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Figure 1. The illustration of the motivation of our work. Left: Our mask-preserved attribute editing pipeline generates testing images with
various attribute changes for evaluating the robustness of segmentation methods to attribute variations. Right: The average performance
drop of segmentation models on our generated data, shows the sensitivity to different types of attribute variations.

Abstract

When deploying segmentation models in practice, it is
critical to evaluate their behaviors in varied and complex
scenes. Different from the previous evaluation paradigms
only in consideration of global attribute variations (e.g. ad-
verse weather), we investigate both local and global at-
tribute variations for robustness evaluation. To achieve this,
we construct a mask-preserved attribute editing pipeline to
edit visual attributes of real images with precise control of
structural information. Therefore, the original segmenta-
tion labels can be reused for the edited images. Using our
pipeline, we construct a benchmark covering both object
and image attributes (e.g. color, material, pattern, style).
We evaluate a broad variety of semantic segmentation mod-
els, spanning from conventional close-set models to recent
open-vocabulary large models on their robustness to differ-
ent types of variations. We find that both local and global
attribute variations affect segmentation performances, and
the sensitivity of models diverges across different variation
types. We argue that local attributes have the same im-
portance as global attributes, and should be considered in
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the robustness evaluation of segmentation models. Code:
https://github.com/PRIS-CV/Pascal-EA.

1. Introduction

In the last few years, deep-learning-based image segmen-
tation models have witnessed remarkable progress in ad-
dressing complex visual scenes, enabling ubiquitous appli-
cations ranging from autonomous driving [18] to medical
image analysis [44]. In order to ensure their reliability and
robustness in real-world scenarios, it is desirable to evaluate
them in varied and complex scenes in advance.

As to varied real-world scenarios, segmentation meth-
ods are required to be robust to various shifts in terms of
local attribute variations (e.g. object color, material, pat-
tern) and global attribute changes (e.g. image style). For
example, a train can be painted with different colors and
patterns, and a boat is composed of various materials (see
Figure 1). Moreover, segmentation methods may encounter
images with global attribute changes such as variations in
weather conditions and image styles in the real world. Nev-
ertheless, the problem is: “How sensitive are existing seg-
mentation models to local and global attribute changes?”
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Regrettably, this research avenue remains under-explored.

The main challenge of robustness evaluation is the lack
of high-quality test data with abundant local and global vari-
ations. In addition, even if the data can be collected, the an-
notation cost of the segmentation masks is quite high. The
ACDC dataset [53] manually collects samples with adverse
weather in city streets. Sun et al. [55] used simulation
software to build a synthetic dataset, while Multi-weather
Cityscapes [46] employed style-transfer models [71] to gen-
erate data. However, they only evaluate segmentation mod-
els under global variations, such as weather and different
scenes of city streets. Moreover, due to the limited capa-
bilities of the simulation software itself and style-transfer
models, their data are not consistent with realistic images.

In this paper, we provide a mask-preserved attribute edit-
ing pipeline for the robustness evaluation of segmentation
models. The generated data can cover diverse variations
including both object and image attributes. In particular,
inspired by the impressive generation performance of text-
guided image editing methods [5, 28, 58], we leverage a
pre-trained diffusion model and text instructions to trans-
fer a testing image into images with various attributes via
editing. To avoid manually annotating labels for edited im-
ages, we need to maintain the structural information of the
image, such that the ground-truth segmentation mask of an
original image is used as that of its edited ones. However,
typical methods often improperly modify the structure of
irrelevant regions (e.g. removing an object from the back-
ground) during attribute editing. To address this issue, we
propose mask-guided attention in the diffusion model [50]
to consistently edit target attributes at the object level and
preserve the structure of an image. Thanks to the proposed
module, our tool can edit images with attribute variations in
a tuning-free manner, while avoiding manually annotating
ground-truth segmentation masks.

Based on our mask-preserved attribute editing pipeline,
we construct a benchmark covering various object and im-
age attribute changes, and we evaluate the robustness of
existing segmentation methods. We find that, as same as
global attributes, local attribute variations also affect seg-
mentation performances. And sensitivity of segmentation
methods varies across different attributes. For example, per-
formance declines most on object material variations (See
Figure 1). Moreover, the experimental results show open-
vocabulary methods with stronger backbones and massive
training data can not necessarily exhibit robustness, com-
pared to conventional close-set methods. These findings
suggest that object attribute variations have the same impor-
tance as image attribute variations to improve robustness.

