diffusion v2.0 [35](cfg=25) was
integrated with zero123-XL, jointly enhancing the geomet-
ric robustness and texture refinement of a DMTet, initialized
from the prior stage. The reference view was sampled with
a 25% probability, and other views at 75%, in both stages.
Final rendering resolutions were set at 64 × 64 for the first
stage and 512 × 512 for the second stage, respectively.

Image Pre-processing Details. Given an arbitrary ref-
erence image, DTC123 pipeline systematically processed
it for the follow-up 3D generation. The first step em-
ployed the state-of-the-art segmentation model, SAM [17],
to meticulously distinguish foreground objects from their
background context. Subsequently, the Dense Prediction
Transformer [32] was harnessed to estimate both depth and
normal maps, ensuring that rich geometric information has
been captured. Then, BLIP2 [18] crafted a descriptive
caption on the segmented object for text-conditioned guid-
ance. The culmination of this workflow is a trio of out-
puts: a sharply segmented image, its corresponding depth
and normal map, and its semantic description. Note that
unlike [31], [26], textual inversion with image-level aug-
mentations, which is time consuming (more than an hour),
was not leveraged in ours.

“Adidas shoes”“Nike shoes”

“Beats earphone” “Bose earphone”

“BMW i3” “Porsche Panamera”

Figure 4. Multi-instance generation by customized prompts.

5.2. Experimental Protocol

An exceptional 3D model should not only mirror the refer-
ence image but also maintain a consistent correlation with
the reference and plausible results when observed from
other poses. Following [31], we compared our DTC123
in RealFusion15 [26], NeRF4 benchmark for quantitative
comparison, with PSNR and LPIPS metrics to measure re-
construction quality and CLIP-similarity to evaluate appear-
ance similarity. For qualitative results, we manually col-
lected 50 reference images from the Internet out of the range
of Objaverse, covering a wider range of difficult items.

We adopted Zero123-SDS [22], RealFusion [26], Neu-
ralLift [56] and Magic123 [31] as baseline SDS-based
methods with their default experimental settings. We
also compared with the state-of-the-art methods One-2-3-
45 [21] and SyncDreamer [24], which perform Image-3D
generation in a feed-forward manner instead of SDS op-
timization. For Zero123-SDS and Magic123, we adopted
the implementation from threestudio [10] and leveraged
Zero123-XL as ours for fair comparison, while others from
their official codebase. We are quite confident that the base-
lines presented here are the finest re-implementations we
have come across.

5.3. Image-3D Generation

Qualitative Results. Figure 5 demonstrates that DTC123
maintains high fidelity and plausible generation in complex
scenarios. In contrast, generation results from most base-
lines, even those utilizing the more advanced Zero123-XL,
are plagued by multi-view inconsistency, geometric distor-
tion, and texture conflict. For example, in the yellow robot
case in the fourth line of Figure 5, competing textures cause
blurring and exhibit unreasonable features, such as an extra
eye on the back. In comparison, DTC123 generates high-
fidelity novel views with realistic metallic textures.
Quantitative Results. Table 1 shows that DTC123 consis-
tently outperforms other methods across all metrics, demon-
strating its superior reconstruction (PSNR, LPIPS) and 3D
consistency (CLIP-similarity) capabilities. Specifically, in
the reference view reconstruction, DTC123 is on par with
Magic123 and significantly exceeds RealFusion and Neu-
ralLift. In terms of view consistency, as indicated by CLIP-
similarity, DTC123 exceeds Magic123 by a large margin.
The primary inconsistency in Magic123 stems from the
boundary disparities between occluded and non-visible re-
gions, resulting in pronounced seams. More results on GSO
dataset is included in Appendix.

5.4. Multi-instance Generation

While other Image-to-3D approaches [22, 31] can only gen-
erate plausible instances with limited diversity by different
random seeds for initialization, DTC123 facilitates amazing
multi-instance generation with different localized details by
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Reference SyncDreamer Zero123-SDS Magic123 DTC123 (Ours)

Figure 5. Qualitative comparisons on image-to-3D generation. We randomly sample several new views to present, while other views
and methods are included in Appendix. Our DTC123 consistently outperforms other state-of-the-art methods by generating multi-view
consistent and high-fidelity results.

Table 1. Quantitative results. We show quantitative results in
terms of CLIP-Similarity↑ / PSNR↑ / LPIPS↓. The results are
shown on the NeRF4 and RealFusion datasets.

