
Leveraging Cross-Modal Neighbor Representation
for Improved CLIP Classification

Chao Yi, Lu Ren, De-Chuan Zhan, Han-Jia Ye(B)

National Key Laboratory for Novel Software Technology, Nanjing University, China
School of Artificial Intelligence, Nanjing University, China

{yic,renl,zhandc,yehj}@lamda.nju.edu.cn

Abstract

CLIP showcases exceptional cross-modal matching ca-
pabilities due to its training on image-text contrastive learn-
ing tasks. However, without specific optimization for uni-
modal scenarios, its performance in single-modality feature
extraction might be suboptimal. Despite this, some studies
have directly used CLIP’s image encoder for tasks like few-
shot classification, introducing a misalignment between its
pre-training objectives and feature extraction methods. This
inconsistency can diminish the quality of the image’s feature
representation, adversely affecting CLIP’s effectiveness in
target tasks. In this paper, we view text features as precise
neighbors of image features in CLIP’s space and present
a novel CrOss-moDal nEighbor Representation (CODER)
based on the distance structure between images and their
neighbor texts. This feature extraction method aligns bet-
ter with CLIP’s pre-training objectives, thereby fully lever-
aging CLIP’s robust cross-modal capabilities. The key to
construct a high-quality CODER lies in how to create a
vast amount of high-quality and diverse texts to match with
images. We introduce the Auto Text Generator (ATG)
to automatically generate the required texts in a data-free
and training-free manner. We apply CODER to CLIP’s
zero-shot and few-shot image classification tasks. Exper-
iment results across various datasets and models confirm
CODER’s effectiveness. Code is available at: https:
//github.com/YCaigogogo/CVPR24-CODER.

1. Introduction

In recent years, vision-language models have garnered
widespread attention, with CLIP [16] standing out as a
notably powerful exemplar. Trained on a vast array of
image-text pairs through the image-text contrastive learn-
ing tasks, CLIP boasts impressive cross-modal matching
capabilities. And it has been applied to fields like image
classification [16], object detection [3], semantic segmen-

tation [7, 25], video understanding [10], voice classifica-
tion [4], text-to-image generation [19, 34], model pretrain-
ing [23], and beyond [17, 31].

Some existing works [21, 23, 32] extract image features
directly from CLIP’s image encoder for intra-modal oper-
ation, like calculating similarity between images in few-
shot classification [32]. However, these methods overlook
CLIP’s multi-modal capabilities, leading to a misalignment
with CLIP’s pre-training objectives. Furthermore, since
CLIP isn’t optimized for uni-modal scenarios, its perfor-
mance in intra-modal tasks isn’t guaranteed. To optimize
the image features extracted by CLIP, we ask:

Can we leverage CLIP’s powerful cross-modal
matching capabilities to extract better image fea-
tures, thereby improving CLIP’s performance on
downstream tasks?

In this paper, we introduce an enhanced image repre-
sentation based on the distance between images and their
neighboring texts in CLIP’s feature space. This idea stems
from our re-examination of CLIP’s robust zero-shot clas-
sification capability from the perspective of nearest neigh-
boring: The previous approaches consider the text features
extracted by CLIP as classifiers and use them to get the clas-
sification results. Different from this perspective, we inter-
pret CLIP’s zero-shot image classification as a 1NN prob-
lem, as shown in the left part of Figure 1. We treat texts
as the images’ neighbors in the CLIP’s feature space. Then
for each image, CLIP identifies its closest text and assigns
this text’s class as the image’s predicted class. This 1NN
approach shows good performance because CLIP’s robust
image-text matching capabilities ensure images are closer
to their semantically related texts. This suggests that the
cross-modal distance between an image and its neighboring
texts captures information about the image, such as its class.

In zero-shot image classification, CLIP only considers
the distance between an image and its nearest neighbor text,
which loses the information implied in the distance between
the image and other texts. To make full use of this infor-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

27402

https://github.com/YCaigogogo/CVPR24-CODER
https://github.com/YCaigogogo/CVPR24-CODER

Zero-Shot Image Classification

CLIP Feature Space

�11 �22

�33

��� ���

�11
�13

�12

Image Feature
Text Feature

Image Feature
Text Feature

Cross-Modal Neighbor Representation

Expand

Neighbor Range

Neighbor
Range

Figure 1. Illustration of image’s CrOss-moDal nEighbor Representation (CODER). CLIP’s powerful text-image matching capabilities
endows it with a favorable cross-modal neighbor distance relation. And CLIP’s Zero-Shot Image Classification process can be interpreted
as using a 1NN algorithm to find the image’s nearest text, with the text’s class determining the image’s predicted class. Inspired by this
idea, we expand the image’s neighbor range to leverage its distance to all texts for constructing the CODER. Here dij refers to the distance
between the i-th image and the j-th text.

mation, we expand each image’s neighbor range to utilize
its distance to K Nearest Neighbor (KNN) texts for con-
structing image representation, as depicted in the right half
of Figure 1. Here K denotes the total number of texts.
We refer to this representation as CrOss-moDal nEighbor
Representation (CODER). We believe images with closer
CODER values are more similar in semantics. This aligns
with intuition: If two objects share the same sets of similar
and dissimilar items, they’re likely similar to each other.

