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Abstract

Advancements in 3D instance segmentation have tra-
ditionally been tethered to the availability of annotated
datasets, limiting their application to a narrow spectrum
of object categories. Recent efforts have sought to har-
ness vision-language models like CLIP for open-set seman-
tic reasoning, yet these methods struggle to distinguish be-
tween objects of the same categories and rely on specific
prompts that are not universally applicable. In this pa-
per, we introduce SAI3D, a novel zero-shot 3D instance
segmentation approach that synergistically leverages geo-
metric priors and semantic cues derived from Segment Any-
thing Model (SAM). Our method partitions a 3D scene into
geometric primitives, which are then progressively merged
into 3D instance segmentations that are consistent with the
multi-view SAM masks. Moreover, we design a hierarchi-
cal region-growing algorithm with a dynamic thresholding
mechanism, which largely improves the robustness of fine-
grained 3D scene parsing. Empirical evaluations on Scan-
Net, Matterport3D and the more challenging ScanNet++
datasets demonstrate the superiority of our approach. No-
tably, SAI3D outperforms existing open-vocabulary base-
lines and even surpasses fully-supervised methods in class-
agnostic segmentation on ScanNet++. Our project page is
at https://yd-yin.github.io/SAI3D.

1. Introduction
3D instance segmentation aims to parse a 3D scene into a
set of objects represented as binary foreground masks as-
sociated with semantic labels. Although 3D instance seg-
mentation has made great progress, state-of-the-art meth-
ods are supervised, and heavily rely on precise 3D annota-
tions. Consequently, these methods are confined to a nar-
row scope of object categories within specific datasets like
ScanNet [5] or KITTI [8]. This limitation considerably con-
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Figure 1. SAI3D: A Zero-Shot Approach for 3D Instance Seg-
mentation. SAI3D leverages geometric priors and 2D segmenta-
tion foundation models to perform training-free zero-shot 3D in-
stance segmentation (top). Our generated 3D masks enable appli-
cations of open-vocabulary queries of fine-grained 3D instances
(bottom).

strains their applications in open-world scenarios such as
embodied agents and autonomous driving.

Advanced methods, based on vision-language founda-
tion models like CLIP [36], have shown impressive perfor-
mance in open-set semantic reasoning. These approaches
have prompted recent studies exploring how these founda-
tion models can assist in comprehending 3D scenes (e.g.,
OpenScene [32] and LERF [18]).

Although achieving open-world 3D grounding, these ap-
proaches typically predict a heatmap without distinguishing
among different objects with the same semantics. More-
over, they rely on specific prompts that might not be readily
available for all objects within a 3D scene.
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More recently, the Segment Anything Model (SAM) [19]
has achieved cutting-edge results in fine-grained image
segmentation within complex scenes. Building on this
progress, SA3D [1] utilizes a NeRF trained on a set of 2D
images. By using manual prompts in a single view (rough
points representing the target object), it generates object
masks within a 3D grid via cross-view self-prompting, in-
corporating the functionalities of SAM. Advancing further,
SAM3D [51] employs SAM for automatic mask genera-
tion, partitioning images into dense instance masks, and
then projecting them into the 3D scene through an iterative
merging process. Notably, SAM3D is capable of generat-
ing more detailed masks compared to ground-truth annota-
tions in ScanNet. However, it is susceptible to 2D mask er-
rors due to the local adjacent frame merging process, which
might overlook global consensus.

In this work, we investigate how to better leverage ge-
ometric priors and multi-view consistency for fine-grained
instance segmentation of intricate 3D scenes. We introduce
SAI3D (Segment Any Instance in 3D Scenes), which takes
advantage of SAM to conduct zero-shot 3D instance seg-
mentation, without training or finetuning with 3D annota-
tions. SAI3D dissects the 3D scene into geometric primi-
tives, and builds a sparse affinity matrix that captures pair-
wise similarity scores based on the 2D masks generated
by SAM. Our approach involves the progressive merging
of these primitives using a region-growing algorithm, and
an aggregation of votes from all valid images, to obtain a
multi-view consistent 3D instance segmentation.

