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Abstract

Adversarial distillation (AD) is a highly effective method
for enhancing the robustness of small models. Contrary to
expectations, a high-performing teacher model does not al-
ways result in a more robust student model. This is due
to two main reasons. First, when there are significant dif-
ferences in predictions between the teacher model and the
student model, exact matching of predicted values using KL
divergence interferes with training, leading to poor perfor-
mance of existing methods. Second, matching solely based
on the output prevents the student model from fully under-
standing the behavior of the teacher model. To address
these challenges, this paper proposes a novel AD method
named SmaraAD. During the training process, we facili-
tate the student model in better understanding the teacher
model’s behavior by aligning the attribution region that the
student model focuses on with that of the teacher model.
Concurrently, we relax the condition of exact matching in
KL divergence and replace it with a more flexible match-
ing criterion, thereby enhancing the model’s robustness.
Extensive experiments substantiate the effectiveness of our
method in improving the robustness of small models, out-
performing previous SOTA methods.

1. Introduction
Deep Neural Networks (DNNs) have achieved significant
success in both academic and industrial applications, in-
cluding image classification [8], face recognition [18], time
series forecast [23] and resource scheduling [24, 25]. In
pursuit of enhanced performance, present-day deep learn-
ing models are frequently designed to be increasingly deep
and wide [22]. However, constraints in computational and
memory resources pose a challenge to the deployment of
these large models, particularly in real-time applications
where there is a demand for deploying lightweight mod-
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els in resource-limited mobile devices for swift inference
results. Given the budget limitations inherent in edge de-
ployment, smaller models often lack sufficient protective
mechanisms. This deficiency renders them more suscepti-
ble to potential threats such as well-orchestrated adversarial
attacks [7, 12, 17] for malevolent purposes, in comparison
to large models. Consequently, bolstering the robustness of
small models against malicious attacks is of critical impor-
tance when integrating them into practical applications.

Among the myriad of existing defensive strategies, ad-
versarial training (AT) has been substantiated as one of
the most effective approaches [7, 12, 13, 19, 27], gar-
nering significant attention from the research community.
Despite its proven reliability in promoting model robust-
ness, AT approaches are not devoid of limitations. Numer-
ous studies illustrate that AT is more proficient with high-
volume over-parameterised models as opposed to smaller
models [14, 21, 28], implying a direct correlation between
model size and robustness. Recently, adversarial distilla-
tion (AD) has been put forth as an alternative to augment
the robustness of smaller models [6, 32, 33]. Analogous
to AT, AD can be framed as a min-max optimisation prob-
lem. Its objective is to ensure the student model inherits not
only the predictive accuracy but also the adversarial robust-
ness of the robust teacher model within the robust optimi-
sation framework. A summary of the approaches utilised in
various state-of-the-art AD approaches is presented in Ta-
ble 1. Ideally, higher performing teachers should impart
more knowledge to their students. However, several stud-
ies [3, 29, 33] have observed a lack of direct correlation be-
tween the performance of teachers and students, with high-
performing teachers not necessarily producing better per-
forming students, and in some cases, even contributing to a
decline in student model robustness. We ascribe this phe-
nomenon to the approach of knowledge transfer between
teachers and students.

Firstly, the conventional approach that employs
Kullback-Leibler (KL) divergence to match predictions
precisely proves counterproductive when substantial dis-
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crepancies exist between the predictions of teacher and
student models. This training interference hinders the
effectiveness of existing AD approaches, making it difficult
for the student model to ”understand” the higher-order
semantics extracted by the teacher model and limiting the
ability to improve the robustness of the student model.
Secondly, the prevalent methodology, which matches solely
based on output values, fails to enable the student model to
apprehend the intricate behaviours exhibited by the teacher
model. This results in an incomplete understanding of the
pivotal decision-making processes. Consequently, student
models are left unable to decipher key nuances and insights
from teacher models, thereby obstructing their capacity to
learn robust representations.

In response to these challenges and with the aim to bol-
ster the robustness of smaller models, this paper introduces
an innovative AD approach (SmaraAD). Our strategy seeks
to offer student models a more profound comprehension of
the teacher model’s behaviour, thereby facilitating superior
knowledge transfer. To achieve this, we align the attribu-
tion region of the student model, that is, the region of in-
terest the student model concentrates on, with the teacher
model’s attribution region during the training phase. Conse-
quently, the student model can focus on the same pertinent
features as the teacher model and glean valuable informa-
tion, hence gaining a more thorough understanding of the
teacher model’s decision-making process. Furthermore, we
relax the precise matching condition in the KL divergence,
preferring a more lenient matching criterion. In knowledge
transfer from teachers to students, our central concern is the
correlation degree of predicted outcomes between the two.
Therefore, we adopt the Spearman correlation coefficient
as a novel matching approach, substituting the KL diver-
gence. This not only mitigates training interference due to
variations in predicted values but also fortifies the model’s
resilience against uncertainty and noise. To corroborate
the effectiveness of our suggested approach, we executed
comprehensive experiments. The experimental outcomes
demonstrate that our AD approach holds considerable ad-
vantages in enhancing the robustness of smaller models,
outperforming previous state-of-the-art approaches. These
empirical results offer robust evidence for the potential ap-
plicability of our proposed novel approach in real-world
scenarios.

