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Abstract

Self-supervised landmark estimation is a challenging
task that demands the formation of locally distinct fea-
ture representations to identify sparse facial landmarks in
the absence of annotated data. To tackle this task, exist-
ing state-of-the-art (SOTA) methods (1) extract coarse fea-
tures from backbones that are trained with instance-level
self-supervised learning (SSL) paradigms, which neglect
the dense prediction nature of the task, (2) aggregate them
into memory-intensive hypercolumn formations, and (3) su-
pervise lightweight projector networks to naı̈vely establish
full local correspondences among all pairs of spatial fea-
tures. In this paper, we introduce SCE-MAE, a framework
that (1) leverages the MAE [14], a region-level SSL method
that naturally better suits the landmark prediction task, (2)
operates on the vanilla feature map instead of on expen-
sive hypercolumns, and (3) employs a Correspondence Ap-
proximation and Refinement Block (CARB) that utilizes a
simple density peak clustering algorithm and our proposed
Locality-Constrained Repellence Loss to directly hone only
select local correspondences. We demonstrate through ex-
tensive experiments that SCE-MAE is highly effective and
robust, outperforming existing SOTA methods by large mar-
gins of ∼20%-44% on the landmark matching and ∼9%-
15% on the landmark detection tasks.

1. Introduction

Facial landmark detection is a computer vision task involv-
ing the identification and localization of specific keypoints
corresponding to particular positions on a human face. Fa-
cial landmarks form the crux for many classical downstream
tasks such as 3D face reconstruction [1, 48], face recogni-
tion [18, 41], face emotion/expression recognition [32, 33],
and more contemporary applications such as facial beauty
prediction [4, 16] and face make-up try on [20, 24, 31].

Albeit extremely useful, training facial landmark de-
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Figure 1. SCE-MAE vs prior self-supervised facial landmark de-
tection methods. Stage 1: Prior works (top) use instance-level
multi-view SSL paradigms that output less distinct initial local
features. Our framework (bottom) leverages MAE to naturally
form better initial features that result in well-defined boundaries
between facial landmarks (see t-SNE plots). Stage 2: Prior works
operate on memory-intensive hypercolumns and supervise each
feature pair to achieve correspondence. Our framework employs
a Correspondence Approximation and Refinement Block (CARB)
that operates on the original MAE output and directly hones only
the selected correspondence pairs. For the example query, SCE-
MAE outputs a more-focused and sharper similarity map, demon-
strating the superiority of the final features.

tectors requires numerous precise annotations per sample,
making it a laborious and expensive ordeal. Furthermore,
landmarks are not always semantically well-defined, mak-
ing their annotations prone to inconsistencies and biases
[15, 23, 58], which can severely limit the development of
accurate landmark models. Motivated to avoid these de-
merits, recent works [9, 19, 46] have incorporated the unsu-
pervised [46] and self-supervised learning (SSL) paradigms
[12, 13, 47] into their methods. SSL-pretrained models have
shown to yield highly effective feature representations with-
out the use of labeled data and, at many times, outperform
their supervised counterparts on the target tasks [2, 5, 14].

Facial landmark detection and matching tasks rely on
the formation of locally distinct features to differentiate be-
tween (1) the facial regions (e.g., eye vs. lip), (2) the com-
ponents of face parts (e.g., left vs. right corners of the lip),
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and finally, (3) the specific pixels of each landmark. In the
setting where annotations are severely limited, the recent
methods [9, 19] follow a two-stage training protocol. Dur-
ing the first stage, the backbone is trained with a typical SSL
objective. In the second stage, the backbone is frozen and
a separate light-weight projector network is trained to en-
code local correspondences, i.e., the relationships between
the different regions within the same image.

Prior work adopted multi-view SSL protocols [12, 13],
which may be less effective on the landmark estimation
tasks due to several factors. Firstly, these augment-and-
compare pretext tasks prompt the network to learn category-
specific signals, but we operate only on a single category,
i.e., the human face. Secondly, contrastive learning requires
a large and diverse set of negative samples to avoid collapse
[52, 53]. Lastly, the training objectives might not directly
encourage the model to learn the intricate facial cues within
the positive face samples to differentiate between facial re-
gions, which are required for dense tasks [38, 47] such as
landmark detection and matching.

