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Abstract

In this paper, we address the challenging problem of vi-
sual SLAM with neural scene representations. Recently,
neural scene representations have shown promise for SLAM
to produce dense 3D scene reconstruction with high qual-
ity. However, existing methods require scene-specific op-
timization, leading to time-consuming mapping processes
for each individual scene. To overcome this limitation, we
propose IBD-SLAM, an Image-Based Depth fusion frame-
work for generalizable SLAM. In particular, we adopt a
Neural Radiance Field (NeRF) for scene representation.
Inspired by multi-view image-based rendering, instead of
learning a fixed-grid scene representation, we propose to
learn an image-based depth fusion model that fuses depth
maps of multiple reference views into a xyz-map represen-
tation. Once trained, this model can be applied to new,
uncalibrated monocular RGBD videos of unseen scenes,
without the need for retraining, and reconstructs full 3D
scenes efficiently with a light-weight pose optimization pro-
cedure. We thoroughly evaluate IBD-SLAM on public visual
SLAM benchmarks, outperforming the previous state-of-
the-art while being 10⇥ faster in the mapping stage. Project
page: https://visual-ai.github.io/ibd-slam.

1. Introduction

Simultaneous Localization and Mapping (SLAM) refers to
the task of creating a map of an unknown environment while
simultaneously determining the location of the camera or
robot within that environment. Visual SLAM specifically
utilizes visual information (such as images from a camera)
to perform this task. This has been a long-standing problem
in computer vision, and much of the recent effort focuses on
improving the accuracy, robustness, and efficiency. Popular
approaches include feature-based methods [16, 24], direct
methods [11, 28], and, more recently, learning-based meth-
ods [10, 44]. In particular, neural fields have emerged as
a powerful representation for producing high-quality dense
3D scene reconstructions, such as NICE-SLAM [53], but

†Corresponding author.

such methods often require a lengthy training process and
typically only optimize over a single scene at a time.

In this paper, our goal is to design a learning-base SLAM
framework that can efficiently generalize to arbitrary scenes
unseen during training. In particular, we draw inspira-
tion from a recent work, IBRNet [43], which renders novel
views of a 3D scene through a learned image-based fusion
model that generalizes to arbitrary test scenes. We borrow
this powerful idea and propose a learning-based generaliz-
able SLAM framework, dubbed IBD-SLAM. Unlike IBR-
Net, which learns to fuse RGB images, we propose to learn
an image-based depth fusion model that directly fuses depth
maps from multiple reference frames using a shared canon-
ical xyz-map representation. Crucially, this depth fusion
model is not specific to one particular scene; it is trained on
a large collection of monocular videos, allowing for zero-
shot generalization in novel scenes without retraining.

Specifically, the framework interweaves mapping (i.e.,
scene recovery) and tracking (i.e., camera pose estimation)
steps, similar to typical visual SLAM systems. During each
mapping step, given a current frame, we retrieve a set of
temporal neighboring frames and convert their correspon-
dence depth maps into xyz-maps, given the current esti-
mates of their relative poses. We then task the model to pre-
dict the xyz-map of the current frame from these reference
xyz-maps of the neighboring frames, through image-based
rendering. This eliminates the need for scene-dependent
features like the fixed feature grid in NICE-SLAM, allow-
ing the model to generalize to unseen scenes at test time.
During each tracking step, we establish the 2D geometric
correspondences, and optimize the camera poses by mini-
mizing the distances of matches of the 3D coordinates in
the xyz-maps.

After pre-training, our model can be applied to new un-
calibrated monocular RGBD videos of unseen scenes at test
time, without the need to retrain the model to get any scene-
dependent representations, and only needs to run a fast op-
timization process to obtain the poses, resulting in a strong
generalization capability and a heavily reduced computa-
tion overhead.