The main contributions are summarized as follows:

* We provide a mask-preserved attribute editing pipeline
that can change various attributes of real images without
the requirement of re-collecting segmentation labels.

* We explore the robustness of existing segmentation mod-
els to both object and image attribute variations.

* We conduct extensive experiments and find that segmen-
tation models exhibit varying sensitivity to different at-
tribute variations.

2. Related Work

Semantic Segmentation. Conventional semantic segmen-
tation methods [6, 62, 67] obtain significant performance
across various benchmark datasets, but fail to generalize
well on new environments. Recently, since distinguished
performance on alignment between visual and language
data from visual language models (VLMs) [33, 49], many
open-vocabulary segmentation frameworks [40, 65, 73] are
proposed by using language data as auxiliary weak super-
vision. They normally generate class-agnostic masks, and
then use the label embeddings from a Visual Language
Model (VLM) to classify the proposal masks. Several
benchmarks are proposed to evaluate segmentation models
against domain shifts caused by attribute variations. The
ACDC benchmark [53] manually collects images and la-
bels from multiple target domain sources. SHIFT [55] em-
ploys simulation software to automatically generate data
with continuous and discrete scene shifts in city streets.
Other works [20, 31, 46, 52, 55] synthesize images by train-
ing style transfer models [34, 71]. However, they only focus
on global attribute variations, e.g. weathers [53] and scenes
[55] in autonomous driving. Contrary to them, our research
evaluates both local and global attribute variations which
can depict real-world scenarios more comprehensively.

Model Diagnosis. Diagnosing the model’s behavior and ex-
plaining its mistake is critical for understanding and build-
ing robustness. In counterfactual explanation [24] literature,
it is common to explore what differences to input image will
flip the prediction of the model. Previous methods explain
decisions by mining similar failure samples from datasets
to provide interpretations [21, 23, 25, 60]. However, the
size of datasets constrains the variation types of similar im-
ages and hence hinders their overall interpretability. Re-
cently, generation-based approaches [2, 22, 30, 32, 35, 39,
43, 48, 59, 61, 69] achieve remarkable progress in explain-
ing model failures. Luo ef al. measure models’ sensitiv-
ity to pre-defined attributes changes by optimization in la-
tent space of StyleGAN [34]. The closest works to ours are
Prabhu ef al. [48] and ImageNet-E [39], which employ re-
cent diffusion-based image editing techniques and achieve
curated control on the diversity of image editing. However,
their approaches inevitably interfere with irrelevant regions
when editing object attributes and can not be applied to im-
age segmentation tasks. Contrary to them, our proposed
approach utilizes object masks to prevent potential interfer-
ence and generate more realistic variations.
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Figure 2. The illustration of our mask-preserved attribute editing pipeline. (1) We construct the Attribute Set which defines local and global
variations. (2) We edit real images with different attribute variations with the collaboration of the large language model and diffusion model.
(3) The robustness of segmentation models can be evaluated on the edited images against various types of attribute variations.

3. Method

The overall pipeline of our method is illustrated in Figure 2.
We first construct the Attribute Set which defines both local
and global variations. Then we edit images with attribute
variations via the collaboration of a large language model
and diffusion model. Based on our design, we can gen-
erate samples with diverse objects and styles. Finally, we
evaluate the most representative segmentation models and
investigate their robustness to different attribute variations.
The details of each component are introduced as follows.

3.1. Attribute Set

Generally, attributes [17, 41] are characteristic properties
of objects and images, including color, shape, texture, and
style. A visual instance can be characterized by the com-
position of various attributes. For example, a cat may pos-
sess brown color, soft texture, dotted skin, feline shape. In
the existing visual datasets, some attributes, e.g. the shape
of cats, almost remain unchanged across diverse environ-
ments, while other attributes, e.g. textures, materials, col-
ors, have better diversity within a specific class [19]. To
generate abundant evaluation samples, we construct an at-
tribute set that encompasses all types of variations at both
the object and image levels.