Previous work [24, 33] has noted that dense sampling of
neighbor samples is critical for building neighbor represen-
tations. This inspires us to use various high-quality texts for
dense sampling. Considering that Large Models have rich
knowledge and are widely used in many ways [9, 14, 27],
we introduce the Auto Text Generator (ATG) based on
Large Language Models like ChatGPT [13] to automati-
cally generate various high-quality texts. Without the need
for image data and the training process, ATG can produce a
diverse and effective set of texts based on the target dataset’s
class names. These diverse, high-quality texts enhance the
density of neighboring texts for images in CLIP’s feature
space, helping to build a better CODER.

We apply CODER to CLIP’s zero-shot and few-shot im-
age classification tasks to prove CODER’s superiority. For
the zero-shot image classification task, we use CODER in
a two-stage manner. In the first stage, we use ATG to ac-
quire general class-specific texts for constructing general
CODER. Then we employ a heuristic classifier to the im-
age’s general CODER. In the second stage, we utilize ATG
to generate one-to-one specific texts for comparing two dis-
tinct classes, concentrating on their most distinguishing fea-
tures. These texts are then used to construct the one-to-one
specific CODER, which is used to rerank the preliminary
classification results. For the few-shot situation, we calcu-
late the similarity between test images and the support set’s

images using those images’ general CODER. By ensem-
bling the similarity and CLIP’s original zero-shot classifi-
cation logits, we determine the classification results. Exper-
iment results on various datasets and different CLIP models
confirm that CODER enhances CLIP’s performance in both
zero-shot and few-shot image classification.

2. Related Work

Vision-Language Models. Vision-Language Models
(VLMs) represent a class of multimodal models adept
at correlating textual and visual information. Prominent
models in this domain include CLIP [16], ALIGN [6],
FLAVA [18] and Florence [30], among others. These mod-
els typically comprise two main components: an image en-
coder and a text encoder. Some models also have multi-
modal fusion modules [8, 22]. VLMs are trained on ex-
tensive text-image pairs through tasks like image-text con-
trastive learning, endowing them with powerful text-image
matching capabilities. In this paper, we leverage these capa-
bilities of CLIP to generate our cross-modal neighbor rep-
resentations (CODER) for images.
Using LLMs as Experts to Improve VLMs. Large Lan-
guage Models (LLMs) are widely used in many tasks, such
as in-context learning. LLMs can serve as experts by
outputting their knowledge in text form. This text-based
knowledge can be harnessed by VLMs to enhance their ca-
pabilities. Previous work has explored using LLMs’ knowl-
edge to optimize VLMs’ pre-training [1], prediction inter-
pretability [12, 26, 28], and classifier quality [2, 11, 12, 15].
Recently, some work [29, 35] uses LLMs to select the best
VLMs from a VLM zoo for specific target tasks. In this
paper, we use the semantic information provided by LLMs
to optimize CLIP’s features during the inference stage in a
training-free manner.

27403

�23
���

�21
���

�21
��� > �23

���

Bad Case of CLIP’s IE Feat

wrong
distance relation

Modify Distance Relation via CODER

�1

�1

�2

[1 − �1]‘� �����:
[1 − �1]‘� �����:
[1 − �2]‘� �����:

����(�����(), �����())
 <
����(�����(), �����())

true distance relation

Modify

: Text Sample of Class A : Image Sample of Class A : Image Sample of Class B

�1

�2

�3

�1

Figure 2. An example of CODER correcting wrong distance relation between images. dimg
ij refers to the cosine distance between the

i-th and the j-th image. r1 and r2 refer to the cosine distance between the text and different images, while 1 − r1 and 1 − r2 refer to
the cosine similarity. The left side of the figure indicates that even though images of the same class share similar distance to a text, this
doesn’t ensure that their features are closely similar. The right side of the figure shows that CODER corrects the wrong distance relation
by utilizing the text-image distance.

3. Notations and Background
Using CLIP to match text and image. CLIP encodes both
images and texts into a joint space using its image encoder
f I or text encoder fT, shown in Equation 1. Here x̂i and
t̂j refers to the feature of image xi and text tj , respectively.
D1 refers to the dimension of CLIP’s feature space.

x̂i = f I(xi) ∈ RD1 , t̂j = fT(tj) ∈ RD1 . (1)

t̃ = argmax
j∈[1,··· ,K]

x̂⊤
i t̂j

∥x̂i∥ · ∥t̂j∥
. (2)

Then we can compute the cosine similarity between the fea-
tures of various texts and images. These similarity scores
represent the matching degree between different images and
texts. Given an image xi, its best matched text t̃ is identified
by the highest similarity scores with the image, as shown in
Equation 2. Here K refers to the number of texts.

4. Cross-Modal Neighbor Representation
4.1. Understand the Advantage of CODER.

We construct the CODER for the current image by tapping
into the precise image-text distance relationship within the
CLIP feature space. This process is shown in Equation 3.
We use the CODER construct function ϕ to build image’s
CODER ϕ (x̂i) based on its original feature x̂i.

ϕ (x̂i) =
[
ψ
(
d
(
x̂i, t̂1

))
, · · · , ψ

(
d
(
x̂i, t̂K

))]
∈ RK .

(3)
The specific implementation of ϕ depends on the similarity
or distance function d and the subsequent mapping func-
tion ψ applied to this distance. In this paper, we use cosine

similarity for d and identity mapping for ψ. Then we can
rewrite Equation 3 as Equation 4. We emphasize that the
implementation of d and ψ can be further researched.