We evaluate our method on ScanNetV2 [5], ScanNet200
[38], Matterport3D [2] as well as the recently developed
ScanNet++ [52]. Notably, ScanNet++ provides more de-
tailed segmentation masks with rich semantics, thereby of-
fering a more realistic and challenging benchmark for in-
the-wild scenarios. For class-agnostic segmentation, our
method significantly outperforms SAM3D and other open-
vocabulary segmentation baselines on both datasets. Re-
markably, when evaluated on ScanNet++, our zero-shot
method achieves better results when compared with fully-
supervised Mask3D models trained on ScanNet, underlin-
ing the efficacy of SAI3D in fine-grained instance segmen-
tation of complex 3D scenes.

Overall, our contributions are summarized as follows:

• We introduce SAI3D, an efficient zero-shot 3D instance
segmentation method combining geometric priors and
semantic-aware image segmentation.

• We present a carefully designed aggregation method of
2D image masks into coherent 3D segmentations that are
consistent across different views.

• We demonstrate that the generated 3D masks are more
accurate than previous approaches, opening new opportu-
nities for unsupervised 3D learning.

2. Related Work

Closed-vocabulary 3D segmentation. 3D semantic seg-
mentation is a long-studied topic, which aims to categorize
each point in a given 3D scene with a specific semantic
class [10, 15, 22, 23, 32–34, 38, 47, 48, 53]. 3D instance
segmentation extends this by identifying distinct objects
within the same semantic category and assigning unique
masks to each object instance [4, 6, 12, 14, 15, 17, 21, 25,
29, 37, 41–46]. ScanNet200 [5] is a standard benchmark
used for indoor 3D instance segmentation evaluation, and
Mask3D [41] achieves state-of-the-art performance on it us-
ing a transformer-based network. Despite its advancements,
Mask3D still requires a large amount of 3D annotated data
for network training, as previous supervised learning meth-
ods. This hampers generalizing the method towards open-
world scenarios containing novel objects of unseen cate-
gories. Moreover, the annotated 3D data is expensive to
collect, and sometimes even impossible due to privacy rea-
sons. In this paper, we focus on zero-shot open-vocabulary
3D segmentation, where no training or finetuning with 3D
annotation is needed.

Open-vocabulary 2D image segmentation. By training
on the large-scale web data of image-text pairs, foundation
image-language models such as CLIP [35] have achieved
impressive performance in aligning image and text in high-
dimensional feature space. The following works apply
CLIP feature to various zero-shot image tasks, including
image captioning [3, 49], object recognition [13], and ob-
ject detection [11, 26]. More recently, OpenSeg [9] and
OV-Seg [24] extend foundation image-language models
to semantic image segmentation by learning a semantic-
aware pixel-wise embedding. Segment Anything Model
(SAM) [19] takes a step further to segment any object, in
any image, with user-provided or automatically-generated
prompts. SAM has learned a general notion of what objects
are, which enables zero-shot generalization to unfamiliar
objects and images without requiring additional training. In
our work, we benefit from the zero-shot generalization of
SAM to produce high-quality 2D masks on multi-view im-
ages, and aggregate them into consistent 3D segments using
a primitive-based region growing.

Open-vocabulary 3D segmentation. Inspired by the suc-
cessful 2D open-vocabulary segmentation models, Open-
Scene [32] proposes an open-vocabulary 3D semantic seg-
mentation by distilling the CLIP feature onto 3D point
clouds. On the other hand, LERF [18] and DFF [20] in-
tegrate language within NeRF by optimizing an extra fea-
ture field that aligns with the CLIP feature. While these
methods enable open-vocabulary querying by text prompts,
they cannot distinguish between object instances of the
same categories. To solve this issue, OpenMask3D [43]
and OpenIns3D [16] leverage the pre-trained Mask3D mod-
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els for class-agnostic 3D mask proposal generation. While
achieving promising instance segmentation results on in-
door scenes with similar objects as the training data (Scan-
Net), we show in our experiments that they fail in com-
plex scenes with fine-grained objects. Concurrent work,
MaskClustering [50] and Open3DIS [30], both utilize 2D
foundation models to obtain segmentation masks, subse-
quently aggregating these masks to construct 3D represen-
tations. In this work, we integrate both 3D geometric priors
and semantic clues from multi-view 2D masks from SAM
model for fine-grained 3D instance segmentation.

