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Figure 1. (a) The illustration of task-agnostic visual prompts and the proposed task-specific visual prompts. (b) Performance overview of
liver pathology image analysis tasks with various methods (i.e., Fabian et al. [16], SAR [40], VPT-DEEP [18], VQT [37]). Our method
(QAP) excels in overall performance. Detailed results are provided in Table 1 2 3.

Abstract

The rapid increase in cases of non-alcoholic fatty liver
disease (NAFLD) in recent years has raised significant pub-
lic concern. Accurately identifying tissue alteration re-
gions is crucial for the diagnosis of NAFLD, but this task
presents challenges in pathology image analysis, particu-
larly with small-scale datasets. Recently, the paradigm shift
from full fine-tuning to prompting in adapting vision foun-
dation models has offered a new perspective for small-scale
data analysis. However, existing prompting methods based
on task-agnostic prompts are mainly developed for generic
image recognition, which fall short in providing instruc-
tive cues for complex pathology images. In this paper, we
propose Quantitative Attribute-based Prompting (QAP), a
novel prompting method specifically for liver pathology im-
age analysis. QAP is based on two quantitative attributes,
namely K-function-based spatial attributes and histogram-
based morphological attributes, which are aimed for quan-
titative assessment of tissue states. Moreover, a condi-

tional prompt generator is designed to turn these instance-
specific attributes into visual prompts. Extensive exper-
iments on three diverse tasks demonstrate that our task-
specific prompting method achieves better diagnostic per-
formance as well as better interpretability. Code is avail-
able at https://github.com/7LFB/QAP.

1. Introduction
Non-alcoholic fatty liver disease (NAFLD) poses a per-

vasive global health challenge, impacting approximately
30% of adults [36, 39]. Traditional diagnostic process for
NAFLD is labor-intensive as it relies on manual exami-
nation of specific histological findings, including steatosis,
lobular inflammation, and ballooning degeneration, as well
as histological scoring [20, 35]. With the increasing global
prevalence of NAFLD, there is a concern that medical sys-
tems may face an excessive burden in terms of resources
required for diagnosis. Furthermore, manual pathological
scoring may suffer from inadequate reproducibility, even
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when performed by expert pathologists [19, 25].
In recent years, deep learning-based methods have

shown promising potential in automatic pathology image
analysis [2, 41], offering fast, consistent, and more cost-
effective results. However, deploying these methods in real-
world scenarios is highly challenging, which is largely due
to the limited availability of large-scale datasets.

To overcome the aforementioned issue, this paper re-
sorts to a new data-efficient paradigm called prompting [4],
which has recently emerged in computer vision [18,42,43].
The main idea of prompting is to tune a small number of
parameters in a model’s input space while keeping the ma-
jority of the pre-trained part untouched, which has been
proven to be effective in handling low-data regimes [18,
42, 43]. However, existing prompting methods based on
task-agnostic prompts are primarily developed for natu-
ral images, which differ significantly from pathology im-
ages. Natural images typically represent scenes and objects,
whereas pathology images capture microscopic views of tis-
sue samples or cells, each with their unique structures. The
use of task-agnostic prompts alone may not be sufficient
in providing clear and instructive cues that are necessary
for fully comprehending the complex microenvironment in
pathology images.

Our key insight is that visual prompts should include the
elements that pathologists examine when analyzing patho-
logical images. We first start with two fundamental ques-
tions. What tissue structures to study? Inspired by [1],
nuclei and white regions are two crucial tissue structures for
diagnosing NAFLD. These white regions may specifically
represent fatty cells or vessels. Pathologists carefully in-
spect these structures and measure their related attributes to
assist in making precise diagnoses. What attributes of tis-
sue structures to study? Pathologists primarily investigate
two categories of attributes: spatial and morphological. In
terms of spatial attributes, the arrangement of nuclei around
fatty cells may indicate the degree of fat accumulation and
damage in liver cells [39]. The assessment of morpholog-
ical damage also holds significant importance in clinical
practice. For example, steatosis is characterized by the pres-
ence of multiple lipid droplets of varying sizes that occupy
the cytoplasm and displace the nucleus [5]. Visual prompts
that contain pathology-related information play a crucial
role in helping models recognize and interpret important
features and patterns. Instead of relying on task-agnostic
visual prompts, designing task-specific visual prompts with
quantitative attributes, such as spatial and morphological at-
tributes, can be more effective, as demonstrated in Figure 1.