In summary, our main contributions are:

• In an effort to tackle the identified issues and enhance the
robustness of smaller models, we introduce an innova-
tive AD technique. This approach seeks to foster supe-
rior knowledge transfer by imparting the student model
with a deeper insight into the teacher model’s behavior.
During the training, we strive to accomplish this aim by
synchronizing the attribution region of the student model
with that of the teacher model. Consequently, the stu-

dent model can focus on the same pertinent features as the
teacher model and accrue a more thorough understanding
of the teacher model’s decision-making mechanism.

• We employ the Spearman correlation coefficient as a fresh
matching substitute for KL divergence. This aids in alle-
viating training interference attributed to discrepancies in
predicted values and bolstering model resilience against
uncertainty and noise.

• We provide empirical evidence to substantiate the effec-
tiveness of our suggested approach in improving the per-
formance of smaller models. A multitude of experimen-
tal results affirm that our approach significantly surpasses
state-of-the-art AT and AD approaches across various
scenarios.

2. Related Work
2.1. Adversarial Attack

Adversarial attacks are a form of attack on artificial intelli-
gence models achieved by modifying the input data, leading
to incorrect output from the model. Following the intro-
duction of the concept of adversarial examples by Sezgedy
et al. [17], numerous studies have investigated model ro-
bustness and presented effective methods for adversarial at-
tacks. The Fast Gradient Sign Method (FGSM) [7] is a
classical method for adversarial attacks that leverages the
model’s gradient to generate adversarial examples. Madry
et al. [12] proposed Projected Gradient Descent (PGD), a
multi-step variant of FGSM. Carlini Wagner et al. [2] in-
troduced an optimization-based method that enables broad
usage in assessing the robustness of deep learning models.
Croce et al. [5] introduced two enhanced PGD attack meth-
ods: APGD-CE and APGD-DLR. Subsequently, they inte-
grated these methods with two complementary black-box
attack methods (FAB [4] and Square [1]) to assess their ro-
bustness, known as AutoAttack (AA). AA can be consid-
ered the most potent attack currently available.

2.2. Adversarial Distillation
Knowledge distillation (KD) is a widely recognized tech-
nique for compressing deep neural networks, which has
received significant attention in recent years. It is valued
for its capability to transfer superior model performance to
other models. By utilizing a trained teacher T , KD trains a
student S by solving the following optimisation problem:

argmin
θS

(1− α)L(S(x), y) + ατ2KL(Sτ (x), T τ (x)), (1)

where KL is the Kullback-Leibler divergence and τ is the
temperature constant. In contrast to traditional KD, AD
places emphasis on the transfer of both clean accuracy and
the robustness of teacher models to student models. Gold-
blum et al. [6] conducted an investigation into the trans-
fer of adversarial robustness from teachers to students in
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Table 1. The optimization process of the standard adversarial training method, five types of adversarial distillation methods, and our pro-
posed method. Lmin represents the loss function for outer minimization, while Lmax represents the loss function for inner maximization.
S and T denote the student and teacher networks, respectively. α is a hyperparameter that balance the losses. Lsm and Lalign are the slack
matching and attribution region alignment methods we introduced.

Method Lmin Lmax

Standard-AT CE(f(x′), y) CE(f(x′), y)

ARD (1− α)CE(Sτ (x), y) + ατ2KL(Sτ (x′), T τ (x)) CE(S(x′), y)

IAD Ty(x
′)αKL(Sτ (x′), T τ (x)) + (1− Ty(x

′)α)KL(Sτ (x′), Sτ (x)) CE(S(x′), y)

RSLAD (1− α)KL(S(x), T (x)) + αKL(S(x′), T (x)) KL(S(x′), T (x))

MTARD (1− α)KL(S(x), Tnat(x)) + αKL(S(x′), Tadv(x
′)) CE(S(x′), y)

AdaAD (1− α)KL(S(x), T (x)) + αKL(S(x′), T (x′)) KL(S(x′), T (x′))

SmaraAD (Proposed) (1− α) · (Lsm(x) + Lalign(x)) + α · (Lsm(x′) + Lalign(x
′)) KL(S(x′), T (x′)) + Lalign(x

′)

the context of KD. They introduced the Adversarial Robust
Distillation (ARD) method to imbue student networks with
robustness. Zi et al. [33] presented a novel method for dis-
tilling adversarial robustness called Robust Soft-Label Ad-
versarial Distillation (RSLAD). RSLAD utilizes robust soft
labels, generated by large teacher models trained adversari-
ally, to guide students in learning both natural and adversar-
ial examples across various loss conditions. Zhu et al. [32]
asserted that teacher models may not always be consistently
reliable and subsequently introduced Introspective Adver-
sarial Distillation (IAD) as a means of achieving reliable
AD. Zhao et al. [30] introduced Multi-Teacher Adversarial
Robustness Distillation (MTARD) to guide smaller models
in adversarial scenarios. Huang et al. [9] proposed Adaptive
Adversarial Distillation (AdaAD), where the teacher model
engages in an interactive knowledge optimization process
with the student model to adaptively search for internal out-
comes.

3. The Proposed Approach
In this section, we revisit state-of-the-art AD methods and
analyse the limitations of existing AD methods through em-
pirical experiments. We then introduce AD methods based
on Slack Matching and Attribution Region Alignment
(SmaraAD).