We thoroughly evaluate our framework on public visual
SLAM benchmarks, including Replica [32], ScanNet [6],
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Figure 1. Mapping: To render the target view, we select a set of K reference views. We then extract the reference image feature �k by
utilizing a shared encoder and derive reference views’ xyz-maps based on the depths and reference cameras. For each sampled point xi on
the ray r, we project it onto all K reference views, which allows us to sample the feature vector �i,k from the image feature �k, as well as
sample the corresponding color c̃i,k and xyz P̃i,k from the reference views. We then aggregate c̃i,k and P̃i,k by fusing the feature vectors
�i,k and the relative viewing directions �di,k to predict the blending weights wc

k for color and wp
k for xyz values. The final color and xyz

values are obtained as a weighted sum of their correspondences in reference views. The � value in the rendering process is predicted based
on the feature �i,k and viewing direction. Tracking: After rendering the target color and xyz-maps, we utilize RGB images to establish
geometric correspondences between the target novel view and the reference views. By minimizing the distances between the matched xyz
points, we can optimize the target camera pose.

and TUM [34], and show that our approach performs on
par with other state-of-the-art methods that require per-
scene model training in terms of both mapping and track-
ing. Notably, as a result of the generalizable formulation,
our method runs 10⇥ faster than the previous state-of-the-
art during the mapping stage, while maintaining similar ef-
ficiency for tracking.

2. Related Work

Dense SLAM. Classic SLAM methods SLAM stands for
Simultaneous Localization and Mapping, which refers to
the task of building a map of an unknown environment

while at the same time localizing the robot’s pose within
that map. Classic SLAM, also known as sparse SLAM, is
a traditional approach that uses feature-based methods to
detect and track features in the environment, such as land-
marks or edges [10, 16, 24, 25]. Dense SLAM, on the other
hand, is a newer approach that uses direct methods to es-
timate the scene geometry and the robot’s pose, without
relying on feature detection and tracking. Several works
use view-centric representations, including DTAM [28],
DeepV2D [38], BA-Net [37], and Droid-SLAM [39], as
well as other related works such as Demon [41], DeepTAM
[51], NodeSLAM [36], DeepFactors [5], and SceneCode
[50]. Meanwhile, world-centric maps anchor the geome-
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try in uniform world coordinates, often using voxel grids
or surfels [30, 46], with occupancy and Truncated Signed
Distance Field (TSDF) [4] being common methods for stor-
ing geometry information. For RGBD SLAM systems,
depth fusion is a crucial step in 3D reconstruction and has
been the focus of many research efforts in computer vision
and robotics. KinectFusion [27] was one of the pioneering
works in depth fusion. It uses a volumetric approach to rep-
resent the scene as a 3D grid of voxels and fuses depth mea-
surements into this grid as the camera moves through the
environment, while DynamicFusion [26] is an extension of
KinectFusion that allows for real-time reconstruction of dy-
namic scenes. More recently, VolumeFusion [3] focuses on
fusing high-resolution depth maps by TSDF volume.

SLAM with Neural Fields. Recently neural implicit rep-
resentation methods have shown great potential for 3D
modeling, rendering, and reconstruction [2, 17, 19, 20, 22].
SLAM with implicit Neural Fields is also a promising di-
rection, which utilizes neural networks and fields to repre-
sent and process the sensor data for 3D mapping and lo-
calization. iMAP [35] is one of the pioneering SLAM sys-
tems that adopt a neural field representation for tracking and
mapping. However, iMAP relies on a single multi-layer
perceptron to represent the scene, deeming it less effec-
tive for large or complex structures. NICE-SLAM [53] ad-
dresses this limitation by introducing multi-resolution fea-
ture grids to better capture geometry information, result-
ing in improved performance for larger scenes and more
detailed structures. NICER-SLAM [52] builds upon the
multi-resolution feature grids introduced in NICE-SLAM,
but it utilizes Signed Distance Function (SDF) represen-
tations instead of occupancy representations. The system
takes a collaborative approach by training different aspects
of the map, which allows for more robust and flexible
scene representation. NICER-SLAM demonstrates encour-
aging results using only RGB information. Besides, Co-
SLAM [42] employs multi-resolution hash-grids to repre-
sent local features, improving reconstruction efficiency and
accuracy. ESLAM [14] leverages TSDF for implicit repre-
sentation and employs axis-aligned feature planes to store
features, resulting in improved mapping and tracking per-
formance.

Generalizable Novel View Synthesis. Generalizable
Novel View Synthesis refers to the task of synthesizing
novel views of a scene from a limited set of input views,
while also being able to generalize to new and unseen
scenes at test time without retraining. As a representative
work of this flavor, General Radience Field (GRF) [40]
uses an implicit neural function that models 3D scenes as a
general radiance field and utilizes multi-view geometry to
obtain internal representations that are multi-view consis-
tent, enabling it to represent and render complex 3D scenes

using only 2D observations. Another work IBRNet [43]
also uses a neural network architecture that synthesizes
new views of a scene by combining image features from
reference views to predict density and radiance. Other
notable works tackling generalizable novel view synthesis
include MVSNeRF [1] and PixelNeRF [48]. In this work,
we draw inspiration from IBRNet to devise a generalizable
depth fusion model, which will be detailed next.