This paper proposes a quantitative attribute-based
prompting (QAP), a novel method for liver pathology im-
age analysis. Specifically, QAP explores two types of at-
tributes including K-function-based spatial attributes and
histogram-based morphological attributes. These attributes

offer a comprehensive and precise quantitative evalua-
tion of the images based on their clustering and shape
characteristics. Furthermore, we introduces an attribute-
conditioned prompt generator. By conditioning the genera-
tion of prompts on these attributes, we can guide the model
to generate more relevant and precise prompts that are tai-
lored to the specific characteristics of each pathology image.

In summary, we make the following contributions in this
paper:

• We conduct a comprehensive investigation into
prompting methods for pathology image analysis, and
propose a new visual prompting method based on
pathology-related features.

• We provide an efficient implementation of the new
method, called Quantitative Attribute-based Prompt-
ing (QAP), which turns two instance-specific quantita-
tive measures (i.e., K-function-based spatial attributes
and histogram-based morphological attributes) into vi-
sual prompts.

• Experiments conducted on three tasks demonstrate that
the incorporation of quantitative attributes enhance
both the diagnosis efficiency and interpretability.

2. Related Work

NAFLD Diagnosis. Liver pathology images capture cel-
lular tissue structures and play a central role in diagnos-
ing NAFLD [22]. [15] utilized morphological features with
a machine-learning algorithm for steatosis quantification.
[16] fine-tuned a pre-trained model for histological findings
recognition. [34] applied UNet network [33] for fat droplet
segmentation. The performance is limited due to the rela-
tively small-scale datasets.
Pathology Image Analysis. Deep learning methods
demonstrate their effectiveness in tissue segmentation [9,
11, 32] and classification [13, 23]. HoverNet [31] has
shown promising results in segmenting nuclei by utilizing
the distance between them. Omni-Seg [8] achieved supe-
rior segmentation accuracy in tissue structures. Before the
widespread adoption of deep learning, conventional ma-
chine learning methods were extensively used for pathology
image analysis [21, 30]. [3] studied the morphological fea-
tures for the diagnosis of breast cancer. [38] explored the
shapes and boundary features for lung cancer image anal-
ysis. [24] applied spatial statistics to capture cell-cell in-
teractions to predict treatment response in lung cancer pa-
tients. The effectiveness and robustness of handcrafted fea-
tures have been demonstrated in various pathological image
analysis tasks, making them a reliable tool for such applica-
tions. Although the process of hand-crafting features can be
time-consuming, it offers a valuable quantitative assessment
and generalization that is crucial in clinical practice [10,29].
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Visual Prompt Tuning. Prompting [27] was initially pro-
posed in natural language process tasks by incorporating
language instructions into input text to enhance its ability to
comprehend unfamiliar tasks. VPT [18] firstly explored vi-
sual prompting with a small number of trainable parameters
for vision tasks. VQT [37] and EXPRES [7] further studied
how to inject prompts into foundation models and achieved
higher efficiency of the parameters. However, these meth-
ods mainly focus on task-agnostic prompts, with little re-
search focusing on task-specific visual prompts. In ana-
lyzing pathological images, these methods may not provide
sufficient guidance for understanding the images.