To trustfully evaluate the segmentation models, we in-
vestigate the attributes that tend to vary in the real world.
In summary, we manually select attributes under four cat-
egories: (a) Local instance color, e.g. blue, red. (b) Local
instance material, e.g. metal, wood, stone. (c) Local appear-
ance pattern, e.g. plain, dotted, lettered. (d) Global image

style, e.g. photo, painting, different weathers. Some exam-
ples are shown in Figure 2. By changing a single attribute
and fixing the others, we can generate sufficient test samples
with abundant variations.

3.2. Image Generation

Since the generated images are used to evaluate segmenta-

tion models, they should have the following properties:

* Credibility: generated samples should be credible, ad-
hering to real-world conditions, which implies that any
modifications should be realistic.

* Fidelity: generated images should not disrupt irrelevant
information and contravene layout defined by original se-
mantic segmentation labels. (Since acquiring segmenta-
tion labels is laborious, we must ensure their correctness
after generation.)

To ensure the above properties in our generated test sam-

ples, we design a mask-preserved attribute editing pipeline.

The procedural details are illustrated as follows.

Text Manipulation. Since existing generative models are

usually instructed by language, we first obtain the textual

description of a real test image and incorporate different at-
tributes linguistically. In this way, our method can be user-
friendly. Specifically, we use a pre-trained large vision-
language model (BLIP-2 [38]) to acquire the textual de-
scription. To perform meaningful modification to text, we
divided a text description into several editable components
based on linguistic formal: domain, subjects and their ad-
jectives (attributes), actions (verbs), and backgrounds (ob-
jects). For example, in “a photo of a white horse on the
grass”, the domain is “a photo”, the subject is “horse” and
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its adjective is “white”, the action is “on” and the back-
ground is “grass”. Then we employ a language model
(GPT-3.5 turbo) [4] to generate textual variations by in-
structions built using considered attributes. An example
is change ’a horse on the grass’ to ’a black horse on the
grass’. Please refer to our supplementary material for more
prompts and examples. Finally, we use the manipulated text
descriptions as input prompts to guide image editing.
Mask-Guided Diffusion. There are several efforts [3, 45]
to edit specific image areas by the guidance of object mask.
However, most of them directly generate visual content ac-
cording to the input text without injecting the features from
the original images. Therefore, they can only achieve lim-
ited performance in object attribute manipulation. Based
on this observation, we utilize the setting suggested by
[5, 28, 47, 58], where features extracted from the real im-
age are directly injected into the diffusion process of the
generated image. However, we found that they can hardly
change one specific portion of the original images without
affecting others. For instance, manipulating the color of
an object will marginally change the details of the adjacent
background (refer to Figure 5). This heavily diminishes the
assessment reliability of generated test images, as the seg-
mentation performance on whole images is susceptible to
any pixel perturbation [1]. From our perspective, the main
reason is the attention maps in the diffusion process can
only represent the rough spatial layout of objects but fail to
accurately depict the detailed object localization. One triv-
ial solution is directly replacing the background with pixel
features from original images in each time step [12]. How-
ever, this induces a mass of artifacts in the object boundary.
Inspired by the previous work [36], we propose the
Mask-Guided Attention which utilizes the object segmen-
tation masks to rectify attention maps in the diffusion pro-
cess. We denote a real image as I € R3>*H>*W with height
H and width W and its semantic layout label as L. Given
the text guidance P, the objective of our method is to gener-
ate image I™* which complies with P, and strictly preserves
the semantic layout defined by L. Concretely, supposed that
a binary object mask S € R *W is extracted from the se-
mantic map L, we rectify the attention map as follows:

T ’
A = softmax (QK + RO (S )> , (1)

Vd

where the query-key pair conditioning map R € RIQIxIK]
defines whether to rectify the attention score for a particular
pair, we set different configurations of R in self and cross
attention layers. ¢(-) is a flatten function, and S is a recti-
fication map confining the region of attention scores which

is defined as:
/ 0 S(x,y)=1
S (,y) = { (@v)
—o0  otherwise.
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Figure 3. The illustration of block in our method. Our atten-
tion mechanism utilizes an object mask to rectify attention maps
in self-attention and cross-attention layers. We adopt ControlNet
block [70] to further restrict the semantic layout.