3. Method
We build a training-free zero-shot 3D instance segmenta-
tion framework based on powerful 2D foundation models
(e.g., SAM). Formally, we assume a 3D scene represented
as point cloud P ∈ RN×3, together with a set of posed
RGB-D images {Im, Dm, Em}Mm=1, where Im and Dm de-
notes the RGB image and depth map, and Em is the cor-
responding camera extrinsic parameters. We aim to predict
a set of 3D instance masks representing different object in-
stances in that scene.
Overview. The overview of our approach is shown in Fig. 2.
First, we group scene points into 3D primitives {Qi}

NQ

i=1 us-
ing normal-based graph cut, and predict 2D image masks
{Si}Mi=1 based on the SAM automatic mask generation.
The 3D point grouping incorporates geometry information,
while the 2D image segmentation inherits the powerful
parsing ability from image foundation models. Then, we
build a scene graph with nodes corresponding to the 3D
primitives, and each edge represents the pairwise affinity
score computed based on the related 2D masks. Finally, we
obtain the 3D instance masks by merging neighboring prim-
itives with large affinity scores, which is implemented using
a progressive region growing algorithm.

3.1. Scene Graph Construction

Based on the 3D scene point cloud, we group 3D points
with similar geometric properties into continuous regions,
and represent these regions as the scene nodes. For each
node, we aggregate a set of related images as well as the
corresponding 2D masks. We build graph edges to connect
neighboring nodes, and weight each edge with the primi-
tive similarity, which is computed by comparing two sets of
image masks corresponding to the primitives.
3D primitives. We follow recent works [39, 51] to group
points with similar geometric properties into 3D primitives.
Specifically, we apply a normal-based graph cut algorithm
[7] to over-segment the point cloud P ∈ RN×3 into a set
of superpoints {Qi}

NQ

i=1. Compared with a scene graph
built at the point-level, the transformation of unstructured
3D points to geometry-based primitives enables efficient

handling of unstructured 3D data. More importantly, the
affinity scores computed between primitives are more re-
liable than those computed between points, which largely
improves the robustness of our approach.

2D masks. We employ the auto mask generation technique
of SAM to obtain 2D object masks on the RGB images.
We note that when a pixel is covered by multiple masks,
only the one with the highest predicted IoU is maintained
to achieve distinct, non-overlapping masks. As shown in
Fig. 2, the predicted 2D masks represent the notion of ob-
jects learned by SAM, and we incorporate it into the 3D
scenes via a primitive-based region growing.

3.2. Primitive Affinity

Given a pair of 3D primitives Qi, Qj , the affinity score Ai,j

between them represents the likelihood of their belonging
to the same object instance. We compute this affinity score
by comparing the corresponding 2D masks covered by the
projected 3D primitives. This results in an adjacency matrix
A ∈ RNQ×NQ , which will be used for merging primitives
with high-affinity scores.

Primitive projection. We consider the common pinhole
camera matrix for 2D-3D projection in our approach. For
the i-th 3D primitive Qi, we obtain its projection on the m-
th image by rendering Qi with the corresponding camera
pose parameters Em:

Q2D
i,m = Π(Qi, Em) (1)

where Π(·) is the point rendering operator. As shown in
Fig. 3, the projected primitives can be partially visible or
completely occluded in the image. We compute the visi-
bility of a projected primitive as the ratio of 3D points that
are visible in the image. For each primitive, we discard im-
ages where the primitive visibility is zero, and keep the rest
images as valid ones.

Affinity in a single view. Based on the projected prim-
itive Q2D

i,m and the image segmentation Sm, we collect the
mask labels covered by Q2D

i,m and compute a normalized his-
togram of the mask labels as a vector, denoted as hi,m. This
histogram represents a distribution of 2D instance mask la-
bels corresponding to the projected primitive. As shown in
Fig. 3, a projected primitive can have multiple 2D instance
mask labels, represented in different colors.