3. Proposed Method

Overview. Figure 2 presents an overview of our proposed
quantitative attribute-based prompting method for liver tis-
sue recognition. Given a liver biopsy image x ∈ R3×h×w

and its label y, the image is first embedded into the d-
dimentional feature space with positional encoding through
embedding operation Embed:

E0 = Embed(x) (1)

Additionally, the image x is also fed into quantitative
attribute-based prompting (QAP) module Q to generate vi-
sual prompts P0:

P0 = Q(x) (2)

Combining the image embeddings Ei and Pi, and an ex-
tra learnable classification token [cls], they are fed into the
ith transformer layer Li of a vision transformer (ViT) for
feature learning:

[clsi, Ei, Pi] = Li([clsi−1, Ei−1, Pi−1])i = 1, 2, ..., N
(3)

where N refers to the number of transformer layers. Lastly,
the classifier Cθcls is applied to the class token [clsN ] to
estimate the label ŷ

ŷ = Cθcls(clsN ) (4)

The key aspect lies in how to generate visual prompts effec-
tively. Our focus is on studying how to incorporate quanti-
tative attributes into visual prompts.

3.1. Quantitative Attribute-based Prompting

In this section, we present the proposed quantitative
attribute-based prompting. Our key insight is to learn ex-
plicit prompts from quantitative attributes. Imitating the di-
agnostic process of a pathologist, we consider two types of
quantitative attributes, including spatial attributes and mor-
phological attributes.

Given the image x, it is firstly fed into a segmenter Seg
to parse the image and get tissue structure segmentation O:

O = Seg(x) (5)

where O = {oci}
c=1,..,C
i=1,..,nc

. oci refers to the i-th object be-
longing to class type c. nc represents the number of corre-
sponding objects. The total number of class types is C.

Given the objects detected from the liver biopsy im-
ages, we would perform a comprehensive quantitative as-
sessment, helping with the pathological image analysis.

K-function-based Spatial Attributes. The spatial arrange-
ment of objects in liver biopsy images plays a crucial role
in the diagnosis of NAFLD. It includes the clustering of nu-
clei and their displacement around fatty cells. These spatial
attributes align perfectly with the K-function [12], making
it a valuable tool for analysis.

To quantify the spatial attributes, we adopt the K-
function-based spatial attribute analysis module Ds on tis-
sue structure segments O, yielding out spatial attributes As:

As = Ds(O) (6)

where the K-function-based spatial attribute analysis mod-
ule Ds is implemented with a collection of K-function [12]:

Ds(O) : = {Ktag
src (r)|src = 1, ..., C, tag = 1, ..., C} (7)

Specifically, the K-function counts the number of source
objects Osrc = {osrci }i=1,..,ns

which are within a certain
distance r from target objects Otag = {otagi }i=1,..,ntag

:

Ktag
src (r) =

1

λ
πr2(

∑
i=1,..,nsrc

Jdtag(osrci ) ≤ rK)2 (8)

where J·K is a boolean function that returns 1 if the input
is true. λ denotes a constant. The distance function dT

defines the distance of the source objects to neighborhood
target objects:

dtag(osrci ) = min
j=1,..,nT

||osrci − otagj ||2 (9)

where || · ||2 refers to the Euclidean distance between two
objects. The K-function-based spatial attributes As =
[as1, .., a

s
ns
] offer valuable insights into the scale of cluster-

ing or dispersion. This quantitative assessment aligns with
the needs of pathologists, enabling them to gain a deeper
understanding of spatial patterns.