ϕ (x̂i) =

[
x̂⊤
i t̂1

∥x̂i∥ · ∥t̂1∥
, · · · , x̂⊤

i t̂K

∥x̂i∥ · |t̂K∥

]
∈ RK . (4)

We highlight CODER’s advantages over CLIP’s original
image features using an example. Figure 2’s left side depicts
a bad case for CLIP. For simplicity, we consider a situation
where test images share the same neighboring text in CLIP’s
feature space. While CLIP’s cross-modal pre-training en-
sures accurate image-text distances, it doesn’t always cap-
ture precise distances between images. This results in cases
where the distance for same-class images dimg

21 exceeds
that of different-class images dimg

23 . To solve this problem,
CODER uses CLIP’s accurate text-image distance to build
image features. As images of the same class have simi-
lar distance to their neighboring texts, their CODER align
more closely. Thus, CODER addresses the wrong distance
relation between images.

We then focus on the key element of building a good
CODER. Previous studies have emphasized that dense
sampling of neighboring samples is vital for algorithms
based on nearest neighbor. For example, only when the
training samples are densely sampled will the error rate of
the KNN classifier remain within twice that of the Bayes
optimal classifier. And some studies [24, 33] have observed
that greater sampling density of neighboring samples can
lead to better neighbor representations. Inspired by these
works, we try to optimize our CODER by increasing the
number of texts. For increasing the number of texts, we use
our Auto Text Generator (ATG) to achieve this objective.

27404

4.2. Use Auto Text Generator to Generate Texts

Accurate and diverse class-specific texts provide a compre-
hensive description of object classes from various perspec-
tives, enhancing the sampling density of images’ neigh-
bor texts for constructing better CODER. To automat-
ically generate a plethora of high-quality class-specific
texts adaptive to target tasks, we introduce the Auto Text
Generator (ATG). It uses different query prompts to extract
diverse insights from external experts like ChatGPT [13].
Then it leverages that knowledge to construct various high-
quality texts. These texts are instrumental in generating
high-quality CODER.

In our implementation, ATG can construct five types
of texts: (1) Class Name-based Texts; (2) Attribute-based
Texts; (3) Analogous Class-based Texts; (4) Synonym-
based Texts; (5) One-to-One Texts. The first two types of
texts are proposed by previous work[12, 16], while the lat-
ter three are innovations introduced in this paper. We will
then delve deeper into the design rationale and generation
process of these last three types of texts.

(1) Analogous Class-based Texts. If someone describes
a clouded leopard as resembling a cheetah, you can envision
its appearance even if you’ve never seen a clouded leopard.
This scenario illustrates how inter-object similarities help
humans leverage their experience with known object classes
to recognize new ones. Inspired by this, we query ChatGPT
to obtain analogous categories for a given object by asking:

Q: What other categories are {class}
visually similar to?

Given that the generated class names might exist within
the target dataset’s class names, we address this issue by
filtering out those generated class names whose cosine sim-
ilarity with existing class names surpass a defined thresh-
old. Next, we insert each analogous class name into
some templates like “a {target class} similar
to {analogous class}” to form a complete text.

(2) Synonym-based Texts. An object can have several
names. For example, both “forest” and “woodland” re-
fer to “land covered with trees and shrubs”. Due to vary-
ing frequencies of synonyms in CLIP’s training data, the
model might favor more common terms and undervalue
lesser-known synonyms, despite their equivalent meanings.
To mitigate this bias, we query WordNet for synonyms of
the current class. Subsequently, we insert the obtained
synonym class names into templates like “a photo of
{synonym class}”.

(3) One-to-One Texts: Due to similar classes often
share common features, the ATG may generate nearly iden-
tical attribute descriptions for these classes. For example,
the ATG might generate attributes such as “two pairs of
wings” for both “butterfly” and “dragonfly”. Such identical

attributes can hinder CLIP’s ability to distinguish closely re-
lated classes. To tackle this problem, we introduce the one-
to-one texts. We use the following query prompt to guide
ChatGPT in generating the most distinguishing features be-
tween similar classes A and B:

Q: What are different visual features
between a {class 1} and a {class 2} in a
photo? Focus on their key differences.

Using the prompt, we generate distinguishing attributes that
differentiate butterfly from dragonfly. For butterfly, some
of the exemplified attributes include: [“Butterflies typically
have larger and more colorful wings compared to dragon-
flies.”]. For dragonfly, some of the descriptors produced
are: [“They have transparent wings that are typically held
out horizontally when at rest.”]. From these newly created
attributes, we can make two main observations: (1) The at-
tributes underscore the key differences between butterfly
and dragonfly, such as their wing characteristics. (2) The
new attributes accentuate the comparison between the two
classes, evident from terms like “larger”, and “compared to”
found within the descriptors.

Finally, we insert the obtained one-to-one texts into some
templates like “Because of {1v1 text}, {class
1} is different from {class 2}”.

4.3. Use CODER on Downstream Tasks

We apply CODER in zero-shot and few-shot image classi-
fication tasks to enhance the performance of CLIP.
Zero-Shot Image Classification. In the first stage, we uti-
lize a general text set generated by ATG to construct the
general CODER for images. These texts can be considered
as descriptions of general characteristics for a certain class
in comparison to most other classes. We can derive prelim-
inary classification results based on the general CODER of
the images. In the second stage, we employ ATG to create
distinct one-to-one specific text sets for the top five classes,
each pair-wise. These texts serve as descriptions of the
key distinguishing features between the classes. Utilizing
these, we then develop corresponding one-to-one specific
CODER for images. Subsequently, we rerank the initial
top five classification results using these one-to-one specific
CODER. Figure 3 shows the process of our zero-shot im-
age classification method.