In the cross-attention layer, the semantic knowledge of
textual features is incorporated into intermediate visual fea-
tures in which objects appearance and image layouts grad-
ually emerge. The attention maps between each text token
and visual token determine the intensity and area of influ-
ence of corresponding text words. We rectify the corre-
sponding region and intensity of cross-attention scores of
text words, the conditioning map R at location (i, 7) is

. c ie{K},Vj
R(i,j) = 3
(i) {0 otherwise, )

where K is the set of token indexes corresponding to the
object mask .S and c indicates the strengthens or weakens
the extent to which text tokens affect the resulting image.

In the self-attention layer, the intermediate visual fea-
tures compute affinities with each other, allowing to retain
the coherent spatial layout and shape details. We leverage
the object mask S to constrain interactions between differ-
ent regions. For example, we retain the attention scores
between tokens within the same regions and suppress that
between tokens within different regions. Concretely, we de-
fine the conditioning map R at location (i, j) as:

R(i, ) = {1 GS)(0) = Tand 6(S)(7) =1

0 otherwise.

We incorporate the designed attention mechanism into de-
coding blocks of U-Net [51] in the Latent Diffusion Model
[50]. In global style editing, we denote S as a matrix of
ones where every entry is equal to one.

In order to further control that generated images rig-
orously adhere to their original semantic layout, we inte-
grate existing controllable generative module ControlNet
[70] into each blocks. The whole designed block is illus-
trated in Figure 3. In this way, our pipeline can obtain sam-
ples with abundant diversity, without changing their original
semantic segmentation labels. And we can hence expand
existing benchmarks requiring no laborious label collection.
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Table 1. Quantitative results of all segmentation models under different attribute variations in our Pascal-EA. The results are reported using
mloU (1), and the best results of close-set methods and open-vocabulary methods are separately bold. We replace the original validation
set with the reconstructed images obtained by our pipeline (denoted as Val).

Method Backbone  Val Color Material Pattern Style Overall

violet pink multi-color wood stone metal paper dotted striped snowy painting sketch
DeepLabV3+ [7] RN-50  73.65 66.46 67.29 63.34 5296 5410 5507 4198 6285 6359 65.14 61.39 1533 55.79 (-17.86)
OCRNet [67] HR-48 7532 67.78 69.98 65.65 56.79 5676  58.69 4642 6541 6741 6771 65.45 22.06 59.18 (-16.14)
Segmenter [54] ViT-B 80.66 74.14 752 72.77 65.84 6311 67.15 54.89 7448 7526 7522 75.86 31.19  67.09 (-13.57)
Segformer [64] MIT-B3 7945 71.06 72.37 69.01 60.55 61.6 63.02 518 708 72.02 7191 71.23 21.45  63.08(-16.38)
Mask2Former [8]  Swin-B 90.81 80.10 80.15 72.92 61.14 6292 62777 4948 7729 7178 76.21 77.06 21.82  66.64 (-24.17)
CATSeg [9] Swin-B  95.59 88.06 88.51 87.28 8293 8196 8226 7479 88.63 90.30 90.06 92.95 48.06  82.98 (-12.61)
OVSeg [40] Swin-B  92.83 8323 85.84 85.17 79.08 77.01 79.70 7093 86.12 86.06 86.93 89.74 4279 79.38 (-13.45)
ODISE [65] SD-1.5 91.54 7196 72.05 70.05 70.23 7346 6450 5459 8155 8433 8261 85.97 26.32  69.79 (-21.75)
X-Decoder [72] Focal-T ~ 90.42 81.70 83.89 79.36 70.59  69.64 7272 5228 83.58 8385 8322 87.05 3499  73.57 (-16.85)
SEEM [73] Focal-T ~ 89.21 80.30 82.74 78.55 70.79  69.56 7137 5694 81.76 8242 83.71 84.91 3445 73.13 (-16.09)
SEEM [73] SAM-B 89.10 77.14 79.48 72.20 6141 6337 6498 5095 7747 7780 76.21 77.06 28.18  67.19(-21.91)

Overall 86.21 76.54  77.95 74.21 66.57 66.68 6748 5500 77.27 7826  78.08 78.97 29.69

-9.68 -8.27 -12.01 -19.65 -19.54 -18.74 -31.22 -8.95 -7.96 -8.14 -7.25 -56.53

4. Experiments

In this section, we first introduce the experimental setups.
Then we benchmark various segmentation models on our
edited images and discuss on the results. At last, we assess
the quality of our edited images.