Dataset Metrics\Methods NeuralLift [56] RealFusion [26] Magic123 [31] DTC123

NeRF4
CLIP-Similarity↑ 0.52 0.38 0.80 0.84

PSNR↑ 12.55 15.37 24.62 25.14
LPIPS↓ 0.50 0.20 0.03 0.02

RF15
CLIP-Similarity↑ 0.65 0.67 0.82 0.87

PSNR↑ 11.08 0.67 19.50 21.42
LPIPS↓ 0.53 0.14 0.10 0.08

specific user prompt. For example, when the reference im-
age presents the side view of a yellow car, users can specify
their desired object, such as a ’BMW’ or a ’Porsche Panam-
era’. DTC123 proficiently generates realistic and coherent
3D contents based on the given instructions, thanks to the
appropriate time-step curriculum, where the student model

captures the car’s general shape initially, followed by brand-
specific details. Please check Figure 4 for additional re-
sults, which vividly demonstrates the potential of DTC123
for user-guided controllable generation and 3D editing.

6. Ablation and Discussion
Q1: What impacts performance of DTC123 in terms of
component-wise contributions? We discarded each core
component of DTC123 to validate its component-wise ef-
fectiveness. The results are depicted in figure 6.
A1: In a multi-component pipeline, we observed that the
exclusion of any component from DTC123 resulted in a sig-
nificant degradation in performance. In particular, when
the annealed sampling schedule is replaced with a random
sampling schedule, it leads to geometric irregularities and
excessive texture details. The similar situation occurs if
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Reference w/o annealing time-step w/o T-S collaboration DTC123

Figure 6. Ablation study on the component-wise contribution of DTC123. T-S denotes the Teacher-Student collaboration.

teacher and student models don’t collaborate with the an-
nealed time-step. In contrast, when both teacher and student
follow the time-step curriculum, it effectively generates re-
sults with sophisticated texture and illumination while en-
suring geometric stability.
Q2: How about the robustness of DTC123? To better
diagnose the robustness of DTC123, we meticulously ana-
lyzed and quantified the occurrences of generation failure
(e.g., Janus face, geometry distortion, extremely abnormal
coloration) on Level50 with different random seeds and un-
der different difficulty levels.
A2: As depicted in Figure 7, DTC123 consistently ex-
hibits a lower failure rate compared to other methods across
various initialization (random seeds) and at different diffi-
culty levels by a large margin. Such robustness should be
attributed to the proposed time-step curriculum, where the
student 3D model initially captures coarse features, signifi-
cantly reducing the instability typically associated with ran-
domized NeRF initialization.
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Figure 7. Failure analysis with different initialization and levels.

Q3: What’s the difference between diffusion time-step
curriculum and annealing time-step?
A3: We clarify that annealing time-step is NOT equivalent
to, but a part of time-step curriculum. Our DTC includes
three coherent parts : time-step schedule, progressive stu-
dent representation and teacher guidance. Different from

the viewpoint of DDPM sampling from Dreamtime [13], we
consider that SDS leverages teacher-generated x̂0, which
is a single-step de-nosing output with starting point xt, to
optimize student-rendered xπ . Modeling 3D generation as
a data corruption reduction process, we reveal that there
exists a time-step lower bound in SDS for teacher diffu-
sion model to well estimate the desired score function and
thus provide quality guidance x̂0. In order to alleviate the
marked divergence of the teacher-generated x̂0 [11] at large
time-steps, we further design the progressive student rep-
resentation and teacher guidance to cooperate with the an-
nealing time-step for a more stable coarse-to-fine genera-
tion. Please refers to Appendix for more details.

7. Conclusion
We revisit Score Distillation Sampling (SDS) and point out
that the crux of its enhancement lies in the proposed dif-
fusion time-step curriculum. We then design an improved
coarse-to-fine Image-3D pipeline (DTC123) which collabo-
rates the teacher diffusion model and 3D student model with
the time-step curriculum. Through qualitative comparisons
and quantitative evaluations, we show that our DTC123 sig-
nificantly improves the photo-realism and multi-view con-
sistency of Image-to-3D generation. In the future, we will
focus on exploring the potential of diffusion time-step cur-
riculum with advanced teacher models and diverse student
models to further improve the efficiency and quality.
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