We compute the affinity score between two primitives
projected in the m-th image as the cosine similarity between
two vectors:

Am
i,j =

hi,m · hj,m

|hi,m||hj,m|
. (2)

Affinity in multiple views. Since 3D primitives are ob-
served in different images, the affinity scores Am

i,j can also
vary across different views. We treat the affinity score of
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Figure 2. Method overview. Our approach combines geometric priors with the capabilities of 2D foundation models. We over-segment
3D point clouds into superpoints (top-left), and generate 2D image masks using SAM (bottom-left). We then construct a scene graph that
quantifies the pairwise affinity scores of super points (middle). Finally, we leverage a progressive region growing to gradually merge 3D
superpoints into the final 3D instance segmentation masks (right).

Correct

Occluded
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3D Primitives Multiview 2D masks

Out of view

Figure 3. 3D-2D projections. Affinity scores for 3D primitives
are derived by projecting them onto multi-view 2D masks. In the
provided example, accurate masks (first row) confirm object unity,
like parts of a stool, while incorrect masks (second row) introduce
noise in affinity assessment. Points occluded in images (third row)
or outside image boundaries (fourth row) are excluded from affin-
ity score calculations to ensure segmentation accuracy.

each valid as a candidate, and combine them together using
a voting scheme in order to achieve cross-view consistency.
Formally, we compute a weight for each candidate Am

i,j , and
get the final affinity score using weighted-sum:

Ai,j =
1∑M

m=1 w
m
i,j

M∑
m=1

(
wm

i,jA
m
i,j

)
. (3)

The weight wm
i,j is calculated as the product of visibilities

of Q2D
i,m and Q2D

j,m as Eq. 4

wm
i,j =

∑
p∈Qi

1 (Valid(p, Sm))

|Qi|

∑
p∈Qj

1 (Valid(p, Sm))

|Qj |
(4)

where “Valid” function indicates if the projected point p is
visible in the 2D segmentation mask Sm. Note that wm

i,j = 0

Multi-level merging criteria

Vanilla Growing process

Figure 4. Multi-level merging criteria. (Left) Compared with the
vanilla region growing that accumulates merging errors during the
growing process, our approach achieves better results using multi-
level merging criteria. (Right) The vanilla algorithm mistakenly
merges the entire table with the ground, triggered merely by an
incorrect affinity between tiny segments of the table leg and the
ground.

for invalid images where either one of the primitives is not
visible.

3.3. Primitive Merging

Based on the scene graph and the computed affinity ma-
trix, we obtain the final 3D instance masks using a region-
growing algorithm that gradually merges 3D primitives
with large affinity scores. We design a progressive region-
growing algorithm, with multi-level merging criteria.

Multi-level merging criteria. Given a region represented
as a queue of primitives, the top primitive is popped out and
used to retrieve the neighboring nodes for growing. In the
vanilla region growing algorithm, a node would be added to
the region if it shares a high-affinity score with the popped
node. However, this pairwise comparison is prone to errors,
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which would accumulate along with the growing process, as
shown in Fig. 4. To solve this problem, we propose a multi-
level merging criteria that compute the affinity score in a
hierarchical way, where the affinity scores between the can-
didate node and all the nodes within the region are summed
together by weighting them according to the graph distance.

Progressive growing. Another important hyper-parameter
of region-growing is the affinity threshold, which is used
to determine if two regions should be merged or not. As
shown in Fig. 5, the region-growing process is sensitive to
the threshold value, and setting a fixed threshold usually
results in over-segmentation or under-segmentation. Based
on this observation, we propose a progressive growing algo-
rithm, where the growing process is decomposed into mul-
tiple stages with threshold values varying from high to low.
In this way, we merge small regions with a strict criterion
at the beginning, which prevents incorrect merges from ac-
cumulating along with the growing process. As the regions
gradually grow into large ones that are more reliable, we
use a more relaxed criterion to merge them. This dynamic
thresholding approach ensures that our merging framework
remains sensitive to the evolving certainty of connectivity,
thereby enhancing the accuracy of the final segmentation.

3.4. Open-vocabulary 3D Object Search

Our generated 3D instance masks enable the application of
open-vocabulary queries of fine-grained 3D objects. Given
a text prompt describing the target object, we leverage the
2D segmentation method OVSeg [24] to obtain semantic
masks on the 2D images. We then back-project the 2D
object masks onto 3D points, and compute the overlap be-
tween the projected masks and the generated 3D instance
masks. The 3D instances having an overlap larger than 50%
will be assigned as the target object masks.