4.1. Experimental Setup

Benchmark. = We construct our benchmark Pascal-
EA(Editable Attributes) by editing images in the valida-
tion set of Pascal VOC dataset [16]. Most samples in Pas-
cal VOC [16] are object-centric, making it more suitable
for exploring the impact of local variables on segmenta-
tion performance. Considering potential errors in gener-
ated images, we manually discarded ones with noticeable
errors to ensure the quality of the benchmark. Since we
want to stress-test models, we manually choose the follow-
ing uncommon attributes to construct the benchmark. (1)
object colors: violet, pink, and multicolor, which provide
a deviation from objects’ common colors. (2) object ma-
terial: wood, stone, metal and paper. (3) object pattern:
dotted and striped, which have unusual appearance com-
pared to common objects. (4) image style: snow, painting,
and sketch which provides blurring circumstances, abstract
descriptions of realistic objects, and absence of color and
texture visual cues, respectively. Please refer to our supple-
mentary material for qualitative results.

Target Models. We conduct evaluation experiments
on various architectures, including close-set and open-
vocabulary methods. For close-set methods, we adopt
convolution-based models DeepLabV3+ [7], OCRNet [67],
and transformer-based models Segmenter [54], Segformer
[64], and the universal image segmentation architecture
Mask2Former[8]. For open-vocabulary methods, we adopt
transformer-based approaches CATSeg [9] and OV Seg [40],
the typical diffusion-based method ODISE [65], and two

SOTA generalized frameworks X-Decoder [72] and SEEM
[73]. We implement target models with MMsegmentation
[10] and Detectron2 [63]. All models are trained in the
training set of Pascal VOC [16], and we use the released of-
ficial weights and original recipes to compare at their best.

Metric. We report the results of mloU as the metric.

4.2. Evaluation Results

Table 1 presents segmentation performances under differ-
ent attribute variations. Initially, our generated images, fea-
turing unusual visual cues, reduce performance across all
models to varying extents. However, it is noteworthy that
the models exhibit a greater vulnerability to material al-
teration than to adjustments in other local attributes, such
as color and pattern. For instance, under the material-
based variations, performance decline ranged from 18.74%
to 31.22%, whereas under the color-based variations, the
decline ranged from 8.27% to 12.01%. Changes in the ob-
ject’s appearance pattern have less impact on the models’
performance compared to color and material. Since the
choice of material significantly influences the visual texture
of an object’s appearance, we speculate that segmentation
models are significantly sensitive to texture, which aligns
with observations found in classifiers [22]. Furthermore, re-
sults reveal a notable disparity in model performance when
comparing sketch images to other global styles. For in-
stance, performances decrease 56.53% under sketch style
variation, while dropping 7.25% and 8.14% under painting
and snow scenarios. We argue that sketch images introduce
substantial perturbations to model performance as they rep-
resent visual content solely through line-based representa-
tions without any texture and color information.

To compare the overall robustness of models, we also
compute the average performance decline under all at-
tributes in the last column of Table 1. Firstly, in close-set
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Table 2. mloU (7) of four augmentation algorithms on our Pascal-EA. The best results are in bold.