We first utilize all texts generated by ATG, excluding the
one-to-one texts, as the general text set P = [t1, · · · , tK] to
construct the general CODER for test images. This process
is shown in Equation 5 and Equation 6. Here W ∈ RD1×K

refers to the texts’ features in the CLIP feature space. And
si ∈ RK represents the CODER of test image xi. K refers
to the total number of texts in P .

W =

[
t̂1

∥t̂1∥
, · · · , t̂K

∥t̂K∥

]
∈ RD1×K . (5)

27405

CODER
Constructor

“A photo of dog”

 “Dog which has orange fur”

General Text Set

General CODER

Heuristic
Classifier

Top5 Prediction

Stage 1: Use General CODER for Preliminary Classification

Image

 “Dog which has orange fur”

Text Set

Text Feature

Image Feature

Calculate
Cosine Similarity

CODER
Constructor

CLIP Image Encoder

CLIP Text Encoder

CODER

Auto Text
Generator

Test Image

Stage 2: Use One-to-One Specific CODER for Reranking Top 5 Classes

Top5 Prediction

Auto Text
Generator

1v1 Text Set

Dog vs Cat

1v1 Text Set

Dog vs Tiger

Test
Image

CODER
Constructor

CODER
Constructor

.

Heuristic
Classifier

Heuristic
Classifier

1v1 Specific CODER

1v1 Specific CODER

����12

����21

����13

����31

��
���� = argmax

�∈�5/{�}

����
��

� ∈ �5

Figure 3. Illustration of two-stage zero-shot image classification process based on image’s CODER. In the first stage, we use the Auto
Text Generator to create a General Text Set, which contains general descriptions of classes. This set is utilized to construct the image’s
general CODER, and we use it for preliminary classification. In the second stage, we construct One-to-One Text Sets in pairs for the top
five predicted classes of the preliminary classification results, focusing on attributes where the two specific classes differ most. We build
one-to-one specific CODER for the image based on these One-to-One Text Sets and use heuristic classifier to get each class’s classification
score. Then we rerank the top five preliminary results based on the classification score gaps gapcji between classes. Here gapcji represents
the difference obtained by subtracting the score of the class c from that of the class j for image xi.

si = ϕ (x̂i) =
x̂⊤
i

∥x̂i∥
W ∈ RK . (6)

Then, we employ a heuristic classifier h on the test image’s
general CODER si to obtain the preliminary classification
logits vector oi. We use sij to represent the portion of the
test image’s general CODER si corresponding to the text
of the j-th category. sij consist of several parts, as shown in
Equation 7. Here soriij , sattij , sanaij , ssynij refers to sij’s por-
tion of class name-based texts, attribute-based texts, anal-
ogous class-based texts and synonym-based texts, respec-
tively. ⊕ refers to the vector concatenation operation.

sij = soriij ⊕ sattij ⊕ sanaij ⊕ ssynij . (7)

For each class, the heuristic classifier h first gets the largest
element in the test image’s CODER portion correspond-
ing to the class name-based texts and synonym-based texts.
This step is intuitive: Humans can recognize an object by
knowing just one of its names. Then h calculates the mean
of max(soriij ⊕ ssynij) and all elements in the sij’s portion
corresponding to the attribute-based texts and synonym-
based texts. This value can be seen as the preliminary clas-
sification logit value oij belonging to class j. The process

is shown in the following Equation:

oij = h(sij) = mean
(
sattij ⊕ sanaij ⊕

[
max(soriij ⊕ ssynij)

])
.

(8)
After obtaining the preliminary classification results oi, we
extract the top five classes from the prediction results, form-
ing a set named C5. Subsequently, we draw all pairwise
combinations from these five classes in set C5, creating a
new set P1v1 comprised of these pairs. This process can be
described by Equation 9 and Equation 10:

C5 = Top5 (oi) = {c1, c2, c3, c4, c5} . (9)

P1v1 = {{ca, cb} |ca, cb ∈ C5, a ̸= b} . (10)

In the second stage, we use ATG to generate the one-to-
one specific texts for each pair in P1v1, resulting in a total
of C2

5 = 10 text sets. For each one-to-one specific text set,
we can construct a one-to-one specific CODER for the im-
age. We first use CLIP’s text encoder fT to extract the text
features of the one-to-one text set W a,b ∈ RD1×(K1+K2).
Here K1 and K2 represent the number of one-to-one texts
for each of the two classes. Equation 11 shows the compo-
sition of W a,b, where t̂ai and t̂bi refers to the i-th one-to-one

27406

text feature of class a and class b, respectively.

W a,b =

[
t̂a1
∥t̂a1∥

, · · · ,
t̂aK1

∥t̂aK1
∥
,

t̂b1
∥t̂b1∥

, · · · ,
t̂bK2

∥t̂bK2
∥

]
. (11)

Then we use the one-to-one text features W a,b to construct
the image’s one-to-one specific CODER sa,bi ∈ RK1+K2 :

sa,bi =
x̂⊤
i

∥x̂i∥
W a,b = sa,bia ⊕ sa,bib . (12)

Here sa,bia ∈ RK1 and sa,bib ∈ RK2 represent the part of
CODER pertaining to the one-to-one texts for class a and
class b, respectively.