3. Method

Given a collection of calibrated monocular RGB videos, de-
noted as D = {S1, · · · , SN}, where each video consists of
a sequence of images Si = {Ik}Kk=1, serving as pre-training
data, our goal is to learn a generalizable function. This func-
tion should have the capability, during testing, to directly
infer the 3D geometry and generate novel views from a new
monocular RGBD video sequence S0 of an unseen scene,
requiring only a fast optimization of the camera poses.

To achieve this goal, we introduce IBD-SLAM, a novel
framework for generalizable SLAM. Our approach lever-
ages the power of NeRF [22] for scene representation.
Drawing inspiration from multi-view image-based render-
ing in IBRNet [43], we introduce a learning-based depth
fusion technique that derives xyz-maps from inferred depth
maps. Once trained, our model can be applied to new, un-
calibrated monocular RGBD videos of unseen scenes with-
out retraining. Only optimizing pose parameters is required
for efficient processing of new scenes.

In the following, we first give a brief background
overview of NeRF and IBRNet in Sec. 3.1, followed by the
details of our proposed IBD-SLAM framework, including
mapping based on xyz-maps in Sec. 3.2, tracking based on
xyz-maps in Sec. 3.3, and training objectives in Sec. 3.4.

3.1. Neural Scene Representation

Neural Radiance Fields. NeRF [22] has recently emerged
as a powerful 3D representation for novel view synthesis,
owing to its remarkable capability in modeling the com-
plex appearance of 3D scenes, which leads to photo-realistic
novel rendering results. It represents a 3D scene as a con-
tinuous function f , parametrized by an MLP, which takes
in coordinates of a point location x and a viewing direction
d and predicts its color and density: (c,�) = f(x,d). In
order to render an image from a given camera pose, we cast
a ray from the camera location through each pixel in the im-
age plane and into the 3D scene. Let o denote the camera
location and d the ray direction, we can represent any point
on the ray as r(t) = o+ td, where t is the distance from the
camera. We then sample a set of points {xi}Ni=1 along the
ray, and query the MLP to obtain the colors ci and densities
�i. Using the volume rendering equation [22], the color of
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the ray r is given by:

Ĉ(r) =
NX

i=1

Ti (1� exp(��i�i)) ci, (1)

where Ti = exp(�
P

i�1
j=1 �j�j) is the accumulated trans-

mittance along the ray up to a distance t, and �i = ti+1 � ti
is the distance between consecutive samples. Given a set
of posed multi-view images as training data, the RGB ren-
dering loss [22] is then employed to train the model, which
aims to minimize the color error between the rendered RGB
color and the ground-truth RGB color:

Lrgb =
1

|�|
X

r2�

||Ĉ(r)� C(r)||2, (2)

where Ĉ denotes the volume rendered RGB color, C de-
notes the ground truth color information, and � represents
all sampled rays.

Multi-view Image-Based Rendering. One key limitation
of NeRF is the time-consuming per-scene optimization pro-
cess on each individual scene. To alleviate this, IBRNet [43]
learns a function fIBR that directly predicts the color and
density of a point in space by simply aggregating image
features sampled from multi-view reference images. Sim-
ilarly to the original NeRF, to render a pixel in a target
image, IBRNet samples a set of points {xi}Ni=1 along the
camera ray r. Instead of optimizing a scene-specific NeRF
to obtain the color and density of each point xi, IBRNet
proposes to directly predict them from the reference im-
ages. Specifically, given a set of neighboring reference
views I = {Ik}Kk=1, IBRNet first extracts their feature
maps �k using an image encoder network: �k = f�(Ik).
Let ⇡k denote the camera projection of view k. The 3D
point xi is projected into each of these reference views and
the feature maps are sampled at the projected pixel loca-
tion ui,k = ⇡k(xi) to obtain a feature vector from each
reference image: �i,k = �k(ui,k). By aggregating the
features from all reference views, the densities {�i} of all
the points sampled along the ray can be predicted through
a ray transformer. To predict the color ci, an MLP takes
in the reference features {�i,k} and relative viewing direc-
tions {�di,k} w.r.t. the target view and predicts a set of
weights {wc

k
}, which are used to blend the reference pixels

c̃i,k = Ik(ui,k) to obtain the color of the target point:

ĉi =
X

k

wc
k
c̃i,k. (3)

Finally, IBRNet aggregates the colors {ĉi} of all sample
points {xi} along ray r to obtain the target pixel color Ĉ(r)
using Eq. (1).