Method Val Color Material Pattern Style
violet pink multi-color wood stone metal paper dotted striped snowy painting sketch
Mask2Former [8] 90.81 80.10 80.15 72.92 61.14 6292 6277 4948 7729 7778 76.21 77.06 21.82
CutOut [15] 91.44 80.68 82.02 73.44 6223 64.70 60.55 50.28 7532 7832 7595 75.41 19.55
CutMix [68] 92.01 80.79 8345 75.53 64.81 66.68 62.87 49.83 77.84 7873 76.03 76.48 21.62
Digital Corruption [26] 91.19  73.29 75.47 69.63 57.96 5551 5640 4501 75.16 7579 @ 79.22 77.98 22.59
AugMix [27] 91.88 7538 176.49 70.44 60.29 5892 5873 4884 7533 76.01 80.46 80.92 23.05

methods, we observe that Segmenter [54] exhibits best per-
formances under material variations while Mask2Former
[8] performs best in others. And we notice that the over-
all performance decline of DeepLabV3+ [7] and OCRNet
[67] is even less than that observed in transformer architec-
tures such as Segformer [64] and Mask2former [8]. This
implies that recent transformer-based models have greater
segmentation accuracy than CNN-based methods, but they
do not necessarily show an improvement in robustness. Pre-
vious studies [14] have shown that recent transformers are
remarkably more robust than baseline models as the domain
gap is large, which is opposite to our findings. We think
the reason may be our edited images have a smaller do-
main gap compared to [14]. Secondly, in open-vocabulary
frameworks, we notice ODISE [65] exhibits considerably
inferior performance compared to CATSeg [9] and OV Seg
[40]. Since they have only a discrepancy in mask proposal
backbone, we argue that Stable Diffusion [50] possesses
comparatively worse robustness than specialized backbone
[42] in segmentation. Besides, two holistic-trained frame-
works X-Decoder [72] and SEEM [73] are worse than other
approaches. We speculate the reason relies on the utiliza-
tion of the Vision-Language Model (VLM) which clas-
sifies proposed masks. These two frameworks retrain a
vision-language alignment space from scratch, and other
approaches leverage off-the-shelf CLIP [49] trained with
much more abundant data. Finally, we also evaluate the
performance of the recent Segment-Any-Thing (SAM) [37]
backbone using the SEEM [73] framework. SEEM method
with different backbone exhibits similar performances in
the in-distribution set while gaining considerable disparity
in our generated benchmarks, in which the SAM fails to
show better robustness. In summary, all phenomenons re-
veal that better in-distribution performances do not indicate
better performance under our variations, and stronger back-
bones and more training data do not necessarily bring ro-
bustness improvement. Please refer to our supplementary
materials for more results and analysis.

4.3. Discussion

Effectiveness of augmentation techniques. We also con-
duct experiments to explore the effectiveness of existing
data augmentation algorithms. We select several representa-
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Figure 4. Average mloU (71) of all segmentation methods under
the combination of two different attribute variations.

tive methods: CutOut [15], CutMix [68], AugMix [27] and
Digital Corruption [26], and use vanilla Mask2Former [8]
as a baseline model. The results are presented in Table 2.
We can obtain several observations: (1) All augmentation
methods improve in-distribution performances. (2) While
CutOut [15] and CutMix [68] exhibit more robustness on
object-level variations of color, material, and pattern, they
can not improve performances on image-level style varia-
tions. Compared to the previous two, Digital Corruption
[26] and AugMix [27] exhibit opposite characteristics. We
speculate that the reason behind these divergent behaviors
is local object variation edits the visual content information
whereas global variation tends to edit visual styles. Since
Digital Corruption [26] and AugMix [27] change the style
information of images by methods such as brightness and
sharpness, the model trained on it can only exhibit advance-
ment on global style variations. However, CutOut [15] and
CutMix [68] directly change the visual content of specific
regions, they can act better under object variations.
Multiple Attribute Variation. We conduct a statistical
analysis of the average model performances when exposed
to samples with a combination of two distinct attribute vari-
ations. The results are presented in Figure 4. It is evident
that when two types of variation are combined, the overall
performance gains more deterioration compared to that un-
der a single one. This observation indicates that addressing
multiple attribute variations poses a greater challenge than
dealing with a single in isolation.

Variation Degree. The extent to which edited images de-
viated from the original ones can be adjusted by coefficient
c in the Equation 3, higher value of ¢ means greater vari-
ation. We adjust different values of c in the image editing
process to investigate the impact of variation degree on seg-
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Table 3. mloU (1) of five segmentation methods under three ad-
verse weather conditions with different variation degrees. Seg-
mentation performances gradually deteriorate as shift increases.