Based on the one-to-one specific CODER sa,bi of the im-
age xi, we employ a heuristic classifier h to obtain image’s
classification scores for class a and b, denoted as oa,bia and
oa,bib , respectively:

oa,bia = h(sa,bia) = mean
(
sa,bia

)
,

oa,bib = h(sa,bib) = mean
(
sa,bib

)
.

(13)

Then we calculate the image’s classification score gap for
each class relative to another class:

gapabi = oa,bia − oa,bib , gapbai = oa,bib − oa,bia . (14)

For each class, we sum up all the score gaps between it and
other classes. Then we select the class with the largest sum
of score gaps as the final predicted class ĉi of the image:

ĉi = argmax
c∈C5

∑
j∈C5/{c}

gapcji . (15)

We use the method based on score gaps instead of the tra-
ditional voting method to reorder initial prediction results.
The reason is that score gaps provide quantified informa-
tion about the relative advantages between classes. Un-
like voting, which only considers each class’s number of
wins in pairwise classification, score gaps better capture the
model’s uncertainty in the classification tasks. For example,
a small score gap might indicate that the model is uncertain
about the correct class for the image, suggesting that the
classification result may be unreliable. This can lead to er-
rors in the outcomes derived from voting methods.

This two-phase image classification process illustrates
that by changing the neighbor text set, we can dynamically
build image’s feature that focus on different semantics ac-
cording to task requirements. In coarse-grained image clas-
sification, we focus on the general semantics of a class, such
as whether an animal has wings. In fine-grained image clas-
sification, we aim to focus on more detailed features that
differentiate between two specific classes, such as the color

of wings when distinguishing between dragonfly and but-
terfly. However, the original image features extracted by the
CLIP’s image encoder cannot dynamically adapt to specific
classification task requirements.
Few-Shot Image Classification. For Few-Shot Image
Classification, we improve the Tip-Adapter [32] by replac-
ing the original CLIP’s image features with our CODER
to calculate the similarity between the test image and
the support set’s images. We refer to the improved
method as CrOss-MoDal NEighbor Representation CLIP
Adapter (CODER-Adapter). Given the N -way M -shot
support image set I, we first calculate the CODER of
the images in the support set, represented by Strain ∈
RNM×K . Equation 16 shows the calculation process,
where f I (I) ∈ RNM×D1 refers to the support images’
original features and W ∈ RD1×K refers to the features
of texts in the general text set P , as defined in Equation 5.

Strain = f I (I)W . (16)

Then we perform one-hot encoding on the support images’
labels L to get one-hot labels matrix Ltrain ∈ RNM×C .
Each row of Ltrain is a one-hot vector.

Ltrain = OneHot (L) . (17)

For the test image xi, we also construct its CODER si ∈
RK similarly to the support set’s images.

si = f I (xi)W . (18)

We then calculate the affinity matrix A ∈ R1×NM between
the test image’s CODER si ∈ RK and the support set im-
ages’ CODER Strain ∈ RNM×K using the Equation 19.
Here Norm(·) refers to the data normalization operation like
L2 or min-max normalization. β and T are hyperparameters
to control the sharpness of A’s distribution.

A = exp

(
−β ·

(
1−

Norm
(
siS

⊤
train

)
T

))
. (19)

The affinity A ∈ R1×NM serves as a weight factor for
Ltrain. By calculating the weighted sum of images’ labels
in Ltrain, we can refine the CLIP’s original zero-shot pre-
diction results ozs

i using Equation 20. Here α controls the
degree of correction.

oi = α ·ALtrain + ozs
i . (20)

Finally, we select the class corresponding to the largest log-
its in oi as the predicted class of image xi.

5. Experiments
5.1. Zero-Shot Image Classification Performance

For zero-shot image classification, we compare our method
with two baselines: Vanilla CLIP [16] and VCD [12]. Ta-

27407

Table 1. Accuracy gains over VCD and CLIP baseline. The “CODER” column shows the classification accuracy before rerank stage, while
the “CODER⋆” column shows the accuracy after rerank stage. ∆ represents the improvement of our method over VCD.

ImageNet CUB200 EuroSAT

Architecture CLIP VCD CODER CODER⋆ ∆ CLIP VCD CODER CODER⋆ ∆ CLIP VCD CODER CODER⋆ ∆
ViT-B/32 59.07 62.96 64.38 66.86 3.90 51.81 51.78 53.00 55.04 3.26 44.89 46.57 52.83 54.93 8.36
ViT-B/16 63.53 68.10 69.61 71.46 3.36 55.75 57.54 58.30 59.92 2.38 49.52 56.46 55.30 60.54 4.08
ViT-L/14 70.58 74.96 76.15 77.38 2.42 62.10 63.29 64.64 65.76 2.47 53.54 59.57 62.98 68.24 8.67
ViT-L/14@336px 71.81 76.11 77.27 78.49 2.38 63.48 64.79 66.29 67.36 2.57 54.93 59.46 64.94 69.96 10.50

Describable Textures Places365 Food101

Architecture CLIP VCD CODER CODER⋆ ∆ CLIP VCD CODER CODER⋆ ∆ CLIP VCD CODER CODER⋆ ∆
ViT-B/32 41.28 45.27 48.78 52.71 7.44 36.47 38.92 40.37 40.27 1.45 80.27 84.13 84.72 85.50 1.37
ViT-B/16 43.19 45.64 48.67 55.69 10.05 37.31 39.87 41.39 41.70 1.83 85.99 89.25 89.29 89.82 0.57
ViT-L/14 52.18 57.18 60.74 61.86 4.68 37.06 38.55 41.21 41.59 3.04 89.85 93.33 93.66 93.93 0.60
ViT-L/14@336px 52.12 57.45 61.12 62.87 5.42 37.27 39.88 42.09 42.50 2.62 91.10 94.06 94.48 94.75 0.69