Histogram-based Morphological Attributes. Morpho-
logical attributes are used to quantify the shape, size, and
structure of objects observed in liver biopsy images. With-
out losing any generality, let us consider the object sets
Oc = {oci}i=1,..,nc

We develop a histogram-based morphological attributes
analysis module Dm to get its morphological attributes Am:

Am = Dm(Oc) (10)
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Figure 2. Overview of our method. QAP explores spatial and morphological attributes to generate visual prompts for aiding pathology im-
age analysis. Furthermore, QAP introduces an attribute-conditioned prompt generator to generate visual prompts characterizing pathology
images.

where the histogram-based morphological attribute analysis
module Dm is a collection of histogram operators H:

Dm : = {H(ϕk(Oc))|k = 1, ..., nϕ} (11)

where the histogram operator H counts the number of ob-
jects oci with attribute ϕk(oci ) in the range [aj , aj+1]:

H(ϕk(Oc)) = {
nc∑
i=1

1[aj ,aj+1](ϕ(o
c
i )) | aj < aj+1, j ∈ N}

(12)
The function ϕk serves as a morphological attribute extrac-
tor that captures diverse morphological attributes such as
area and eccentricity. nϕ denotes the total number of mor-
phological attributes considered. The histogram-based mor-
phological attributes am = [am1 , .., amnm

] provide a compre-
hensive description of the shape and structure of the objects.

After spatial and morphological attributes analysis spe-
cific to the objects observed in liver pathology images,
we get a comprehensive quantitative assessment of liver
pathological image with attribute sets A = [As, Am] =
[as1, .., a

s
ns
, am1 , .., amnm

].
Attribute-Conditioned Prompt Generator. Quantitative
attributes are essential in identifying the significant features
of pathology images. They provide a structured summary
that helps our model concentrate on specific aspects of the
data. With the availability of these attributes, we introduce a
attribute-conditioned prompt generator, which utilizes these
attributes to create more precise and context-aware prompts.

Given the attributes A = [As, Am], we vectorize the at-
tributes by uniform sampling V , yielding dĀ-dimensional

feature representations Ā:

Ā = V(A) (13)

where Ā ∈ R(ns+nm)×dĀ .
To remove the noise and irrelevant information from

these attributes, we project the initial attributes vector Ā
into a dÂ-dimensional feature space through the projector
Pθproj :

Â = Pθproj (Ā) (14)

where Â ∈ R(ns+nm)×dÂ . Quantitative attributes in pathol-
ogy images can have diverse meanings and relationships.
To effectively model the interactions between input tokens,
a transformer encoder with a self-attention mechanism can
be advantageous. Therefore, we employ a transformer en-
coder fθenc

to learn quantitative attribute feature represen-
tation Ã:

Ã = fθenc
(Â) (15)

These attributes provide a rich source of structured infor-
mation that can guide the model to focus on specific aspects
of the data. Next, we will discuss generating prompts con-
ditioned on these quantitative attributes.

Our prompt generator draws inspiration from the trans-
former decoder and functions in a similar manner. It de-
fines the conditional probability distribution of a target se-
quence utilizing the contextualized encoding sequence. Us-
ing previous prompts and quantitative attributes, our gener-
ator generates each prompt P0 = [p01, ..., p

0
np
]. Mathemati-

cally, the transformer decoder fθdec defines the probability
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Table 1. Classification performance of NAFLD abnormalities.
Methods 10% Training 50% Training 100% Training

Fabian et al. [16] 81.02±1.38 94.60±0.67 97.34±0.46
SAR [40] 80.71±2.99 99.09±0.35 99.54±0.19
VPT-DEEP [18] 96.58±0.60 99.30±0.23 99.49±0.26
VQT [37] 95.99±0.72 99.27±0.29 99.47±0.27
QAP (Ours) 97.75±0.77 99.37±0.23 99.58±0.17

distribution pθdec of output prompts P0 given the attributes
Â:

pθdec(P0|Â) =

np∏
i=1

pθdec(p
0
i |P0,1:i−1, Â) (16)

The final prompt learning is to maximize the probability dis-
tribution pθdec(P0|Â) and the learning procedure is formal-
ized using a transformer decoder fθdec :

P0 = fθdec(P̄0, Â) (17)

where P̄0 ∈ Rnp×dp is an initial prompt embeddings
This conditional decoder allows for the creation of

prompts that are cohesive with the quantitative attributes
and previous prompts. By conditioning the prompt genera-
tion on these attributes, we can guide the model to generate
more relevant and precise prompts that are tailored to the
specific characteristics of each image.