4. Experiment
We evaluate SAI3D on multiple datasets to demonstrate its
effectiveness in 3D instance segmentation. We compare
it with leading methods in open-vocabulary segmentation,
which, like SAI3D, are designed for zero-shot transfer sce-
narios. Additionally, we benchmark against the state-of-
the-art closed-vocabulary methods that require training on
annotated datasets.

4.1. Experiment Setup

Datasets. ScanNet++ [52] is a very recently released in-
door dataset that offers posed RGB-D streams, high-quality
3D geometry captured by advanced laser technology, and
comprehensive object annotations. Compared with previ-
ous datasets, ScanNet++ features higher-resolution 3D ge-
ometry and finer-grained data annotations, especially for
long-tail semantics, which poses new challenges that reflect

Table 1. Class-agnostic 3D instance segmentation on Scan-
Net++ dataset. We compare against both closed-vocabulary and
open-vocabulary methods, and report average precision scores.
Note that Mask3D is trained on ScanNetV2 dataset.

Method Training Set AP AP50 AP25

Closed-vocabulary
Mask3D [40] ScanNetV2 9.9 17.3 25.8

Open-vocabulary
Felzenszwalb et al. [7] - 4.1 9.2 25.3
SAM3D [51] - 7.2 14.2 29.4
Ours - 17.1 31.1 49.5

real-world applications. To better validate the robustness
of our method, we also incorporate the well-studied Scan-
NetV2 [5], ScanNet200 [38] (with 200 semantic classes)
and Matterport3D[2] datasets. Please see supplementary
for more details.
Evaluation metrics. We evaluate the numerical results with
the widely-used Average Precision score. Following the
baselines [39, 41, 43], we report scores at IoU scores of
25 % and 50 % (AP@25, AP@50) and averaged over all
overlaps between [50 % and 95 %] at 5 % steps. We adopt
two evaluation setups: class-agnostic instance segmenta-
tion focuses only on the accuracy of the instance masks
themselves, and semantic instance segmentation that also
considers their associated semantic labels. We calculated
the average score across all semantic categories to obtain
the overall performance.
Baselines. We compare our approach with both closed-
vocabulary and open-vocabulary baselines. Mask3D is the
state-of-the-art, transformer-based method, supervised with
training data. For open-vocabulary methods, we compare
with the recent SAM3D [51], UnScene3D [39], and OVIR-
3D [27]. Notably, SAM3D is very similar to our approach
by building upon the automatic mask generation of SAM,
but differs in the merging process. Unlike our approach
based on 3D primitives, SAM3D projects 2D masks onto
3D and iteratively merges them frame by frame, which
overlooks the global geometry properties of the 3D scene.
OpenMask3D [43] is built upon Mask3D with supervised
mask proposals and open-vocabulary semantic assignment.
In addition, We also compare with the traditional point
grouping methods like HDBSCAN [28] and Felzenszwalb’s
algorithm [7], as well as a feature clustering method [31].

4.2. Results

Fine-grained 3D segmentation. Table 1 reports the nu-
merical results for class-agnostic instance segmentation on
ScanNet++ dataset. Our method outperforms prior works
in all evaluation metrics. Not only did it surpass the un-
supervised methods significantly, but it also outperformed
the closed-vocabulary baseline trained on ScanNetV2. This
highlights our method’s ability to handle detailed objects
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Low threshold Middle threshold High threshold Progressive threshold

Figure 5. Different thresholding strategies. Without dynamic thresholding, the segmentation results can be sensitive to the manual affinity
threshold. A lower threshold is prone to under-segmentation, such as the merged television and the wall (first column). Conversely, a higher
threshold may result in over-segmentation, breaking objects into messy parts (third column). Our progressive thresholding introduces a
dynamic threshold along with the merging process, thus contributing to more robust and accurate segmentation.

Table 2. Class-agnostic 3D instance segmentation on Scan-
NetV2 dataset.