Caltech101 Oxford Pets ImageNetV2

Architecture CLIP VCD CODER CODER⋆ ∆ CLIP VCD CODER CODER⋆ ∆ CLIP VCD CODER CODER⋆ ∆
ViT-B/32 79.90 89.80 91.24 91.42 1.62 81.63 85.91 88.47 89.26 3.35 51.79 55.29 56.75 56.42 1.46
ViT-B/16 80.18 92.28 94.07 93.95 1.79 83.95 89.34 91.50 92.01 2.67 57.25 61.53 62.94 62.97 1.44
ViT-L/14 79.78 93.95 95.79 95.68 1.84 87.90 93.18 94.19 94.36 1.18 64.31 69.21 70.35 70.37 1.16
ViT-L/14@336px 80.36 94.35 96.31 96.37 2.02 87.82 93.62 94.22 94.88 1.26 65.61 70.41 71.45 71.28 1.04

ble 1 displays zero-shot image classification experiment re-
sults. By analyzing the results, we can draw the following
conclusions: (1) Our proposed CODER consistently boosts
CLIP’s zero-shot image classification accuracy across vari-
ous datasets and model architectures; (2) The rerank stage
based on the one-to-one specific CODER can further en-
hance CLIP’s performance, demonstrating the effectiveness
of our proposed two-stage zero-shot classification method.

5.2. Few-Shot Image Classification Performance

For few-shot image classification, we use ResNet 50[5] as
the backbone for CLIP’s image encoder, consistent with
previous methods. We use two CLIP’s training-free few-
shot image classification methods TIP-Adapter [32] and
TIP-X [20] as our baselines. TIP-Adapter leverages features
extracted by CLIP’s image encoder for calculating the sim-
ilarity between test images and support set’s images. While
TIP-X uses features based on similarity scores between im-
ages and texts generated by CUPL [15] to do it.

Figure 4 shows the few-shot image classification exper-
iment results. We use the experimental results of TIP-
Adapter and TIP-X presented in [20] and ensure that our
random seeds are consistent with them. Our method sur-
passes the previous CLIP few-shot training-free image clas-
sification methods on most datasets across different shot
scenarios. We notice that CODER-Adapter’s performance
on EuroSAT is unsatisfactory, which results in our method
not having a significant advantage in average accuracy
across 11 datasets compared to previous methods. But this
meets our expectations. Since EuroSAT has only 10 classes
and 95 texts generated by ATG, this small number of texts
fails to satisfy CODER’s need for dense text sampling, im-
pacting the adapter’s performance. This highlights the im-
portance of dense sampling for CODER.

Table 2. The accuracy of the zero-shot image classification exper-
iments using different texts. Meaning of symbols: P: Using class
name-based texts. Att: Using attribute-based texts. Ana: Using
analogous class-based texts. We use CLIP ViT-B-32.

Text Caltech101 Oxford Pets Describable Textures EuroSAT

P 79.90 81.63 41.28 44.89
P+Att 89.80 85.91 45.27 46.57
P+Att+Ana 91.01 88.55 48.73 52.77

Table 3. The accuracy of the 16-shot image classification experi-
ments using different texts. We use CLIP ResNet-50.

Text Caltech101 Oxford Pets Describable Textures EuroSAT

P 90.34 89.83 62.35 58.44
P+Att 90.47 90.3 63.06 65.36
P+Att+Ana 90.99 90.26 64.18 67.11

Contrasting to previous work [20, 32], we innovatively
interpret the superiority of CLIP’s cross-modal relative fea-
ture representation from the perspective of neighbor repre-
sentation. Additionally, by drawing an analogy to neighbor-
based algorithms like KNN, which require dense sam-
pling of neighbor samples to ensure superior performance,
we provide an intuitive explanation for our need to use a
more diverse and higher-quality text set to construct our
CODER. Motivated by this conclusion, we develop the
Auto Text Generator for the automated creation of varied,
high-quality texts to meet CODER’s dense sampling needs.
The experiments demonstrate the validity of our method.

5.3. The Importance of Dense Sampling for CODER

Nearest neighbor algorithms like KNN depend on dense
sampling for good performance. We view our CODER as
a cross-modal neighbor representation. Hence, as the di-
versity and quantity of high-quality cross-modal neighbor
texts increase, the constructed CODER should correspond-

27408

0 5 10 15
Number of labeled examples per class

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy
 (
%
)

Average

0 5 10 15
Number of labeled examples per class

60.5

61.0

61.5

62.0

Ac
cu

ra
cy
 (
%
)

ImageNet

0 5 10 15
Number of labeled examples per class

86

87

88

89

90

91

Ac
cu
ra
cy
 (
%
)

Caltech101

0 5 10 15
Number of labeled examples per class

82

84

86

88

90

Ac
cu
ra
cy
 (
%
)

OxfordPets

0 5 10 15
Number of labeled examples per class

56

58

60

62

64

66

68

Ac
cu
ra
cy
 (
%
)

Cars

0 5 10 15
Number of labeled examples per class

65

70

75

80

85

90
Ac

cu
ra
cy
 (
%
)