4. Experiments

Tasks and datasets. We evaluate our method with three
types of tasks: classifying NAFLD abnormalities, recog-
nizing histological findings, and histological scoring on
WSI. We conduct experiments on NAFLD-Anomaly [45]
for the classification of NAFLD abnormalities. It contains
256×256 image tiles extracted from WSI of H&E stained
tissue of the mouse. It consists of 2170 normal samples
and 2150 abnormal samples with NAFLD. For the recogni-
tion of histological findings, we evaluated the performance
in the dataset Liver-NAS [44]. It provides an image tile
dataset extracted from 9 patients with associated labels in-
dicating the type of histological findings (i.e., steatosis, in-
flammation, ballooning). There are 5875 image tiles with
steatosis (N = 3838), ballooning (N = 298), inflammation
(N = 69), and others (N = 1659). Liver-NAS [44] also
offers 256 WSIs of the liver, without any overlap with pre-
viously included patients. These WSIs are accompanied by
patient-level labels that enable histological scoring. These
labels quantify the presence of specific histological findings
observed in the WSIs. It includes steatosis (0-3), inflamma-
tion (0-3), and ballooning (0-2). All liver tissues are stained
with H&E without normalization processing. The average
image resolution is 61,000×20,000 pixels.

We conduct a 5-fold cross-validation to verify the effec-
tiveness of our proposed method. For the tasks of identi-
fying NAFLD abnormalities and histological findings, the

data was randomly split to ensure reliable results. Each
fold was divided into a training set (70%), a validation set
(10%), and a test set (20%). During training, the model’s
performance was monitored on the validation set and used
for model selection. To evaluate the model’s generalization
ability, we performed histological scoring on larger, unseen
image samples. We utilized the well-trained model that was
developed for recognizing histological findings to score all
256 WSIs.

Implementation Details. The proposed method is imple-
mented with Pytorch. We use ViT-S/16 as the backbone,
which is pre-trained TCGA-BRCA [26] pathology images
with self-supervised learning method [6]. We employed the
AdamW [28] optimizer with an initial learning rate of 5e−4,
applied cosine decay, and trained the model for 50 epochs.
The batch size is 64. There are two types of tissue structure
to consider: nuclei and white regions. More implementa-
tion details are provided in supplementary materials.

Evaluation Metrics. For classification experiments, the F1
score is used as the performance metric. For histological
scoring, Spearman correlation coefficient ρ [17] is used
to calculate the correlation between disease area percentage
and the histological score assigned by pathologists at a sig-
nificant level p-value. During 5-fold cross-validation exper-
iments, the mean and standard deviation are reported. The
overall significance is calculated by combining the p-values
of each fold using the Fisher method [14]. More evaluation
results are provided in the supplementary materials.

4.1. Comparison with State-of-the-Art Methods

We compare our methods against four different ap-
proaches, including Fabian et al. [16], SAR [40], VPT [18],
and VQT [37], covering various aspects of liver pathology
image analysis and visual prompting techniques. Fabian et
al. [16] utilized deep convolutional neural networks (CNN)
to recognize histological findings. SAR [40] is an attention
regularization method driving the model focusing on clin-
ical features. VPT [18] first explored visual prompt tun-
ing for natural image recognition. VQT [37] introduced
a highly efficient method of prompt tuning that optimizes
memory usage. Additionally, it aggregates intermediate
features to further enhance the tuning process.

Classification of NAFLD abnormalities. We compare our
method with other SOTA methods for the classification of
NAFLD abnormalities in Table 1. The table presents the
F1 score for each method under different training data ra-
tios. Our method has demonstrated superior performance
on varying data utilization ratios. The superior performance
in varying data utilization ratios suggests that our method is
robust to the amount of labeled data available especially in
low-data regimes, resulting in a 1% increase.