The main advantage of IBRNet comes from the
generalization capability of the learned function fIBR,

which infers the color and density of a 3D point x
directly from multi-view image features: (Ĉ,�) =
fIBR(x; {Ik}, {�k}, {�dk}). After training, given multi-
view images of a new test scene at inference time, IBRNet
can directly infer novel views by querying feature extractor
f� and fIBR in a feed-forward pass, without the need for
any further optimization. In this work, we draw inspiration
from this multi-view image-based rendering pipeline to de-
velop our IBD-SLAM framework for efficient visual SLAM
without the need for per-scene model optimization.

3.2. Mapping Based on xyz-maps

For mapping, taking inspiration from [43], one straightfor-
ward idea is to directly apply IBRNet on the image se-
quence and obtain the 3D scene by running a surface re-
construction method on the density field queried from the
model. However, due to the lack of scene geometry during
rendering, this method leads to unsatisfactory results.

xyz-maps for Depth Fusion. A more plausible idea is to
treat the depth maps Dk 2 R1⇥H⇥W as analogous to im-
ages Ik 2 R3⇥H⇥W , where each pixel stores the 3D lo-
cation of the surface point in the form of a distance from
the camera, instead of its RGB color. With this analogy,
we can render novel-view depth images using the same ap-
proach as rendering color images in IBRNet. This allows
us to obtain surface geometry through image-based depth
fusion. Consequently, we can learn another function, de-
noted as fIBD, which directly infers the 3D surface location
by predicting a set of blending weights and fusing depth
values from multiple views. Similar to fIBR, this function
is also generalizable to test scenes. However, depth maps,
usually represented in view-dependent camera coordinates,
inherently suffer from the characteristic of multi-view in-
consistency. This poses a significant challenge for IBRNet
in seamlessly synthesizing a novel view image from ref-
erence inputs. As shown in Fig. 6, the depth map recon-
struction result exhibits geometry claws. To address this
issue, we propose to use xyz-maps, which are represented
in world coordinates. By doing so, we enhance the robust-
ness of the multi-view fusion process. In addition, we also
include an fIBR module following [43] that operates on the
color images to learn to render the scene appearance. Fur-
thermore, xyz-maps offer promising potential for camera
localization, as will be discussed in Sec. 3.3. Specifically,
we first construct a set of xyz-maps Pk 2 R3⇥H⇥W from
the depth maps by back-projecting the pixels to 3D, to trans-
form the view-dependent depth values into the xyz coordi-
nate values in the canonical world coordinate system. Given
a depth value duv = D(u, v) at a pixel location (u, v), we
map it to a 3D point Puv by inverting the projection func-
tion: duvpuv = K[R|t]Puv , where puv = (u, v, 1), and K
and [R|t] are the intrinsic and extrinsic parameters of the
camera associated with the depth map. Note that the cam-
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era extrinsics are not available as input and are obtained by
a pose estimation step to be introduced in Sec. 3.3.

Feed-forward Mapping. Given reference view xyz-maps,
we can then render the xyz-map of a novel view using the
volume rendering equation. For each point xi on a visual
ray r, we project it to each neighboring view k, and sample
the image feature �i,k and the xyz value p̃i,k = Pk(ui,k) at
the projected pixel locations ui,k = ⇡k(xi). Crucially, note
that the sampled xyz value p̃i,k is not necessarily the same
as sample point location xi, as p̃i,k describes the surface
point observed from pixel ui,k, whereas xi is an arbitrary
point in the 3D space and may or may not lie on the sur-
face. Subsequently, we input all the features �i,k into an
MLP fwp to predict another set of blending weights wp

k
.