Val

Table 4. Quantitative results of different diffusion models in edit-
ing color and material attributes of objects on Pascal VOC [16].

Material Color

Style:snow Material: Wood Method DINO Dist (J) LPIPS (J) DINO Dist(}) LPIPS (})
¢c=10 ¢=20 ¢=30 ¢c=10 ¢=20 ¢=30 Blended-LDM (3] 0.081 0.397 0.079 0.375
DeepLabV3+[6] 73.65 6514 6379 5920 5296 4938  45.82 DiffEdit [12] ; 0.068 0313 0.053 0321
OCRNet[67] 7532 6771 6355 6029 5679 5167 4623 Prompt-to-Prompt [28] 0.044 0.367 0.030 0472
Segmenter [54]  80.66 7522 6803 6209 6584  60.28  56.89 PnP (Baseline) [58] 0.052 0319 0.047 0408
Segformer [64]  79.45 7191 6785 6088 6055 5579  49.75 PnP w/ ControlNet [70] 0.010 0284 0.010 0365
Mask2Former [8]  90.81 7621 7024 6349 6114 5734 5163 PnP w/ MGA 0017 0250 0012 0309
PnP w/ Both (Ours) 0.003 0.185 0.001 0.156

mentation performance. Experimental results are presented
in Table 3. We notice a gradual degradation in all models’
performances as the degree of variation intensifies across all
scenarios. This reveals our images do not make models col-
lapse like the adversarial attack method [1], and hence have
the capability of continuous stress-testing models.
Practical application. Our pipeline could also be utilized
as a data augmentation approach to improve robustness of
segmentation methods under hard samples. Please refer to
our supplementary material for results details.

4.4. Image Quality Assessment

In this section, we assess the quality of our generated im-
ages by comparing them with previous diffusion-based im-
age editing approaches, and popular benchmarks of seg-
mentation robustness evaluation.

Comparison with diffusion-based image editing meth-
ods. Since our proposed pipeline serves as an evaluator
for segmentation models, the reliability of edited images is
our primary concern. We focus on object internal structure
maintenance and no disruption to irrelevant information.
Thus, we adopt LPIPS and DINO Dist [57], which mea-
sure structural distances, as our main metrics. We compare
our proposed method with state-of-the-art image editing al-
gorithms PnP [58], Prompt-to-Prompt [28]. Since there are
several efforts to utilize object masks as guidance, such as
DiffEdit [12] and Blended Latent Diffusion [3], we take
them as additional comparisons. We also conducted an ab-
lation study to demonstrate the effectiveness of the Mask-
Guided Attention mechanism and ControlNet. Evaluations
are performed on tasks of random replacing object color and
material using Pascal VOC dataset [16].

The results are reported in Table 4. Firstly, previous
approaches have the same performances of high scores in
DINO Dist and LPIPS, but we argue that the reasons behind
them are different. Since DiffEdit [12] and Blended-LDM
[3] use a mask to specify the edited region, they can en-
sure that irrelevant background information is not affected,
but they do not achieve fine-grained control on object inner
structures, e.g. editing color will change other core prop-
erties. PnP [58] acts differently: it achieves precise control
of the object’s inner structural consistency but will disturb
details of the adjacent background. Therefore, these ap-

proaches could impede the reliability of generated images
for evaluation. Secondly, we observe that since our method
induces extra spatial constraints in the diffusion process, we
achieve the best performance. As shown in Figure 5, we
can faithfully change object local attributes without affect-
ing other information. Finally, we also compare our meth-
ods with baseline in complex scenes, qualitative results are
shown in Figure 5. Our proposed method achieves improve-
ment in semantic structure preservation under both object-
centric images and complex scenes.

In summary, we prove that existing editing approaches
are not adequate as an evaluator for segmentation models,
and demonstrate the reliability of our proposed pipeline.
Comparison with other benchmarks. Existing bench-
marks [46, 52, 52, 53, 55] for semantic segmentation ro-
bustness heavily focuses on adverse weather conditions of
autonomous driving environments. They utilize generative
models [31, 71] or simulator [52, 55] to synthesize sam-
ples, to prevent manually collecting samples and labels. In
this way, we argue that some properties of synthetic im-
ages could impede the reliability of evaluation results. We
compare our edited images with previous benchmarks in
terms of image reality, to demonstrate the reliability of our
pipeline. We adopt (1) CLIP Acc [29], which calculates
the percentage of instances where the target image has a
higher similarity to the target text than to the source text,
(2) Fréchet Inception Distance (FID), which measures sim-
ilarity between the distribution of real images and the dis-
tribution of generated images.