Histological findings recognition. Table 2 shows the F1
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Table 2. Comparison of histological findings recognition with different methods.

Methods Others Inflammation Ballooning Seatosis Macro-Average

Fabian et al. [16] 89.66±4.09 45.46±23.49 80.62±6.61 97.38±1.42 78.28±6.81
SAR [40] 92.02±1.89 51.60±21.93 82.02±6.35 98.06±0.46 80.92±6.31
VPT-DEEP [18] 92.82±3.96 45.89±12.54 84.55±9.85 98.81±0.21 80.52±6.35
VQT [37] 92.09±7.35 49.80±12.33 83.89±13.22 98.90±0.41 81.17±7.99
QAP (Ours) 94.21±3.27 55.38±17.17 85.10±7.92 98.79±0.25 83.37±6.99

Table 3. Generealization ability comparison of histological scoring performance with different methods. ρ represents the Spearman’s
Correlation Coefficients.

Methods
Inflammation Ballooning Steatosis

ρ ↑ p-value ↓ ρ ↑ p-value ↓ ρ ↑ p-value ↓

Fabian et al. [16] 0.143±0.142 ≤ 0.001 0.188±0.067 ≤ 0.001 0.271±0.150 ≤ 0.001
SAR [40] 0.236±0.123 ≤ 0.001 0.246±0.024 ≤ 0.001 0.593±0.127 ≤ 0.001
VPT-DEEP [18] 0.422±0.022 ≤ 0.001 0.299±0.026 ≤ 0.001 0.759±0.007 ≤ 0.001
VQT [37] 0.342±0.062 ≤ 0.001 0.316±0.012 ≤ 0.001 0.766±0.006 ≤ 0.001
QAP (Ours) 0.410 ±0.008 ≤ 0.001 0.332±0.018 ≤ 0.001 0.793±0.008 ≤ 0.001

score of different methods in the classification of histolog-
ical findings. Our method achieves a better overall perfor-
mance, with an average F1 score of 83.37. Steatosis can be
accurately detected using any of the available methods due
to the abundance of training samples. We observe a consid-
erable increase in both inflammation and ballooning, with
values of 55.38 and 85.10, respectively. The increase can
be attributed to the incorporation of quantitative attributes.
Our method allows for a thorough and precise analysis of
the histological characteristics relevant to specific findings.

Generalization for histological scoring. We conduct his-
tological scoring on unseen patients to evaluate our ap-
proach’s generalizability. In Table 3, we provide the
Spearman correlation coefficient [17] and its associated p-
value. This statistical measure assesses the relationship be-
tween disease area percentage and histological score. A
higher correlation coefficient indicates a stronger associa-
tion, while a lower p-value indicates statistical significance.

As shown in the table, prompting-based methods demon-
strate better generalizability by accurately identifying histo-
logical findings in unseen patients. The model benefits from
the general knowledge of large-foundation models, result-
ing in better generalization. Our model achieves a compara-
ble correlation coefficient of 0.410 for scoring inflammation
and effectively minimizes variance, making it a highly ef-
fective solution. Our method demonstrates an improvement
in histological scoring on ballooning and steatosis, achiev-
ing correlation coefficients of 0.332 and 0.793, respectively.
Quantitative attributes offer a stronger and more compre-
hensive representation of pathology images.