Method Training Set AP AP50 AP25

Closed-vocabulary
Mask3D [40] ScanNetV2 65.7 83.1 91.0
Mask3D [40] S3DIS 31.1 44.9 58.0

Open-vocabulary
HDBSCAN [28] - 1.6 5.5 32.1
Nunes et al. [31] - 2.3 7.3 30.5
Felzenszwalb et al. [7] - 5.0 12.7 38.9
UnScene3D [39] * - 15.9 32.2 58.5
SAM3D [51] - 20.2 34.0 53.3
Ours - 30.8 50.5 70.6

and diverse semantic categories effectively.
The visual comparisons, illustrated in Fig. 6, further un-

derscore the effectiveness of our approach. Compared with
prior works that struggle to generate clean segments on ob-
jects of small size, our approach is capable of identifying
complex objects in cluttered scenes. For example, we suc-
ceed in segmenting various items stored in the cabinet while
other methods group them together as a single instance.
Open-vocabulary 3D object querying. An important ap-
plication of our method is zero-shot prompt-based instance
segmentation. As depicted in Fig. 1 and 7, our approach
effectively segments the 3D scene into clean segments, and
identifies specific objects with the input prompts. Since our
approach generates more detailed and accurate 3D instance
segmentation than previous works, we are able to retrieve
rare objects like “toilet roll” or “shower gel”.
Standard 3D segmentation. Table 2 reports the class-
agnostic instance segmentation results on ScanNetV2

*Due to the unavailability of the code, we follow its experiment settings
to evaluate on ScanNetV2 dataset.

Table 3. Semantic instance segmentation on ScanNet200
dataset.

Method AP AP50 AP25
Head
(AP)

Common
(AP)

Tail
(AP)

Sup. mask + Open-vocab. semantic
OpenMask3D [43] 15.4 19.9 23.1 17.1 14.1 14.9

Open-vocab. mask + Open-vocab. semantic
OVIR-3D [27]† 9.3 18.7 25.0 9.8 9.4 8.5
SAM3D [51] 9.8 15.2 20.7 9.2 8.3 12.3
Ours 12.7 18.8 24.1 12.1 10.4 16.2

dataset. Our method significantly outperforms the open-
vocabulary baselines that do not require any training or fine-
tuning on 3D annotation. As seen from the table, the su-
pervised method Mask3D suffers from a performance drop
when trained on a different dataset, which indicates that su-
pervised methods tend to overfit the training data, and lack
a generalization ability toward open scenes.

Following OpenMask3D [43], semantic instance seg-
mentation is evaluated on ScanNet200 dataset, with numer-
ical results in Table 3. We adopt the pipeline of Open-
Mask3D [43] to assign semantic labels for our method. As
shown in the table, our method clearly results in superior
performance than the open-vocabulary baselines, but lags
behind OpenMask3D that relies on the supervised mask
proposals. Upon closer examination, we notice that our
method shows weaker performance on frequently occurring
semantics (Head), but outperforms on long-tail labels (Tail).
This observation highlights the strength of our method in
zero-shot generalization, better at handling diverse and less
common labels.

†The numbers are different from those in the original paper, since the
original paper adopts a different evaluation metric namely mAP for infor-
mation retrieval.
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Input SAM3D Mask3D Ours GT

Figure 6. Visual results of 3D instance segmentation on ScanNet++ dataset. We compare with both open-vocabulary and closed-
vocabulary baselines.

“Pipe” “Banana” “Toilet roll” “Switch”

“Shoes” “Book” “Botany” “Toy car”

Figure 7. Open-vocabulary 3D object search. Given a text prompt, our method finds accurate target object masks, even with long-tail
semantics.
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Table 4. Class-agnostic and semantic instance segmentation on
Matterport3D dataset.

Method Class-agnostic Semantic
AP AP50 AP25 AP AP50 AP25

OpenMask3D [43] 15.3 28.3 43.3 7.7 13.9 20.3
OVIR-3D [27] 6.6 15.6 28.3 5.8 13.8 22.4
SAM3D [51] 10.1 19.4 36.1 4.4 7.3 11.3
Ours 21.5 38.3 59.1 8.9 15.3 20.9

Table 5. The ablation studies of the effectiveness of our designs.
The experiments are conducted on ScanNetV2 dataset.