The predicted xyz value for xi is then obtained by blending
the sampled xyz values from neighboring views with these
weights:

p̂i =
X

k

wp

k
p̃i,k. (4)

All the predicted xyz values p̂i along the target visual ray r
are then aggregated via the same volume rendering equation
as in Eq. (1), recycling the densities �i predicted from fIBR:

P̂ (r) =
NX

i=1

Ti (1� exp(��i�i)) p̂i, (5)

which represents the reconstructed surface location ob-
served through r. We denote this image-based depth fusion
network as fIBD, which essentially predicts an estimated
surface location for each 3D point x by fusing the depth
values from reference views: P̂ = fIBD(x; {Pk}, {�k}).
Unlike other methods [52, 53] based on the implicit repre-
sentation requiring per-scene iterative learning to obtain the
feature grid representing the specific scene, once trained,
our method can generalize to new scenes at test time, with-
out the need for model retraining or fine-tuning.

3.3. Tracking Based on xyz-maps

For camera pose tracking, we adopt a method leveraging the
pixel correspondences and xyz-maps. Specifically, we first
detect key points using SuperPoint [7] and then use match-
ing techniques such as SuperGlue [29] to establish cor-
respondences between the reference frames and the novel
frame. To optimize the camera pose of the novel view, we
minimize the following loss:

Lt =
KX

k=1

X

r2⌦

||P̂ (r)� Pk(rk)||2, (6)

where ⌦ denotes all selected rays in the novel view. The
matched rays in the k-th reference view are denoted as rk.
P̂ is the predicted xyz-map by fIBD under the current (target)

camera pose, and Pk(rk) represents the xyz values of the
matched points in the k-th view. Let the rotation and transla-
tion of the current pose w.r.t. the world coordination system
be (Rc, tc). Together with the poses {(Rk, tk)} for the ref-
erence views, we can obtain (Rc, tc) by argmin(Rc,tc) Lt.
Note that during the inference process, the poses for the ref-
erence views are estimated progressively. Following com-
mon practice, only the pose of the initial view is provided,
and as the process continues, the poses for the remaining
views are gradually estimated. As the SLAM process un-
folds, the “current” views progressively transition into “ref-
erence” views.

After successfully tracking the camera pose, we intro-
duce novel views by incorporating random perturbations
into camera translations and rotations. The novel view cam-
era rotation is updated as Rn := Rc + �R, and the novel
view camera translation as tn := tc+�t. Utilizing the novel
camera pose (Rn, tn), we can infer the novel xyz-map P̂n by
the pre-trained fIBD. The rendering of novel-view xyz-maps
enhances geometric details and addresses potential gaps be-
tween the provided depth images. As a result, our model
demonstrates strong capability in generating high-quality
scene reconstructions.

3.4. Training Objectives

Here we introduce the training objectives employed in our
framework. To train our model, we adopt the RGB render-
ing loss [22] Lrgb defined in Eq. (2) to minimize the color
error between the rendered RGB color and the ground-truth
RGB color. We also include the depth consistency loss [49],
which has been shown to be effective in improving recon-
struction details. The loss is defined as:

Ldepth =
X

r2�

||(wD̂(r) + q)� D̄(r)||2, (7)

where w and q are scale and shift aligning the rendered
depth map and the depth estimated map by the monocular
predictor [9]. w and q can be solved with a least-squares
criterion. The rendered depth value is obtained by:

D̂(r) =
NX

i=1

Ti (1� exp(��i�i)) di. (8)

Similarly, the normal regularization loss [49] is also used
to improve local geometry, by minimizing the difference
between the normal N̄ calculated by the monocular pre-
dictor [9] and the rendered normal N̂ in a similar way as
in Eq. (8). The loss is written as:

Lnormal =
X

r2�

kN̂(r)� N̄(r)k1 + k1� N̂(r)>N̄(r)k1.

(9)
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After obtaining the rendered depth maps of K reference
views, they can be converted to xyz-maps {Pk}. The xyz-
map P̂ of the current view can then be predicted by fIBD.
We introduce the xyz-loss as follows:

Lxyz =
X

r2�

||⇡c(P̂ (r))�D̂(r)||2+||(w·⇡c(P̂ (r))+q)�D̄(r)||2,

(10)
where ⇡c denotes the projection matrix from 3D world coor-
dinates location to current camera coordinates depth value,
and D̄ denotes the monocular depth estimation.