On the other hand, the Masked Image Modeling (MIM)
protocol [3, 14, 50, 57], which requires the network to re-
construct the masked regions from limited context, intrin-
sically suits our downstream task objective. Based on the
observation that the non-landmark regions (e.g., cheeks and
foreheads) are larger and more uniform than the sparse and
distinctive landmark regions (e.g., the eyes and lip corners),
we hypothesize that the reconstruction of the masked land-
mark regions leads to the formation of effective representa-
tions of the facial landmarks. Hence, we choose to adopt
the Masked Autoencoder (MAE) [14] as our backbone in
the first stage of our framework.

For the second stage, both CL [9] and LEAD [19] uti-
lize objectives to establish correspondences between each
pair of feature descriptors within the same image. Based on
the earlier observation that non-landmark regions are larger
and more uniform, we ask the question: is it necessary to
establish correspondences between all feature descriptor
pairs? We hypothesize that the selective refinement of the
important correspondences utilizes the network’s parame-
ters more effectively. To this end, we employ a novel Corre-
spondence Approximation and Refinement Block. Here, we
first differentiate the MAE’s output into attentive (landmark
and important facial regions) and inattentive (insignificant
facial regions or background) tokens using the first-stage
correspondence signals. Next, a clustering algorithm oper-
ates on the inattentive tokens and approximates the mem-
ber tokens using the cluster center. Finally, we supervise
a light-weight projector network using a novel Locality-
Constrained Repellence Loss that penalizes the erroneous
strong correspondences between the different token types
weighted by spatial proximity. Here, only the select corre-
spondences are directly refined since the loss operates only

on the attentive tokens and inattentive cluster center proxies.
In order to highlight the above stage-wise merits of our

approach, we visually compare, at a high level, our frame-
work, which we term Selective Correspondence Enhance-
ment with MAE (SCE-MAE), with prior works in Fig. 1.
Our approach not only produces more distinguishable first-
stage features but also outputs sharper similarity maps cor-
responding to the example query, testifying to superior final
landmark representations.

In this paper, we show that by leveraging MAE [14]
during the first stage and systematically eliminating redun-
dant correspondence learning during the second stage, SCE-
MAE can output locally distinct facial landmark represen-
tations without the use of labeled data. As a result, it out-
performs the previous SOTA methods by large margins. We
summarize our contributions below:
1. We are the first to adopt an MIM-trained SSL backbone

for the first-stage training of self-supervised facial land-
mark detection and matching methods. We demonstrate
using MAE [14] that the mask-and-predict pretext task
more naturally suits the downstream objective and deliv-
ers highly potent initial landmark representations.

2. We introduce the Correspondence Approximation and
Refinement Block (CARB) during the second-stage to
identify and approximate the features of unimportant
non-landmark regions, and subsequently operate a novel
Locality-Constrained Repellence (LCR) Loss to directly
hone only the salient correspondences.

3. We demonstrate the effectiveness and robustness of our
framework, SCE-MAE, as it surpasses existing SOTA
methods on the landmark matching (∼20%-44%) and
detection (∼9%-15%) tasks under various annotation
conditions for several challenging datasets.

2. Related Works
Self-Supervised Learning (SSL). By solving unique pre-
text tasks, SSL methods are able to learn discriminative
feature representations from unlabeled data. Early works
explored pretext tasks such as predicting the rotation angle
[11] and recovering the original image from random per-
muted patches [34, 35]. Recently, invariant and contrastive
learning based SSL methods [5–8, 12, 13, 37] have gained
popularity due to their ability to capture high-level seman-
tic concepts from the data. Invariant learning aims to learn
transformation invariant features by forcing the representa-
tions of two randomly augmented views of the same image
to be similar. Contrastive learning defines different views of
an anchor image as positives and views of different images
as negatives. Here, the objective is to pull the represen-
tations of the anchor and positives together while pushing
apart those of the anchor and negatives. To achieve this,
MOCO [13] and SimCLR [6] adopted the InfoNCE [36] and
NT-Xent [43] losses respectively. These methods operate at

1314



the encoded image or instance-level and can be categorized
as augment-and-compare SSL methods [25].