Flowers102

0 5 10 15
Number of labeled examples per class

74

75

76

77

78

Ac
cu
ra
cy
 (
%
)

Food101

0 5 10 15
Number of labeled examples per class

18

20

22

24

26

28

30

Ac
cu
ra
cy
 (
%
)

FGVCAircraft

0 5 10 15
Number of labeled examples per class

60

62

64

66

68

Ac
cu

ra
cy
 (
%
)

SUN397

0 5 10 15
Number of labeled examples per class

40

45

50

55

60

65

Ac
cu
ra
cy
 (
%
)

DTD

0 5 10 15
Number of labeled examples per class

30

40

50

60

70

Ac
cu
ra
cy
 (
%
)

EuroSAT

0 5 10 15
Number of labeled examples per class

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ac
cu
ra
cy
 (
%
)

UCF101

Zero-shot CLIP TIP-Adapter TIP-X CODER-Adapter (Ours)

Figure 4. Results for the training-free few-shot regime across 11 datasets. We compare the CODER-Adapter with the previous CLIP
few-shot image classification methods. Our CODER-Adapter achieves the best performance on most datasets.

−60 −40 −20 0 20

−40

−20

0

20

40

Oxford_Pet ori t-SNE Visualization

−60 −40 −20 0 20

−40

−20

0

20

40

60

Oxford_Pet new t-SNE Visualization

Figure 5. The t-SNE Visualization of the Oxford-Pets dataset.
Left: Original CLIP Images’ Features; Right: CODER.

ingly improve. We validate this idea through experiments.
We use three different text sets for constructing the image’s
CODER: (1) CLIP’s original class name-based texts; (2)
class name-based texts and VCD’s attribute-based texts; (3)
our analogous class-baed texts added to (2). Our experi-
ments in zero-shot and few-shot image classification, as de-
tailed in Table 2 and Table 3, show that CODER perfor-
mance enhances with the increasing diversity and number
of texts. This highlights the importance of dense neighbor
text sampling in improving CODER quality.

5.4. Visualization results of CODER

Figure 5 presents a t-SNE visualization comparing origi-
nal image features from the CLIP image encoder with those
of our proposed CODER on the Oxford-Pets dataset. Our

CODER achieves tighter clustering of same-class images’
features and clearer separation of different classes.

6. Conclusion

In this paper, we address the misalignment between
CLIP’s image feature extraction method and its pre-
training paradigm. We present a novel perspective based
on the nearest neighbors to comprehend CLIP’s strong
zero-shot image classification capability. Our key in-
sight is that CLIP’s effective text-image matching capa-
bility embeds image information in image-text distances.
This leads us to propose the CrOss-moDal nEighbor
Representation (CODER), utilizing these image-text dis-
tances for image representation. We introduce the Auto
Text Generator to automatically generate texts, ensuring
dense sampling of neighbor texts for better CODER con-
struction. Experiment results in zero-shot and few-shot im-
age classification show the superiority of our method.

Acknowledgments

This work is partially supported by National Key R&D
Program of China (2022ZD0114805), NSFC (62376118,
62006112, 62250069, 61921006), Collaborative Innovation
Center of Novel Software Technology and Industrialization.

27409

References
[1] Lijie Fan, Dilip Krishnan, Phillip Isola, Dina Katabi, and

Yonglong Tian. Improving CLIP training with language
rewrites. In NeurIPS, 2023. 2

[2] Yunhao Ge, Jie Ren, Andrew Gallagher, Yuxiao Wang,
Ming-Hsuan Yang, Hartwig Adam, Laurent Itti, Balaji Lak-
shminarayanan, and Jiaping Zhao. Improving zero-shot gen-
eralization and robustness of multi-modal models. In CVPR,
pages 11093–11101, 2023. 2

[3] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
Open-vocabulary object detection via vision and language
knowledge distillation. In ICLR, 2022. 1

[4] Andrey Guzhov, Federico Raue, Jörn Hees, and Andreas
Dengel. Audioclip: Extending clip to image, text and au-
dio. In ICASSP, pages 976–980, 2022. 1

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 7

[6] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc V. Le, Yun-Hsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In ICML, pages 4904–
4916, 2021. 2

[7] Boyi Li, Kilian Q. Weinberger, Serge J. Belongie, Vladlen
Koltun, and René Ranftl. Language-driven semantic seg-
mentation. In ICLR, 2022. 1

[8] Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Gotmare,
Shafiq R. Joty, Caiming Xiong, and Steven Chu-Hong Hoi.
Align before fuse: Vision and language representation learn-
ing with momentum distillation. In NeurIPS, pages 9694–
9705, 2021. 2

[9] Li Li, Jiawei Peng, Huiyi Chen, Chongyang Gao, and Xu
Yang. How to configure good in-context sequence for visual
question answering. CoRR, abs/2312.01571, 2023. 2

[10] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei,
Nan Duan, and Tianrui Li. Clip4clip: An empirical study
of CLIP for end to end video clip retrieval and captioning.
Neurocomputing, 508:293–304, 2022. 1

[11] Chengzhi Mao, Revant Teotia, Amrutha Sundar, Sachit
Menon, Junfeng Yang, Xin Wang, and Carl Vondrick. Dou-
bly right object recognition: A why prompt for visual ratio-
nales. In CVPR, pages 2722–2732, 2023. 2

[12] Sachit Menon and Carl Vondrick. Visual classification via
description from large language models. In ICLR, 2023. 2,
4, 6