Moreover, we leverage two additional regularization
terms following [52] to further enforce the geometric con-
sistency, namely an RGB warping loss and an optical flow
loss. For the RGB warping loss, given a sampled ray ri
passing through pixel ui in frame i, we initially compute
its depth value by neural rendering, followed by the process
of back-projecting ui to world coordinates to obtain its 3D
coordinates. We project the 3D coordinates onto another
reference frame j at pixel ui!j . The corresponding ray
passing through ui!j is represented as ri!j . The reference
frame set of frame i is denoted as Ki. The warping loss is
thus formulated as follows:

Lwarp =
X

ri2�

X

j2Ki

kC (ri)� C (ri!j)k1 . (11)

For the optical flow loss, we compute the optimal flow with
GMFlow [47], denoted by Flow. The loss is defined as:

Lflow =
X

ri2�

X

j2Ki

k(ui � uj)� Flow (ui!j)k1 , (12)

where ui is the pixel location corresponding to ri and ui is
the pixel location corresponding to ri!j .

Finally, the overall loss is written as:

L = Lrgb + �dLdepth + �nLnormal + �xLxyz + �wLwrap + �fLflow,

where the weights �d, �x, �n, �f and �w are set to 0.1, 0.5,
0.04, 0.002 and 0.2 respectively in our experiments.

4. Experiments

We evaluate our IBD-SLAM on various datasets and com-
pare it with the previous state-of-the-art methods.

4.1. Experimental Details

Training Datasets. We pre-train our model using both syn-
thetic and real-world datasets. For the synthetic datasets,
we use 4 object 3D scans from DeepVoxels [31], with each
scene consisting of 497 views, as well as 1,024 object scan-
ning results from the Google Scanned Objects [8], with 250
views for each scene. For the real-world datasets, we in-
clude 100 scenes from the Spaces Dataset [12], with 100

Depth L1#Acc.#Comp.#Comp. Ratio"PSNR"SSIM"

iMAP [35] 4.39 4.77 5.02 75.5 18.26 0.750
DI-Fusion [13] 19.21 16.33 9.19 78.1 - -
Orb-SLAM2 [25] 3.35 3.36 3.60 86.3 - -
NICE-SLAM [53] 2.49 2.42 2.65 90.3 24.7 0.844
ESLAM [14] 1.29 2.34 2.14 94.7 25.8 0.869
Co-SLAM [42] 1.60 2.21 2.36 92.7 27.9 0.882
Ours 1.53 1.83 2.02 93.8 28.5 0.893

Table 1. Reconstruction and novel view synthesis results on

Replica Datasets [32].

scanned RGB images per scene, and 24 scenes from the
Local Light Field Fusion Dataset [21], with around 20-30
views per scene. In addition, we use data collected by IBR-
Net [43], which includes 3D scanning data from 67 scenes.

Evaluation Datasets. To evaluate our model, we utilize
multiple datasets. Specifically, we select 8 scenes from
the Replica Dataset [32], each containing 2,000 frames of
RGBD input and corresponding ground-truth camera poses.
Additionally, we employ the TUM-RGBD Dataset [33] and
the ScanNet Dataset [6] for further evaluation of our model.

Implementation Details. In our implementation, we use
a server with an Intel(R) Xeon(R) Silver 4314 CPU @
2.40GHz and an NVIDIA RTX 3090 GPU. For ray sam-
pling, we employ 64 points for coarse sampling and another
64 points for importance sampling. The size of ray batch
of reference RGBD image aggregation is set to be 2,000.
During the mapping process, we utilize the 10 temporal
nearby reference frames to predict the target frame. For the
Replica Dataset [32], we sample 200 pixels for tracking.
For the ScanNet Dataset [6], we sample 1,000 pixels for
tracking. Additionally, we sample 2,000 pixels for track-
ing in the TUM-RGBD Dataset [33]. We apply the Poisson
surface reconstruction [15] to reconstruct the surface mesh
from the rendered point cloud. We synthesize a novel frame
after tracking every 10 frames.