3.1. Limitations of Existing AD Methods

We present a comprehensive summary of various existing
AD methods. Table 1 provides a detailed overview of the
AD methods we investigated, which generally employ ex-
act matching of hard or soft labels for knowledge transfer
between teacher and student models. However, we identi-
fied certain limitations in the current AD approaches, par-
ticularly concerning the robustness of the student model. To
investigate these limitations thoroughly, we conducted a se-
ries of empirical experiments.

First, we utilized teacher models with varying degrees
of robustness for different AD methods. Then, we com-
pared the robustness of student models trained using dif-
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Figure 1. Robustness of AA attacks on ResNet-18 students trained
by different AD methods using 5 different teachers. The experi-
ment was done on the CIFAR-10 dataset.

ferent AD methods with that of the corresponding teacher
models. Surprisingly, the experimental results depicted in
Figure 1 reveal that the robustness of the student model does
not improve with an increase in the teacher model’s robust-
ness; instead, the robustness of the student model may even
decline in certain instances. This observation indicates that
existing AD methods still face challenges in achieving ro-
bustness for the student model. KL divergence is an ex-
act matching method that prioritizes replicating the teacher
model’s predictions precisely, rather than capturing its in-
trinsic patterns. When there are large differences in the pre-
dictions between the teacher model and the student model,
the student model, in its attempt to precisely match the pre-
dictions of the teacher model, may overfit the noise of the
teacher model at the expense of the real goal-understanding
and learning from the teacher model. This explains why
employing KL divergence reduces the model’s robustness
when there are considerable prediction disparities between
the teacher model and the student model.

Second, to delve deeper into the disparity between
the knowledge acquired by the student model and the
teacher model, we employed the class activation mapping
(CAM) [31] method. The experimental results, shown in
Figure 2, indicate a notable difference between the student
and teacher models when comparing the attribution regions.
This suggests that the student model incompletely captures
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Figure 2. Attribution regions of student models trained by different AD methods and teacher model on adversarial examples.

the behavior of the teacher model. Neural networks tightly
couple feature extraction and decision-making. Specific in-
put features significantly impact the model’s decision out-
come, often termed the decision’s attribution region. We
hypothesise that if two models (teacher model and student
model) focus on different feature regions when processing
the same inputs, their behavioural properties and decision
logics may differ even if their predictions are similar. Ex-
isting AD methods prioritize ensuring the consistency be-
tween the predictions of the teacher model and the student
model, overlooking potential behavioral differences. Con-
sequently, the student model may not fully mimic the be-
havior of the teacher model, particularly when faced with
new, previously unseen data during training.

To address the above issues, we propose two strategies:
slack matching with Spearman correlation and behavioural
learning with attribution region alignment.

3.2. Slack Matching with Spearman Correlation

Empirical experiments have demonstrated a counterintu-
itive phenomenon: when using KL divergence as the ap-
proach, the performance of the student model declines as
the performance of the teacher model improves. This may
be attributed to the requirement of exact matching through
KL-based methods, which compels the student model to
over-approximate the predicted probability distribution of
the teacher model. Inspired by Huang et al. [10], it is crucial
to prioritize maintaining predictive relationships between
teacher and student models, especially the relative predic-
tion rankings, while transferring knowledge from teachers
to students. Accordingly, we employed the Spearman cor-
relation coefficient [16] in place of the KL divergence. This
selection permits a more flexible matching relationship be-
tween the teacher and student models, facilitating the as-
sessment of correlation between their predictions.

The Spearman correlation coefficient is a measure of cor-
relation between two variables. In other words, when one
variable changes, the value of the other variable tends to
change in the same direction, without highlighting the con-

sistency of its absolute value. This feature mitigates the is-
sue of over-approximating the teacher model during train-
ing, reducing training interference and facilitating improved
learning of the student model from the teacher model. By
maximizing the Spearman correlation coefficient, we are
able to effectively transfer the knowledge of the teacher
model to the student model. The Spearman correlation co-
efficient ρ between two random variables u and v is calcu-
lated as follows:

ρ(u,v) = 1−
6
∑n−1

i=0 d
2
i

n(n2 − 1)
, (2)

di = rank(ui)− rank(vi), (3)

where n is the number of classes. di is the difference in the
ranking of the variables, i.e., the difference in the ranking of
the two variables at each data point. rank(ui) denotes the
ranking of the i-th data point in u.

It is important to note that rank(·) uses hard ranking
(i.e., sorting the data values and giving them an exact rank),
an operation that is not differentiable and can affect the pro-
cess of model convergence. To address this, we utilize a
continuous function to approximate the ranking function,
making the entire computation differentiable. For ui, its
soft ranking can be defined as follows:

soft rank(ui) = σ(γ(u − ui)), (4)

where σ(·) is Sigmoid function. γ is a constant indicating
the degree of ”softening”. As γ → ∞, the soft ranking ap-
proaches the hard ranking. Utilizing this soft ranking def-
inition, we can employ it in Spearman’s original equation,
supplanting the hard ranking rank(·).