We separately generate images for four adverse kinds of
weather (snow, rain, fog, and night) using the Cityscapes
dataset [11] as source images. And we adopt three existing
synthetic benchmarks Multi-weather [46], Fog Cityscapes
[52], and SHIFT [55] as comparative methods. The FID
score is computed by corresponding real images in ACDC
[53]. The quantitative results are illustrated in Table 5. In
most weathers, our generated data are more realistic and
distributional closer to real images than previous synthetic
benchmarks. At night, our images are drastically greater
than simulation-based benchmark SHIFT [55], but worse
than Multi-weather [46] which utilizes a set of GAN and
CycleGAN models [13, 71] to transfer styles. We think this
is because diffusion models struggle in manipulating bright-
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Table 5. Comparison of our generated images with previous benchmarks under four adverse weather conditions, where generative and
simulator refer to that images are generated by generative methods and simulator, respectively.

Model Snow Rain Fog Night

CLIP Acct FID] CLIPAcct FID| CLIPAcct FID| CLIPAcct FID]
ACDC [53] real 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Multi-weather [46] generative 0.163 197.48 0.852 189.85 - - 0.906 154.30
Fog Cityscapes [52] simulator - - - - 0.940 164.00 - -
SHIFT [55] simulator - - 0.980 242.28 0.955 272.58 0914 274.45
Ours generative 1.000 150.61 0.989 143.47 0.999 137.15 0.965 186.69

Blended-LDM DiffEdit PnP Our

“a blue car”

Original

PnP

Ours

Figure 5. Qualitative comparison of edited images. Left: Manipulating object color in Pascal VOC [16]. Right: Changing to snowy day
in Cityscapes [11]. Our method achieves the best performance in structure preservation and object consistency.

Table 6. Comparison of our pipeline with Stylized COCO [56]
in local object and background variations. Our generated images
have superior image reality and fidelity.

Benchmarks Model CLIP Acct DINO Dist |
Stylized-object [56] AdalN [31] 0.574 0.075
Ours-object Diffusion 0.895 0.002
Stylized-background [56]  AdalN [31] 0.678 0.084
Ours-background Diffusion 0.965 0.004

ness and light information [66].

Furthermore, since previous Stylized COCO [56] gener-
ates local style variations on objects to study robustness in
segmentation, we also compare our method with it. Fol-
lowing its setting, we generate images where objects and
backgrounds have random art styles, respectively. From
the results in Table 6, our method significantly surpasses
it in image reality and structural preservation. In essence,
we demonstrate that samples edited by our diffusion model
have better image reality compared to conventional syn-
thetic benchmarks for evaluating segmentation models. All
experimental results can serve as evidence that our pipeline
can be a better substitution for real images, especially since
acquiring real samples and labels is laborious.

5. Conclusion

In this paper, we provide a pipeline that can precisely edit
the visual attributes of real images and preserve their orig-

inal mask labels. With this pipeline, we construct a bench-
mark and evaluate the robustness of diverse segmentation
models against different object and image attribute varia-
tions. Experimental results reveal that most models are vul-
nerable to object attribute changes. Meanwhile, advanced
models with stronger backbones and massive training data
do not necessarily show better robustness. Our experiments
suggest object attributes should be taken into account for
improving segmentation robustness. We also demonstrate
the quality of our edited images and their reliability as test
samples by comparing them with popular synthetic bench-
marks and existing image editing methods.

Our work has some limitations. First, due to the fail-
ure modes of the diffusion model, it is difficult to edit the
attributes of the person. Second, since inherent biases in
diffusion models, altering an attribute could occasionally
change other appearance information. For example, some-
times editing an object’s material to wood may deviate its
original color to brown. We would like to explore how to
avoid the spurious editing problem in future work.
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