4.2. Main Comparison

Baselines. We compare our IBD-SLAM with state-of-the-
art learning based SLAM methods using sparse RGB-
D inputs, including DI-Fusion [26], iMAP [35], NICE-
SLAM [53], ESLAM [14], Co-SLAM [42]. Among them,
iMAP and NICE-SLAM employ the plain NeRF-based
scene representations. Our method also adopts the plain
NeRF-based scene representations. Other methods em-
ploy different variants of neural scene representations. DI-
Fusion utilizes PLIVox [13] for scene representation, ES-
LAM [14] employs axis-aligned planes feature representa-
tion and TSDF-based volume rendering [6], Co-SLAM [42]
adopts a hash-based grid [23] for feature encoding and
TSDF for scene representation, differing from the plain
NeRF-based methods.
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Figure 2. Reconstruction results of geometries and colors on

Replica Dataset [32]. Results are on room-0 and office-4.

Figure 3. 3D reconstruction results on ScanNet Dataset [6].
Results are on scene0000 00.

Metrics. To evaluate the quality of our reconstructions, we
employ multiple metrics. For 2D reconstruction, we calcu-
late the average L1 depth error between the projected depth
from the rendered xyz-map and the ground-truth depth. Re-
garding 3D reconstruction, we measure the reconstruction
quality of the 3D point cloud. We adopt Accuracy [cm],
Completion [cm], and Completion Ratio [< 5cm%] as
our evaluation metrics. For tracking, we use ATE RMSE
[cm] [34] to measure the performance. Moreover, we use
PSNR and SSIM [45] as metrics to assess the quality of the
novel view synthesis.

Reconstruction Results. We assess the reconstruction and
novel view synthesis performance of our model using the
Replica Dataset [32], as detailed in Tab. 1. Our method
achieves superior or on-par results among other state-of-
the-art methods. Figures 2 and 3 showcase the qualita-
tive reconstruction results with methods using the same
type of plain NeRF-based representations, demonstrating
the model’s efficacy in handling intricate geometries. More
qualitative comparisons with other methods using different
representations can be found in Appendix Figs. 8 and 9.

Figure 4. Tracking results comparison. The results are compared
on the novel scenes from Replica Dataset [32]. The ground-truth
camera trajectory is shown in green; the predicted trajectory is
shown in red.

fr1/desk fr2/xyz fr3/office Avg.

iMAP[35] 7.2 2.1 9.0 6.1
DI-Fusion[13] 4.4 2.1 15.6 7.4
NICE-SLAM[53] 2.7 1.8 3.0 2.5
ESLAM[14] 2.5 1.1 2.4 2.0

Co-SLAM[42] 2.4 1.7 2.4 2.2
Ours 1.7 1.6 2.6 2.0

Table 2. Camera tracking results on TUM-RGBD [33]. ATE
RMSE [cm] is used as the tracking evaluation metric.

0000 0059 0106 0169 Avg.

iMAP[35] 55.95 32.06 17.50 70.51 44.00
DI-Fusion[13] 66.99 128.00 18.50 75.80 72.32
NICE-SLAM[53] 8.64 12.25 8.09 10.28 9.89
ESLAM[14] 7.27 9.02 7.53 6.50 7.58
Co-SLAM[42] 7.13 11.14 9.36 5.90 8.38
Ours 6.69 9.07 7.17 6.34 7.32

Table 3. Camera tracking results on ScanNet [6]. ATE
RMSE [cm] is used as the tracking evaluation metric.

Track # [ms x it.] Map # [ms x it.] #param #

iMAP [35] 16.8x6 44.8x10 0.26M
NICE-SLAM [53] 7.8x10 82.5x60 17.4M
ESLAM [14] 6.9x8 18.4x15 9.29M
Co-SLAM [42] 5.8x10 9.8x10 0.26M
Ours 5.4x15 12.3x1 0.08M

Table 4. Runtime and model size comparison.

Tracking Results. We evaluate our method on two pop-
ular SLAM datasets: TUM-RGBD [33] and ScanNet [6].
In Tab. 2 and Tab. 3, we summarize the tracking RMSE
results on TUM-RGBD Dataset [33] and ScanNet Dataset
in Fig. 11, where our method achieves best performance
compared to other methods. The qualitative comparison for
camera tracking trajectories is shown in Fig. 4.

Runtime. In Tab. 4, we report the running time consump-
tion on Replica Dataset [32] and the number of parameters.
Other methods require per-scene model training, leading to
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Figure 5. Reconstruction results w/ and w/o novel views. A
comparison of reconstruction normal maps is conducted both with
and without the inclusion of novel views, as outlined in Section
3.4. The sub-images highlighted in red and black correspond to
specific regions in the left reconstruction results. It is observed that
the incorporation of novel views enhances prediction capabilities,
leading to improved reconstruction outcomes.

more time cost on the mapping process. In contrast, our
model necessitates only a single step of feed-forward infer-
ence for mapping. Compared to other methods, our pro-
posed system excels in the speed of the mapping stage. Ad-
ditionally, our method features a modest parameter number
of 0.08M, significantly smaller compared to other models.