In the slack matching process, we want to increase the
positive correlation between the student model and the
teacher model, so we can directly transfer knowledge from
the teacher model to the student model by maximizing the
Spearman correlation coefficient between the two. Specif-
ically, assuming that T (x) and S(x) denote the predicted
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probability distributions of the teacher model and the stu-
dent model for the input sample x, respectively, then our
optimisation objective is as follows:

Lsm(x) = −ρ(S(x), T (x)). (5)

3.3. Behavioral Learning with Attribution Region
Alignment

In order to achieve the understanding of the student model
to the teacher model’s behavior, we use CAM to compute
the attribution regions between the two models. CAM is
an interpretable technique for image classification tasks that
visualises the neural network’s regions of attention on an
image to understand the regions that the network is focusing
on when making predictions. For each input image, CAM
generates a heat map representing the importance of differ-
ent regions. To compute the attribution regions, we consider
a given input x and utilize Ak

T (x) and Ak
S(x) as the k-th fea-

ture maps of the last layer for the teacher model and student
model, respectively. The computation of attribution regions
involves the following steps:

CAMT (x) =
∑
k

wk
TA

k
T (x),

CAMS(x) =
∑
k

wk
SA

k
S(x),

(6)

where wk
T and wk

S are the weights of the corresponding fea-
ture maps for the teacher model and student model, respec-
tively. These weights come from the classification layer and
indicate the importance of the model for each feature map.

In the training phase, we achieved attribution region
alignment by minimising the Mean Squared Error (MSE)
between the attribution regions of the two models, thus fa-
cilitating the imitation of the teacher model’s behaviour by
the student model, which was calculated as follows:

Lalign(x) =
1

W ×H

∑W
i=1

∑H
j=1

(G(CAMT (x))ij −G(CAMS(x))ij)
2,

(7)

where W and H are width and height of the attribution re-
gions, respectively. Please note that the width and height
of the attribution region may not be the same for the stu-
dent model and the teacher model because of their differ-
ent structures. Hence, to address this disparity, we uti-
lize a transformation method G(·) to equalize the width
and height of CAMT (x) and CAMS(x). Specifically, we
employ bilinear interpolation as the transformation method
G(·). It can be easily implemented using F.interpolate()
in Pytorch.

3.4. Optimization Process

The optimization process involves two crucial steps: inner
maximization and outer minimization, facilitating efficient
knowledge transfer.

Teacher Model T

Student Model S

Feature Extraction Linear

� � 

� � 

퐶��� � 

퐶��� � 

�푠��푎푙���

Figure 3. The process of outer optimization.

Inner maximization is utilized to generate adversarial
examples. These examples aim to represent the most sig-
nificant differences between the student and teacher models,
thereby providing deeper insights into the student model’s
weaknesses in various scenarios and ultimately enhancing
its robustness. Therefore, we maximise the difference be-
tween the KL loss and the attribution region between the
two. The equation for generating the adversarial example is
as follows:

x′ = argmax
∥x′−x∥p≤ϵ

(LKL + Lalign). (8)

Outer minimization optimises the student model and
aims to transfer knowledge from the teacher model to the
student model. In this process, we employ the aforemen-
tioned methods of slack matching and attribution region
alignment as loss functions to optimize the student model.
Our objective during optimization is to maximize the lin-
ear correlation and attribution region similarity between the
student and teacher model outputs. The outer optimization
process is depicted in Figure 3, and the minimization equa-
tion is presented below:

Lsm&align =c+ (1− α) · (Lsm(x) + Lalign(x))+

α · (Lsm(x′) + Lalign(x
′)),

(9)

where c ≥ 1 is a constant, x′ is the adversarial example
generated by inner maximization and α ∈ (0, 1) is a hyper-
parameter.

The reliability of the distillation process is compromised
by the consideration that the teacher model may not consis-
tently make accurate predictions for certain inputs. Stud-
ies [9, 32] have shown that the teacher model’s reliability
declines during distillation training, which encourages the
student model to adopt a cautious reliance on the teacher.
Following the approach of [32], we classify two scenarios
based on whether the teacher model can correctly classify
adversarial examples generated based on the student model:
if the teacher model predicts correctly, we assign weights
to each sample proportional to the teacher model’s confi-
dence levels. Conversely, if the teacher model predicts in-
correctly, the student model is directed towards increased
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self-learning. The equation for outer optimization is pre-
sented below:

Louter = (PT (x
′|y))λ · w · Lsm&align︸ ︷︷ ︸

Teacher Guidance

+

(1− (PT (x
′|y))λ) ·

(
ρ
(
S(x)||S(x′)

)
+ CE(S(x), y)

)︸ ︷︷ ︸
Student Self-learning

,
(10)

where PT (·|y) is the teacher model’s prediction probabil-
ity for the target label y, and λ ∈ (0, 1) is a hyperparameter
that sharpens the prediction. When the teacher model’s pre-
diction (PT (x

′|y)) for the true label y of the adversarial ex-
ample x′ is low, the weight of Teacher Guidance is reduced.
w represents the weight of the input.