4.2. Quantification of Histological Findings

Our model offers a thorough analysis of the diagnosis
procedure. It not only highlights the areas of focus, but also
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Figure 3. Image samples with its attention map and attribute sig-
nificance histogram when identifying specific histological find-
ings. Our method enhances interpretability by visually represent-
ing the decision-making process through attention maps and at-
tribute significance histograms. a. The structures the model fo-
cuses on; b. The attributes of structures the model focus on.

identifies the specific attributes that are emphasized, as il-
lustrated in Figure 3. Consider an image of liver pathol-
ogy with lobular inflammation. With the model’s attention,
we observe that the diagnosis is related to the nuclei re-
gion. Furthermore, the significance histogram associated
with the attributes enables us to attribute the diagnostic re-
sults to specific attributes, such as the spatial arrangement
of nuclei quantified by attribute as1. The attribute as1 has a
significance score of 0.27, which is higher than the scores
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(a) (b) (c)
Figure 4. Box plot of the disease area proportion and the histolog-
ical score assigned by pathologists.

of other attributes. In the diagnosis of ballooning, the model
primarily focuses on the spatial arrangement of nuclei sur-
rounding white regions, denoted by attribute as3. This is
supported by its attention map and higher attribute signifi-
cance scores. By accessing this information, we can gain a
better understanding of the underlying factors involved and
interpret the image effectively. More visualization results
are provided in supplementary materials.

Furthermore, during histological scoring, our method
also quantifies the proportion of tissue area assigned to each
histological finding. As shown in Figure 4, It offers the dis-
tribution of the proportions of the disease area and the his-
tological score assigned by pathologists. The distribution of
these two variables can provide valuable information on the
severity and progression of NAFLD within the population
studied. This meets the clinical requirement where NAFLD
is considered a continuous developmental process.

4.3. Justification for Attributes Choices

In this section, we will dive into the reasoning be-
hind the attributes we have chosen for the analysis of the
liver biopsy image. Our approach employs the K-function-
based spatial attributes and histogram-based morphologi-
cal attributes, chosen for their clinical relevance and inter-
pretability in the context of analyzing liver biopsy images.
K-function-based Spatial Attributes. The spatial distribu-
tion captured by the K-function reveals patterns characteris-
tic of NAFLD. As shown in Figure 5, the K-function distri-
bution of the nuclei and the white regions provides signifi-
cant information for the recognition of histological findings.
Figure 5 (a) illustrates the K-function plot, which displays
the spatial characteristics. The K-function value (y-axis) in-
creases as the distance between objects (x-axis) increases.
When the plotted line grows rapidly and remains above the
reference line, it indicates clustering spatial characteristics.
On the contrary, if the line grows under the reference line,
it suggests sparsely distributed characteristics. The distri-
bution of nuclei and white regions is depicted in Figure 5
(b)-(e), revealing the diverse developmental paths of each
class. This provides an intriguing glimpse into the distinc-
tive properties of these cells and their gro wth patterns.

As seen in Figure 5 (b), the K-function curves of each
class characterize the spatial distribution of nuclei. In the
’Others’ category, which includes normal tissues, the distri-
bution of nuclei is typically uniform, with consistent spac-
ing. As a result, the K-function curve exhibits a mid-speed
growth rate, which can serve as a reference line for com-
parison with other classes. On the other hand, inflammation
is characterized by a higher degree of clustering among nu-
clei, leading to a more rapid initial growth of the K-function
curve. This observation is in line with the clinical defi-
nition of inflammation and provides valuable insights into
the clustering behavior of nuclei. In contrast, steatosis and
ballooning exhibit a more sparsely distributed nucleus pat-
tern, which is reflected in the slower growth rate of their
K-function curve. The K-function illustrated in Figure 5
(c) provides insight into the spatial distribution of white re-
gions. The k-function curves of steatosis and ballooning ex-
hibit a high growth rate, indicating clustering due to a large
accumulation of fatty cells. The spatial arrangement of the
nuclei and the white regions also demonstrates distinct pat-
terns around different neighborhoods, as shown in Figure 5
(d)-(e). The K-function accurately identifies clustering or
dispersion patterns, enabling informed decision-making.

Histogram-based Morphological Attributes. Similarly,
the histogram-based morphological attributes quantify the
shape, size, and structure of objects observed in the liver
biopsy images. Changes in cell morphology are often in-
dicative of disease states. The histogram in Figure 6 shows
the distribution of the area, eccentricity, and perimeter of
the white region. It provides valuable insights into the char-
acteristics of the white region.