4.3. Analysis on Design Choices

Model Design. In Tab. 5a, we present the results for two
design choices in our study. Firstly, we explore the inclu-
sion of novel views during reconstruction, and qualitative
comparisons can be found in Fig. 5. As can be seen, the
novel views are effective in recovering the scene details.
Secondly, we investigate the use of a single shared network
for both RGB and xyz data. Our default configuration incor-
porates novel views and employs two separate networks, as
alternative configurations deteriorate performance.

Comparison under Controlled Conditions. Our method
uses Poisson surface reconstruction [15] to generate 3D
mesh from the point cloud obtained from rendered xyz-
maps, while the mesh of iMAP [35]/NICE-SLAM [53]
is generated through marching cube [18]. Here, we also
show the Poisson surface reconstruction [15] results for
iMAP/NICE-SLAM (refer to Tab. 5b). Our method still
performs the best among them. Additionally, we also ex-
periment by excluding Lnormal, Lflow, Lwarp from the loss
function. IBD-SLAM still performs better.

Training Loss. We ablate the effectiveness of different
terms in the training loss in Tab. 5c. It can be seen that
the RGB, depth, and xyz loss terms affect the performance
most, indicating the effectiveness of our idea on leveraging
xyz maps. Meanwhile, introducing the regularization terms
on geometry consistency also helps.

Please refer to the Appendix and the project website for
additional results, comparisons and analysis.

Depth L1 # Acc. # Comp. # Comp. Ratio "

w/o novel 1.80 2.66 2.91 91.2
Shared-net 2.35 3.02 3.89 87.7
Ours 1.53 1.83 2.02 93.8

(a) Ablation study of model design

Depth L1 # Acc. # Comp. # Comp. Ratio "

iMAP 4.39 4.77 5.02 75.5
iMAP‡ 5.17 6.19 6.87 61.4
NICE-SLAM 2.49 2.42 2.62 90.3
NICE-SLAM‡ 3.13 3.05 3.16 87.2
Ours† 1.72 2.05 2.30 92.2
Ours 1.53 1.83 2.02 93.8

(b) Effects of mesh generation methods

Depth L1 # Acc. # Comp. # Comp. Ratio "

w/o Lxyz 3.02 2.81 3.23 88.2
w/o Ldepth 2.09 2.23 2.45 92.0
w/o Lrgb 2.17 2.35 2.64 91.6
w/o Lnormal 1.65 1.98 2.20 92.7
w/o Lwrap 1.62 1.92 2.13 93.3
w/o Lflow 1.57 1.86 2.20 93.1
Ours 1.53 1.83 2.02 93.8

(c) Ablation study of pretraining loss functions

Table 5. Ablation study results on Replica Dataset [32]. The
ablation analysis is conducted on a single selected Replica scene
(room-2). In Tab. 5a, the first row depicts results obtained with-
out including novel views in the reconstruction process. The sec-
ond row showcases outcomes utilizing a shared network for RGB
and xyz data. In Tab. 5b, we report Poisson surface reconstruction
[15] results of point clouds generated by iMAP/NICE-SLAM, de-
noted as iMAP‡ and NICE-SLAM‡. Ours† denotes the reconstruc-
tion results without Lnormal, Lflow, Lwarp. In Tab. 5c, we compare
the results by excluding each of the loss terms.

5. Conclusions

We have proposed a new method, IBD-SLAM, for visual
SLAM that overcomes the limitations of existing methods
in terms of generalization and efficiency. By adopting a
NeRF for scene representation, we propose to learn a gen-
eralizable image-based depth fusion network, which allows
the model to be applied to new scenes without retraining.
Unlike existing methods which optimize on a per-scene ba-
sis, IBD-SLAM is trained on a collection of RGBD videos
and directly generalize to novel scenes, thus significantly
more efficient. IBD-SLAM outperforms the previous state-
of-the-art methods across several public SLAM benchmarks
while being 10⇥ faster.
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