Within this framework, we consider prediction uncer-
tainty from the perspective of information entropy and al-
locate weights to each sample accordingly. For a classifi-
cation task, the model’s predicted probability distribution
over categories is P = [p1, p2, . . . , pC ], and the predic-
tion uncertainty is quantified by the information entropy
H , defined as H(P ) = −

∑C
i=1 pi log(pi). The entropy

reaches its maximum value Hmax = log(C) when the pre-
dicted probabilities are equal across all categories. By cal-
culating Hnorm = H

Hmax
, we normalize the entropy values

relative to the maximum possible value given the number
of categories. The setting of the sample weight w is to
map the inverse relationship of entropy within a predefined
weight range (0, 1). The calculation is w = 1 − Hnorm
and is constrained by w = clamp(w, 0, 1). This allows for
lower weights on samples with higher uncertainty, aiding
the model’s learning from difficult samples.

4. Experiments
4.1. Experimental Setup

We evaluated the effectiveness of SmaraAD using two
benchmark image datasets: CIFAR-10 and CIFAR-
100 [11]. We conducted a comparison between pro-
posed method and three adversarial training (AT) methods,
namely PGD-AT, TRADES and LAS-AT, as well as several
representative AD methods, including ARD, IAD, RSLAD,
MTARD, and AdaAD. In terms of model selection, adher-
ing to the standard setup of AD, we considered two stu-
dent models: ResNet-18 [8] and MobileNet-V2 [15]. As
for the teacher models, we selected adversarially trained
teacher models: WideResNet-28-10 [26] and WideResNet-
34-10 for CIFAR-10 and WideResNet-34-10 for CIFAR-
100. In training the teacher model, we used the additional
dataset generated by Wang et al. [20] The performance of
the teacher models is shown in Table 2. Our code is avail-
able on github.

https://github.com/InsLin/SmaraAD/

4.2. Implementation Details

SmaraAD (employing Eq. 9 for outer optimization) is our
approach without considering the accuracy of the teacher
model’s predictions, while SmaraAD++ (employing Eq. 10
for outer optimization) is our approach with considering the
accuracy of the teacher model’s predictions. We employ
an SGD optimizer with momentum for training the model,
setting the initial learning rate to 0.1, momentum to 0.9,
and weight decay to 5e-4. The batch size is set to 256. For
AT and other AD methods, the training process comprises
200 epochs, and we decrease the learning rate by a factor of
10 at the 115th, 160th and 185th epoch. During the internal
optimization, we run 10 epochs with a step size of 2/255 and
a total perturbation limit of 8/255 under L∞ constraints. In
our method, the hyperparameter α is set to 1.0 in SmaraAD,
as suggested by [6, 9], and similarly, λ is also assigned the
value of 0.1, following the recommendation in [32]. The
constant c is set to 2 and γ is set to 1000.

4.3. Evaluation Metrics

After completing the training process, we assess the
model’s performance by measuring its accuracy on the nat-
ural samples (referred to as clean accuracy) as well as its
resilience to adversarial attacks on the adversarial exam-
ples (referred to as robust accuracy). We selected multiple
adversarial attack methods to evaluate the trained model’s
robustness. These methods include FGSM, PGD, C&W∞
(optimized by PGD), and AutoAttack (AA). It is important
to note that these attacks represent commonly used adver-
sarial attack methods for evaluating the robustness of mod-
els in the field of adversarial robustness. Regarding FGSM,
PGD, C&W∞, and AA, we set the maximum perturbation
size to 8/255. Furthermore, we employ 20 steps for PGD
and C&W∞, each with a step size of 2/255.

4.4. Adversarial Robustness Evaluation

4.4.1 White-box Robustness.

Tables 3 and 4 present the white-box robustness results of
our proposed methods compared to other methods on the
CIFAR-10 and CIFAR-100 datasets, respectively. In the
CIFAR-10, taking the combination of the ResNet-18 stu-
dent model and the WideResNet-34-10 teacher model as an
example, SmaraAD’s accuracy in the FGSM attack scenario
is 77.56%, which is 2.52% higher than AdaAD’s 75.04%,
and in the PGD-20 attack, its accuracy is 57.47%, sur-
passing LAS-AT’s 53.98% by 3.49%. Under the combi-
nation of the MN-V2 student model and the WideResNet-
28-10 teacher model, SmaraAD++ achieves an accuracy of
54.07% in the C&W∞ attack, which is 1.85% higher than
AdaAD’s 52.22%, and an accuracy of 52.00% in the AA
attack, outperforming RSLAD’s 49.41% by 2.59%.

On the CIFAR-100, under the RN-18 model, SmaraAD’s
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Table 2. The performance of teacher models for two datasets.
Dataset Teacher Clean FGSM PGD-20 C&W∞ AA

CIFAR-10 WRN-28-10 86.89% 79.42% 57.82% 56.73% 55.34%
CIFAR-10 WRN-34-10 88.15% 80.42% 63.51% 60.32% 59.87%
CIFAR-100 WRN-34-10 66.41% 52.78% 38.12% 37.76% 35.06%

Table 3. White-box robustness results on CIFAR-10 dataset. The maximum adversarial perturbation is ϵ = 8/255. The best results are
boldfaced, and the second best results are underlined.