Recently, the Masked Image Modeling (MIM) protocol
has gained significant momentum [3, 14, 26, 50, 57]. These
methods operate at the region-level and learn to recover the
masked regions from the contextual information contained
in the unmasked patches. It has been empirically shown
that by using non-extreme masking ratios or patch sizes in
Masked Autoencoders (MAE) [14], the representation ab-
stractions capture robust high-level information, while ex-
treme masking ratios capture more low-level information
[22]. With higher masking ratios as the norm, MAE exe-
cutes dense reconstruction, making them intrinsically suit-
able for dense prediction tasks [14, 26].

For the first stage of self-supervised face landmark de-
tectors, ContrastLandmark (CL) [9] and LEAD [19] utilize
MOCO [13] and BYOL [12] pretrained backbones respec-
tively. Since neither MOCO nor BYOL operate explicitly at
the sub-image (region/pixel) level, the representations used
for the second stage of CL and LEAD are potentially sub-
optimal. On the other hand, the sparse nature of facial land-
marks perfectly matches the MIM objective to reconstruct
the whole view from unmasked patches, resulting in higher
fidelity coarse local features. Hence, in our framework, we
adopt the MAE [14] as our first stage SSL protocol.
Unsupervised Landmark Prediction. To tackle landmark
prediction without annotated data, there have been several
approaches. Equivalence learning leverages transformation
equivalence as a free supervision signal to learn landmark
embeddings [44]. Since an undesirable constant vector out-
put would satisfy the objective, adding a diversity loss or
enabling similarity enforcement through intermediate aux-
iliary images are proposed to tackle the issue [45, 46]. An-
other approach is through generative modeling where land-
marks are discovered by training networks with a recon-
struction objective [17, 29, 30, 42, 51, 54] such as recon-
structing the human image with a different pose [17].

Recent works such as ContrastLandmark (CL) [9] and
LEAD [19] have adopted SSL methods to extract coarse
features that capture the broad semantic concept and further
process them to establish regional/local correspondences.
CL and LEAD construct hypercolumns and compact them
using proximity-guided and correspondence guided reduc-
tion objectives respectively. While both methods reduce the
final representation size, hypercolumns are memory-wise
enormous structures and operating on them is a computa-
tionally intensive process. Furthermore, each spatial fea-
ture pair is subject to the optimization objective, neglecting
the possibility that some local correspondences do not con-
tribute as much to the downstream task. On the contrary,
using our SCE-MAE framework, we do not operate on ex-
pensive hypercolumns, and we identify and directly process
only salient local correspondences.

3. Method

We depict our proposed Selective Correspondence En-
hancement with MAE (SCE-MAE) framework in Fig. 2 and
detail each component in the following subsections. In Sec.
3.1 we revisit Masked Image Modeling to introduce the
MAE [14] as a more suitable and potent first stage proto-
col. In Sec. 3.2, we elaborate on the setup to execute se-
lective correspondence through the process of reducing the
effective number of final correspondence pairs. In Sec. 3.3,
we introduce our Correspondence Approximation and Re-
finement Block, wherein we explain the components of our
novel Locality-Constrained Repellence Loss and how it di-
rectly hones only the selected correspondences.

3.1. A Revisit of Masked Image Modeling

Masked Image Modeling (MIM) [3, 14, 50, 57] is an SSL
paradigm that involves the reconstruction of the original im-
age from the unmasked patches. Taking MAE [14] as an
example, given an input image x, the encoder first divides
the image into non-overlapping patches xp with positional
embedding added to them. A class token is appended to
the patch tokens but will not be affected by the following
masking procedure. A binary mask M is randomly sam-
pled to determine the masked out regions. The unmasked
patches are denoted by x̂p = xp ◦M , where ◦ symbolizes
the Hadamard product, and are processed by the encoder
to output the patch embeddings f̂p. Finally, MAE uses a
special embedding [MASK] to fill in the masked positions,
fp = f̂p + [MASK] ◦ (1 − M), and reconstruct x from
fp by minimizing the pixel-level mean squared error via a
light-weight decoder. The reconstruction task requires the
network to capitalize on the limited semantic context pro-
vided by the unmasked patches and the supplied positional
information. This encourages the network to forge discrim-
inative features that are optimal for differentiating and lo-
calizing the important landmark regions.