[13] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions
with human feedback. In NeurIPS, pages 27730–27744,
2022. 2, 4

[14] Yingzhe Peng, Xu Yang, Haoxuan Ma, Shuo Xu, Chi Zhang,
Yucheng Han, and Hanwang Zhang. ICD-LM: configur-
ing vision-language in-context demonstrations by language
modeling. CoRR, abs/2312.10104, 2023. 2

[15] Sarah M. Pratt, Rosanne Liu, and Ali Farhadi. What does a
platypus look like? generating customized prompts for zero-
shot image classification. CoRR, abs/2209.03320, 2022. 2,
7

[16] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, pages
8748–8763, 2021. 1, 2, 4, 6

[17] Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal,
Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, and Kurt
Keutzer. How much can CLIP benefit vision-and-language
tasks? In ICLR, 2022. 1

[18] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guil-
laume Couairon, Wojciech Galuba, Marcus Rohrbach, and
Douwe Kiela. FLAVA: A foundational language and vision
alignment model. In CVPR, pages 15617–15629, 2022. 2

[19] Ming Tao, Bing-Kun Bao, Hao Tang, and Changsheng Xu.
GALIP: generative adversarial clips for text-to-image syn-
thesis. In CVPR, pages 14214–14223, 2023. 1

[20] Vishaal Udandarao, Ankush Gupta, and Samuel Albanie.
Sus-x: Training-free name-only transfer of vision-language
models. CoRR, abs/2211.16198, 2022. 7

[21] Yael Vinker, Ehsan Pajouheshgar, Jessica Y. Bo, Ro-
man Christian Bachmann, Amit Haim Bermano, Daniel
Cohen-Or, Amir Zamir, and Ariel Shamir. Clipasso:
semantically-aware object sketching. ACM Transactions on
Graphics, 41(4):86:1–86:11, 2022. 1

[22] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhil-
iang Peng, Qiang Liu, Kriti Aggarwal, Owais Khan Mo-
hammed, Saksham Singhal, Subhojit Som, and Furu Wei.
Image as a foreign language: BEIT pretraining for vision
and vision-language tasks. In CVPR, pages 19175–19186,
2023. 2

[23] Longhui Wei, Lingxi Xie, Wengang Zhou, Houqiang Li, and
Qi Tian. MVP: multimodality-guided visual pre-training. In
ECCV, pages 337–353, 2022. 1

[24] Jianxin Wu. Balance support vector machines locally using
the structural similarity kernel. In PAKDD, pages 112–123,
2011. 2, 3

[25] Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon,
Thomas M. Breuel, Jan Kautz, and Xiaolong Wang.
Groupvit: Semantic segmentation emerges from text super-
vision. In CVPR, 2022. 1

[26] An Yan, Yu Wang, Yiwu Zhong, Chengyu Dong, Zexue He,
Yujie Lu, William Yang Wang, Jingbo Shang, and Julian J.
McAuley. Learning concise and descriptive attributes for vi-
sual recognition. In ICCV, pages 3067–3077. IEEE, 2023.
2

[27] Xu Yang, Yongliang Wu, Mingzhuo Yang, Haokun Chen,
and Xin Geng. Exploring diverse in-context configurations
for image captioning. In NeurIPS, 2023. 2

[28] Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel
Jin, Chris Callison-Burch, and Mark Yatskar. Language in a
bottle: Language model guided concept bottlenecks for inter-
pretable image classification. In CVPR, pages 19187–19197,
2023. 2

27410

[29] Chao Yi, Zhan De-Chuan, and Ye Han-Jia. Bridge the
modality and capacity gaps in vision-language model selec-
tion. CoRR, abs/2403.13797, 2024. 2

[30] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang,
Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu,
Yumao Lu, Yu Shi, Lijuan Wang, Jianfeng Wang, Bin Xiao,
Zhen Xiao, Jianwei Yang, Michael Zeng, Luowei Zhou, and
Pengchuan Zhang. Florence: A new foundation model for
computer vision. CoRR, 2021. 2

[31] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xu-
peng Miao, Bin Cui, Yu Qiao, Peng Gao, and Hongsheng
Li. Pointclip: Point cloud understanding by CLIP. In CVPR,
pages 8542–8552, 2022. 1

[32] Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kun-
chang Li, Jifeng Dai, Yu Qiao, and Hongsheng Li. Tip-
adapter: Training-free adaption of CLIP for few-shot clas-
sification. In ECCV, pages 493–510, 2022. 1, 6, 7

[33] Guobing Zhou, Jianxin Wu, and song Zhou. A nearest-
neighbor-based clustering method. Journal of Software, 26
(11):2847–2855, 2015. 2, 3

[34] Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li,
Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, and
Tong Sun. Towards language-free training for text-to-image
generation. In CVPR, pages 17886–17896, 2022. 1

[35] Orr Zohar, Shih-Cheng Huang, Kuan-Chieh Wang, and Ser-
ena Yeung. Lovm: Language-only vision model selection.
In NeurIPS, 2023. 2

27411

	. Introduction
	. Related Work
	. Notations and Background
	. Cross-Modal Neighbor Representation
	. Understand the Advantage of Coder.
	. Use Auto Text Generator to Generate Texts
	. Use Coder on Downstream Tasks

	. Experiments
	. Zero-Shot Image Classification Performance
	. Few-Shot Image Classification Performance
	. The Importance of Dense Sampling for CODER
	. Visualization results of CODER

	. Conclusion