Teacher Model WideResNet-34-10 WideResNet-28-10
Model Method Clean FGSM PGD-20 C&W∞ AA Clean FGSM PGD-20 C&W∞ AA

RN-18

PGD-AT 83.32% 56.67% 49.79% 48.61% 46.90% 83.32% 56.67% 49.79% 48.61% 46.90%
TRADES 82.96% 57.69% 52.34% 50.12% 49.20% 82.96% 57.69% 52.34% 50.12% 49.20%
LAS-AT 82.73% 60.21% 53.98% 52.09% 50.22% 82.73% 60.21% 53.98% 52.09% 50.22%

ARD 81.47% 72.17% 52.53% 50.28% 48.61% 82.51% 71.95% 52.92% 52.43% 49.02%
IAD 81.49% 72.36% 52.54% 50.04% 49.87% 83.33% 72.67% 52.78% 51.63% 49.30%

RSLAD 82.81% 72.29% 53.68% 51.31% 49.95% 83.50% 73.30% 53.75% 52.48% 50.49%
MTARD 86.84% 73.64% 50.87% 47.93% 46.12% 87.11% 74.04% 51.63% 48.12% 46.38%
AdaAD 85.26% 75.04% 55.40% 52.82% 51.41% 85.48% 75.34% 55.45% 53.84% 51.99%

SmaraAD 86.31% 77.56% 57.47% 55.20% 52.66% 85.77% 76.48% 55.70% 54.43% 52.36%
SmaraAD++ 86.90% 78.18% 58.58% 56.75% 53.40% 86.70% 77.47% 56.03% 55.21% 52.88%

MN-V2

PGD-AT 80.10% 54.51% 49.11% 48.20% 45.67% 80.10% 54.51% 49.11% 48.20% 45.67%
TRADES 79.98% 55.58% 51.49% 50.40% 46.95% 79.98% 55.58% 51.49% 50.40% 46.95%
LAS-AT 80.62% 57.74% 52.87% 51.12% 48.46% 80.62% 57.74% 52.87% 51.12% 48.46%

ARD 82.21% 70.97% 51.95% 49.10% 48.32% 83.43% 71.90% 52.01% 50.58% 49.50%
IAD 81.98% 69.85% 52.28% 49.02% 47.31% 82.80% 72.55% 52.24% 49.80% 47.94%

RSLAD 82.10% 71.06% 52.32% 49.36% 48.29% 83.26% 72.93% 52.67% 51.27% 49.41%
MTARD 87.43% 71.33% 42.15% 41.76% 40.43% 88.86% 72.99% 43.78% 43.28% 41.99%
AdaAD 83.42% 72.89% 54.19% 51.72% 49.53% 84.42% 73.88% 54.69% 52.22% 50.03%

SmaraAD 85.47% 74.58% 56.31% 54.30% 52.17% 85.12% 74.05% 55.29% 53.95% 51.88%
SmaraAD++ 86.66% 76.24% 57.17% 55.19% 52.54% 86.48% 75.36% 55.84% 54.07% 52.00%

Table 4. White-box robustness results on CIFAR-100 dataset. The
maximum adversarial perturbation is ϵ = 8/255. The best results
are boldfaced, and the second best results are underlined.

Teacher Model WideResNet-34-10
Model Method Clean FGSM PGD-20 C&W∞ AA

RN-18

PGD-AD 55.47% 40.08% 25.72% 23.98% 21.30%
TRADES 55.98% 42.58% 26.88% 25.40% 23.95%
LAS-AT 56.62% 44.19% 27.93% 27.41% 25.33%

ARD 60.34% 44.71% 30.49% 29.86% 26.03%
IAD 60.72% 44.85% 30.79% 29.98% 25.91%

RSLAD 62.32% 46.45% 32.33% 30.30% 27.56%
MTARD 63.87% 45.87% 25.56% 24.55% 22.38%
AdaAD 61.72% 46.44% 32.89% 30.15% 27.18%

SmaraAD 63.18% 49.42% 34.13% 33.03% 29.16%
SmaraAD++ 62.64% 50.82% 35.79% 34.03% 30.63%

MN-V2

PGD-AD 55.94% 39.78% 25.98% 23.63% 21.18%
TRADES 55.97% 40.02% 26.00% 24.83% 23.70%
LAS-AT 56.02% 43.75% 27.35% 27.28% 25.19%

ARD 60.88% 44.42% 29.69% 29.90% 25.92%
IAD 60.79% 44.58% 30.43% 28.51% 25.74%

RSLAD 64.20% 46.91% 31.14% 28.77% 26.62%
MTARD 66.01% 47.18% 26.05% 25.61% 25.18%
AdaAD 62.30% 47.98% 32.13% 29.89% 27.01%

SmaraAD 64.83% 48.43% 33.57% 32.92% 28.81%
SmaraAD++ 65.71% 49.58% 35.12% 33.89% 29.65%

Table 5. Black-box robustness results on CIFAR-10 dataset. The
maximum adversarial perturbation is ϵ = 8/255. The best results
are boldfaced, and the second best results are underlined.

Robustness of teacher 70.64% 59.04%
Method PGD-20 C&W∞ PGD-20 C&W∞

LAS-AT 65.96% 65.01% 61.32% 61.09%
RSLAD 67.93% 67.50% 63.62% 63.36%
AdaAD 68.77% 67.80% 64.57% 64.45%

SmaraAD 69.16% 68.29% 65.20% 65.01%

accuracy in the FGSM attack is 49.42%, which is 2.98%
higher than AdaAD’s 46.44%, and in the PGD-20 attack, its
accuracy is 34.13%, exceeding AdaAD’s 32.89% by 1.24%.
Under the MN-V2 model, SmaraAD++ achieves an accu-
racy of 35.12% in the PGD-20 attack and 29.65% in the
AA attack, both higher than any other methods.