3D superpoint
primitive

Multi-level
merging criteria

Progressive
growing AP AP50 AP25

19.5 32.8 52.9
✓ 24.2 39.5 59.2
✓ ✓ 28.4 46.5 67.0
✓ ✓ 27.6 45.5 65.8
✓ ✓ ✓ 30.8 50.5 70.6

1%
73%

0

2%
86%
2%

5%
94%
25%

10%
97%
53%

20%
99%
74%

20

30

AP

Proportion of #2D images
Coverage

Cross coverage

Ours SAM3D

Figure 8. Ablation studies on the correlation between perfor-
mance and the number of 2D images. We define coverage and
cross coverage as the percentage of points observed at least once
and more than 10 times, respectively. The experiments are con-
ducted on ScanNetV2 dataset.

To further evaluate the generalizability, we conduct ex-
periments on Matterport3D dataset for both class-agnostic
and semantic instance segmentation tasks. As shown in Ta-
ble 4, our zero-shot method consistently outperforms other
baselines, while OpenMask3D suffers a significant perfor-
mance drop since it is trained on ScanNet200 dataset.

4.3. Ablation and Analysis

Effect of our designs on the region growing algorithm.
We analyze the three key design choices of our region grow-
ing algorithm: the adoption of 3D superpoint primitive,
Multi-level merging criteria, and Progressive growing. The
results of ablation studies are shown in Table 5. We find that
omitting the 3D superpoints and using a classic point-based
region-growing approach leads to a noticeable drop in per-
formance. The incorporation of multi-level merging criteria
and the use of progressive growing both contribute to en-
hancing the algorithm’s robustness, particularly in dealing
with the noise present in 2D segmentation masks, yielding
better results respectively. When all the proposed designs
are combined, there is an approximately 50% improvement
compared to the original, basic version of the algorithm, un-
derlining the effectiveness of our design choices.

Effect of the number of 2D images. As both our approach
and the concurrent method SAM3D leverages 2D image
masks, we thus study the method’s robustness against the
number of images. Among all the images of a 3D scene, we
vary the proportion of views from 1% to 20% and report
the performance curve in Fig. 8. Our approach progres-
sively improves the 3D segmentation performance when
more views are provided, while SAM3D fails to aggregate
useful information when the proportion of views becomes
larger than 5%. More importantly, our approach achieves
an AP score larger than 20 with only 1% of views, outper-
forming the best performance achieved by SAM3D. This
highlights the effectiveness of our algorithm.

5. Conclusion
We introduce SAI3D, a novel approach for zero-shot 3D
instance segmentation. Our method offers an efficient alter-
native to supervised methods which are confined to specific
datasets and hence inhibit broader applicability in open-
world scenarios. The technique we presented builds upon
the power of 2D and 3D segmentation techniques, and a
novel progressive region-growing algorithm, which smartly
merges the 3D superpoints into object masks that define the
final 3D instance segmentation.

Through our evaluation on ScanNet, ScanNet++ and
Matterport3D datasets, we demonstrate that our approach
significantly outperforms prior unsupervised methods like
SAM3D in class-agnostic segmentation, and even surpass
fully supervised Mask3D models trained with 3D annota-
tions on the more challenging ScanNet++ dataset. This
success underscores the potential of leveraging geomet-
ric primitives and multi-view consistency to achieve high-
quality instance segmentation in complex 3D scenes, with-
out using 3D labeled data.
Limitations. Our method fundamentally relies on accurate
2D segmentation results and reliable 2D-3D alignment. As
our approach builds a scene graph based on 3D primitives
and computes an affinity matrix based on 2D masks through
2D-3D lifting, incorrect 2D masks or camera poses natu-
rally result in unreliable affinities, thus affecting the fine
segmentation results. Though several techniques are de-
signed to better leverage geometry priors and multi-view
consensus, designing a more advanced 2D mask aggrega-
tion mechanism should be a promising direction.

Another limitation is the running speed. As our approach
involves aggregating 2D mask segmentation from images,
the total processing time linearly scale with the number of
images making it difficult to apply in large-scale scenes.
Designing a more efficient algorithm without iterating over
all images is another important future direction.
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