3.2. Setup for Selective Correspondence

Attentive-Inattentive Separation. The second stage of the
framework aims to establish local correspondences effec-
tively to ensure that the representations reflect the extent of
similarity and dissimilarity between the different facial re-
gions. To achieve this, we propose to execute selective cor-
respondence, i.e., the elimination of the direct refinement of
unimportant non-landmark correspondences, and focus on
optimizing those that are critical for landmark disambigua-
tion. The first step in this endeavor is to identify potential
landmark and non-landmark regions. Due to the observable
opposing nature of facial landmarks (sparse and distinct)
and non-landmark regions (dense and uniform), we hypoth-
esize that they are coarsely distinguishable using the first
stage backbone features.
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Figure 2. An overview of the second stage of our proposed SCE-MAE. We first split the MAE patch tokens into attentive (blue) and
inattentive (yellow) tokens based on CLS token similarity. The inattentive tokens are clustered into K cluster centers. In the Correspon-
dence Approximation and Refinement Block (CARB), we first substitute the inattentive tokens using the cluster centers (square symbols)
and then refine the local features using our novel Locality-Constrained Repellence (LCR) Loss. The LCR loss weakens existing erroneous
correspondences in a weighted manner by considering the token-pair proximity (locality) and correspondence type (repellence) constraints.

Following MAE [14], we adopt the ViT [10] as our back-
bone architecture. The class (CLS) token represents the im-
age and is obtained by aggregating information from the
other patch tokens over several layers. Since landmarks are
sparse and have more distinct texture, we expect the corre-
sponding tokens to have a large influence on the CLS token
representation. After pretraining, we compute a similarity
vector between the CLS token and all patch tokens as:

Simcls = Softmax(
K · qcls√

d
) ∈ RN , (1)

where qcls, K, d, and N denote the CLS token query vector,
the patch token key matrix, latent dimension, and number of
patch tokens respectively. Here, qcls ∈ Rd and K ∈ RN×d.
We then split the N patch tokens into two groups: (1) atten-
tive group, consisting of the η ·N tokens that have the high-
est similarity score with the CLS token, and (2) inattentive
group, consisting of the remaining (1−η) ·N tokens. Here,
η is a hyperparameter between 0 and 1. We observe that the
inattentive tokens mostly cover non-landmark face regions
(See Fig. 2), such as cheeks and forehead, as well as back-
ground. Henceforth, we presume that attentive tokens cover
the landmark and important facial regions, while inattentive
tokens correspond to unimportant non-landmark regions.
Inattentive Token Clustering. Since several inattentive to-
kens often correspond to the same facial region (e.g., cheek,
forehead, etc.), the downstream correspondence objectives
associated with them would likely be redundant. By ap-
plying a clustering algorithm on the inattentive tokens, we
can represent numerous non-landmark regions with only a
handful of cluster centers. Selective correspondence can
then be set up by discarding all non-cluster center tokens,
ensuring that no correspondence is established with them.

Specifically, we adopt a simple density peak clustering al-
gorithm [28], wherein two variables ρ and δ are defined for
each inattentive token. Here, ρi measures the density of the
i-th token and δi computes the minimum distance from the
i-th token to any other inattentive token which has a higher
density. Mathematically, they are defined as:

ρi = exp

 ∑
tj∈Tinatt

∥ti − tj∥22

 , (2)

δi =

{
minj:ρj>ρi

∥ti − tj∥2, if ∃ j s.t. ρj > ρi
maxj∥ti − tj∥2, otherwise , (3)

where ti, tj ∈ Tinatt, and Tinatt denotes all inattentive to-
kens. Since the cluster center should have higher density
than neighbouring tokens and should also be distant to other
cluster centers, the cluster center score of the i-th token is
computed by ρi · δi. We select the top-Kc scoring tokens as
cluster centers, where Kc is a hyperparameter. The remain-
ing inattentive tokens are discarded and the cluster center
tokens subsequently act as representative proxies for them.

3.3. Selective Correspondence using CARB

In our Correspondence Approximation and Refinement
Block (CARB), we first substitute the discarded inattentive
tokens with their corresponding cluster centers and aggre-
gate the relevant visual features to obtain a complete 2D fea-
ture map as illustrated in Fig. 2. With the backbone frozen,
the feature map is passed through a light-weight projector,
which is supervised by our novel Locality-Constrained Re-
pellence (LCR) Loss. As the LCR loss operates on the
features of attentive tokens and inattentive cluster centers,
we directly refine only the most important correspondences,
thereby achieving selective correspondence.
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Locality-Constrained Repellence (LCR) Loss. We de-
sign and operate the LCR loss to yield high-fidelity fine-
grained features by optimally refining local correspon-
dences. Henceforth, we use Tatt and Tinatt′ to denote the
attentive and the approximated inattentive tokens (cluster
centers) respectively, and define T= Tatt ∪ Tinatt′ , as the
set of all considered tokens.