These results collectively demonstrate that SmaraAD
and SmaraAD++ exhibit exceptional robustness against var-
ious types of attacks, underscoring their effectiveness in en-
suring model security and robustness, particularly in diverse
adversarial attack environments.

24611



PGD C&W AA
Different methods of attack

50.00%

51.00%

52.00%

53.00%

54.00%

55.00%

56.00%

57.00%

58.00%

S
t
u
d
e
n
t
 
r
o
b
u
s
t
n
e
s
s
 
a
g
a
i
n
s
t
 
a
t
t
a
c
k
s

KD

Lsm

KD + Lalign

Lsm + Lalign(SmaraAD)

Figure 4. Ablation studies using our SmaraAD and its variant dis-
tilled ResNet-18 student model. KD: trained using only KL diver-
gence; KD+Lalign: trained using both KD and attribution region
alignment; Lsm: trained using only slack matching; Lsm+Lalign:
trained using our SmaraAD.

4.4.2 Black-box Robustness.

We evaluated the black-box robustness of several methods
with strong defences. We tested the transfer attack on the
CIFAR-10 dataset. Specifically, we use the teacher model
with 70.64% (WRN-34-20) and 59.04% (RN-18) robust-
ness on PGD-20 attacks as a proxy model to generate sam-
ples against PGD-20 and C&W∞. Table 5 reports the evalu-
ation results. It can be observed that that when the structure
of the agent model is similar to that of the student model,
the higher the success rate of the attack. In all black-box
attacks, our SmaraAD outperforms all baseline methods,
which proves the superiority of our AD method.

4.5. Ablation Study

In order to better understand the impact of each compo-
nent of the SmaraAD on robustness, we conducted a set
of ablation studies using a ResNet-18 student model on the
CIFAR-10 dataset. We replaced Lsm with KL divergence
and tested the robustness of the student model after training.
Additionally, we removed the Lalgin and trained the student
model solely using Lsm. The results of the ablation study
are reported in Figure 4. From the experimental results, it
can be observed that the robustness of the student model is
best when both Lalgin and Lsm are present. This confirms
the importance of each component of the SmaraAD.

4.6. Further Explorations

4.6.1 The Effect of Teacher Model Performance on
Student Models.

We conducted experiments to investigate the impact of the
teacher on the robustness of the student. This experiment
was performed using a ResNet-18 student model on the
CIFAR-10 dataset, and we studied the robustness extracted
from six different teacher models using various AD meth-
ods. The results are shown in Figure 1. From the exper-
imental results, it can be observed that when using KL-
based AD methods, the student’s robustness decreases as
the performance of the teacher model increases. However,

our SmaraAD allows the robustness of the distilled student
model to increase with the size of the teacher model. This
also confirms the effectiveness of our SmaraAD.

4.6.2 Attribution Region Learned by SmaraAD.

We use CAM to visualize the attribution regions of the
model, providing an intuitive assessment of the similar-
ity between the knowledge learned by the student and
the teacher model. In the same adversarial examples, a
higher similarity between the student’s attribution regions
and those of the teacher indicates a more consistent be-
havior of the student model with the teacher model. Tak-
ing the example of a ResNet-18 student model distilled
from a WideResNet-28-10 teacher model on the CIFAR-
10 dataset, we visualize the attribution regions as shown in
Figure 2. It can be observed that compared to the baseline
methods ARD, IAD, RSLAD, MTARD and AdaAD, the at-
tribution regions of the student trained with our SmaraAD
are significantly more similar to those of the teacher. This
indicates that the student trained with our SmaraAD can in-
deed better mimic the behavior of the teacher and acquire
more knowledge from the teacher.

5. Conclusion

This paper explores how AD can be used to enhance the
robustness of small models. It is shown that a high-
performing teacher model does not always guarantee a more
robust student model. There are two main reasons for
this discrepancy. Firstly, existing methods face challenges
in dealing with significant predictive differences between
teacher and student models. Using KL divergence for exact
matching of predictions during training leads to poor per-
formance. Second, relying solely on output-based matching
can prevent the student model from fully capturing the be-
haviour of the teacher model. To address these challenges,
we introduce a novel AD method in this study. Our ap-
proach helps student models understand the behaviour of
teacher models by aligning their respective attribution re-
gions. In addition, we employ a more relaxed matching in-
stead of exact matching in KL divergence, which improves
the robustness of the model. Extensive experiments demon-
strate the effectiveness of our proposed approach in enhanc-
ing the robustness of small models beyond previous SOTA
techniques.

6. Acknowledgment

The authors would like to thank the anonymous reviewers
for their comments. This work was supported by the Beijing
Natural Science Foundation under Funding No. IS23055.
The contact author is Zhen Xiao.