Area quantify the size of the white region. As shown
in Figure 6 (a), it represents the distribution of the area
of white regions. NAFLD starts with the accumulation of
fatty cells. The area of cell structures is a critical attribute
directly correlated with their size. A higher frequency of
larger areas may indicate the presence of an accumulation of
fatty cells. On the other hand, a higher frequency of smaller
areas could suggest a lower degree of accumulation of fatty
cells. The clinical pattern is evident in the area-based his-
togram. The area-based histogram shows that image diag-
noses with steatosis and ballooning trend have a larger mean
area of fatty cells. The histogram of eccentricity (Figure 6
(b)) and perimeters (Figure 6 (c)) also provide cues in dis-
tinguishing white regions observed in different classes.

These attributes not only provide a quantitative measure
of the tissue state but also align well with the visual and
qualitative assessments that pathologists perform during mi-
croscopic examination. Therefore, they bridge the gap be-
tween automated image analysis and traditional histopatho-
logical assessment, making the diagnosis process more ef-
ficient and accurate.
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Figure 5. K-function distribution of nuclei and white regions in liver biopsy images. (a) The K-function plot indicates spatial clustering or
dispersion. The K-function characterizes the (b) spatial arrangement of nuclei, (c) the spatial arrangement of white regions, (d) the spatial
arrangement of nuclei around white regions, and (e) the spatial arrangement of white regions around nuclei.

Figure 6. Histograms of morphological attributes of white regions
in liver biopsy images. (a) The area of white regions in each image
tile may indicate the degree of fat accumulation or vessels. (b)
The eccentricity of white regions measures how elongated they
are. (c) The perimeter of white regions indicates the size and shape
of cells. Histogram-based morphological attributes are valuable
for distinguishing between different histological findings.

Figure 7. Comparative results with different (a) spatial and (b)
morphological attributes. Our method uses quantitative attributes
to better identify histological findings compared to the baseline
approach with task-agnostic visual prompts.

4.4. Exploration of Quantitative Attributes

In this section, we conduct ablation studies to analyze
the impact of various spatial and morphological attributes
on our method’s performance.

Attributes Evaluation. As shown in Figure 7, it illustrates
the enhanced performance achieved by incorporating dif-
ferent quantitative attributes in our proposed method. The
baseline performance is achieved using learning prompts
from random initial embeddings without incorporating any
quantitative attributes. The x-axis represents the varying
quantitative attributes. Each attribute serves a distinct pur-
pose in providing valuable information that aids in identify-
ing histological findings.

Tissue structures

Quantitative attributes
of tissue structures

Task-agnostic visual
prompts

Task-specific visual

prompts

Figure 8. Exploration of various prompts. By incorporating ex-
plicit cues into the learning prompts, performance can be signifi-
cantly enhanced.

Attributes Exploration. In this section, we explore learn-
ing various prompts. The tissue structure segments provide
more informative cues compared to task-agnostic visual
prompts learned from randomly initialized vectors. Addi-
tionally, the quantitative attributes obtained from summa-
rizing the statistical information about tissue structures are
more explicit. As shown in Figure 8, using prompts learned
conditioned on explicit cues can enhance the learning pro-
cess and improve performance.

5. Conclusion
We present a novel quantitative attribute-based prompt-

ing method for liver pathology image analysis. Our method
leverages quantitative attributes that capture the spatial and
morphological characteristics of key tissue alteration re-
gions. An attribute-conditioned prompt generator is specifi-
cally designed to generate unique and accurate prompts that
highlight the characteristics of pathology images. Our ex-
periments across three tasks demonstrates the significant
potential of combining traditional histological assessment
with advanced deep-learning methods, resulting in notable
improvements in interpretability and overall reliability of
diagnostic performance.
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