24612



References
[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flam-

marion, and Matthias Hein. Square attack: a query-efficient
black-box adversarial attack via random search. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIII, pages
484–501. Springer, 2020. 2

[2] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), pages 39–57. Ieee, 2017. 2

[3] Defang Chen, Jian-Ping Mei, Hailin Zhang, Can Wang, Yan
Feng, and Chun Chen. Knowledge distillation with the
reused teacher classifier. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 11933–11942, 2022. 1

[4] Francesco Croce and Matthias Hein. Minimally distorted
adversarial examples with a fast adaptive boundary attack.
In International Conference on Machine Learning, pages
2196–2205. PMLR, 2020. 2

[5] Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International conference on ma-
chine learning, pages 2206–2216. PMLR, 2020. 2

[6] Micah Goldblum, Liam Fowl, Soheil Feizi, and Tom Gold-
stein. Adversarially robust distillation. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 3996–
4003, 2020. 1, 2, 6

[7] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 1, 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 6

[9] Bo Huang, Mingyang Chen, Yi Wang, Junda Lu, Minhao
Cheng, and Wei Wang. Boosting accuracy and robustness of
student models via adaptive adversarial distillation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 24668–24677, 2023. 3, 5, 6

[10] Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu.
Knowledge distillation from a stronger teacher. Advances
in Neural Information Processing Systems, 35:33716–33727,
2022. 4

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6

[12] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. 1, 2

[13] Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial
robustness against the union of multiple perturbation mod-
els. In International Conference on Machine Learning, pages
6640–6650. PMLR, 2020. 1

[14] Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun
Zhu. Bag of tricks for adversarial training. arXiv preprint
arXiv:2010.00467, 2020. 1

[15] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 6

[16] Charles Spearman. ” general intelligence” objectively deter-
mined and measured. 1961. 4

[17] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 1, 2

[18] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong
Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:
Large margin cosine loss for deep face recognition. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 5265–5274, 2018. 1

[19] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun
Ma, and Quanquan Gu. Improving adversarial robustness
requires revisiting misclassified examples. In International
Conference on Learning Representations, 2020. 1

[20] Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu,
and Shuicheng Yan. Better diffusion models further improve
adversarial training. arXiv preprint arXiv:2302.04638, 2023.
6

[21] Boxi Wu, Jinghui Chen, Deng Cai, Xiaofei He, and Quan-
quan Gu. Do wider neural networks really help adversar-
ial robustness? Advances in Neural Information Processing
Systems, 34:7054–7067, 2021. 1

[22] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 1

[23] Mingzhe Xing, Shuqing Bian, Wayne Xin Zhao, Zhen Xiao,
Xinji Luo, Cunxiang Yin, Jing Cai, and Yancheng He. Learn-
ing reliable user representations from volatile and sparse data
to accurately predict customer lifetime value. In Proceed-
ings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 3806–3816, 2021. 1

[24] Mingzhe Xing, Hangyu Mao, and Zhen Xiao. Fast and fine-
grained autoscaler for streaming jobs with reinforcement
learning. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence (Vienna, Austria,
23-29 July 2022)(IJCAI 2022). ijcai. org, USA, pages 564–
570, 2022. 1

[25] Mingzhe Xing, Hangyu Mao, Shenglin Yin, Lichen Pan,
Zhengchao Zhang, Zhen Xiao, and Jieyi Long. A dual-
agent scheduler for distributed deep learning jobs on pub-
lic cloud via reinforcement learning. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 2776–2788, 2023. 1

[26] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016. 6

[27] Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui,
Masashi Sugiyama, and Mohan Kankanhalli. Attacks which
do not kill training make adversarial learning stronger. In
International conference on machine learning, pages 11278–
11287. PMLR, 2020. 1

24613



[28] Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi
Sugiyama, and Mohan Kankanhalli. Geometry-aware
instance-reweighted adversarial training. arXiv preprint
arXiv:2010.01736, 2020. 1

[29] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun
Liang. Decoupled knowledge distillation. In Proceedings of
the IEEE/CVF Conference on computer vision and pattern
recognition, pages 11953–11962, 2022. 1

[30] Shiji Zhao, Jie Yu, Zhenlong Sun, Bo Zhang, and Xingxing
Wei. Enhanced accuracy and robustness via multi-teacher
adversarial distillation. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part IV, pages 585–602. Springer, 2022.
3

[31] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimina-
tive localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929,
2016. 3

[32] Jianing Zhu, Jiangchao Yao, Bo Han, Jingfeng Zhang,
Tongliang Liu, Gang Niu, Jingren Zhou, Jianliang Xu, and
Hongxia Yang. Reliable adversarial distillation with unreli-
able teachers. arXiv preprint arXiv:2106.04928, 2021. 1, 3,
5, 6

[33] Bojia Zi, Shihao Zhao, Xingjun Ma, and Yu-Gang Jiang. Re-
visiting adversarial robustness distillation: Robust soft labels
make student better. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 16443–
16452, 2021. 1, 3

24614


	. Introduction
	. Related Work
	. Adversarial Attack
	. Adversarial Distillation

	. The Proposed Approach
	. Limitations of Existing AD Methods
	. Slack Matching with Spearman Correlation
	. Behavioral Learning with Attribution Region Alignment
	. Optimization Process

	. Experiments
	. Experimental Setup
	. Implementation Details
	. Evaluation Metrics
	. Adversarial Robustness Evaluation
	White-box Robustness.
	Black-box Robustness.

	. Ablation Study
	. Further Explorations
	The Effect of Teacher Model Performance on Student Models.
	Attribution Region Learned by SmaraAD.


	. Conclusion
	. Acknowledgment