We begin by formally defining correspondence, i.e., the
probability that a patch token tj corresponds to a patch to-
ken ti in the image x, which is expressed as:

p(tj |ti; Φ, x) =
exp(⟨Φti(x),Φtj (x)/τ⟩)∑

tk∈T exp(⟨Φti(x),Φtk(x)/τ⟩)
, (4)

where Φti(x) is the final projected feature representation of
patch ti, and τ is the temperature parameter.

We observe that image patches that are spatially distant
from each other often correspond to different facial regions.
Hence, it should follow that strong correspondences be-
tween distant patches are likely to be erroneous and should
be discouraged. We compute a locality constraint to formal-
ize this idea using the following function:

floc(ti, tj) = log(∥ti − tj∥+ 1), (5)

where ti, tj ∈ T, and ∥·∥ computes the spatial distance. The
log function saturates the coefficient in order to discourage
the network from excessively focusing on separating very
distant correspondences. Although a similar constraint was
introduced in [44], the primary motive was to avoid collapse
during equivalence learning.

Considering the attentive (Tatt) and the approximated
inattentive (Tinatt′ ) token sets, there are three types of
correspondences: attentive-attentive (att − att), attentive-
inattentive (att−inatt), and inattentive-inattentive (inatt−
inatt). We introduce a repellence coefficient to quantify the
importance of each correspondence type:

λrep(ti, tj) =

 ratt−att, if ti, tj ∈ Tatt

rinatt−inatt, if ti, tj ∈ Tinatt′

ratt−inatt, otherwise
, (6)

where each coefficient r is a hyperparameter. In practice,
we set ratt−att and ratt−inatt to be higher than rinatt−inatt

since we aim to prioritize facial landmark differentiation
and landmark vs non-landmark disambiguation over non-
landmark differentiation respectively.

Combining all of the above defined components, we
mathematically express the LCR loss as:

LLCR =
∑
ti∈T

∑
tj∈T

floc(ti, tj) · λrep(ti, tj) · p(tj |ti; Φ, x),

(7)
The LCR loss aims to forge effective local features by

systematically weakening erroneous, spatially distant cor-
respondences among and between the important and unim-
portant patch tokens.

Figure 3. Comparison between the original (red) and re-annotated
(green) landmarks in AFLWR test set. We denote the original and
corrected test sets as AFLWRO and AFLWRC respectively.

Inference. After training, we obtain optimized representa-
tions for all image regions. Hence, during inference, we by-
pass the clustering and inattentive token approximation pro-
cedures and only utilize the original features for the down-
stream tasks. Additionally, we require to spatially expand
the size of the feature input to the projector for fair com-
parison against prior works. Naı̈vely decreasing the patch
size to expand the output not only quadratically increases
the computation and memory costs but also may lead to the
formation of inferior feature representations [22, 50]. In-
stead, we adopt the cover-and-stride technique [49] to pro-
duce more fine-grained and rich expanded representations.

4. Experiments
Datasets. Following prior works [9, 19, 46], we pretrain
our backbone on the CelebA [27] dataset, which contains
162,770 images. Face landmark detection is evaluated on
four datasets: MAFL [56], 300W [40] and two variants
of AFLW [21]. MAFL consists of 19,000 training images
and 1,000 test images. 300W has 3148 training images and
689 test images. AFLWM contains 10,122 training images
and 2995 testing images, which are crops from MTFL[55].
AFLWR contains tighter crops of face images where the
training and test set has 10,122 and 2,991 images respec-
tively. Note that 300W provides 68 annotations per image
while the other three datasets only provides 5 annotations.
Re-annotation. Although the AFLWR has been used in
prior works, the fidelity of the annotations are question-
able. In Fig. 3, we visualize several annotation errors in
the AFLWR test set using red dots. These include errors
arising due to semantic mismatches, translations, and ran-
dom shifts. For a more consistent and reliable evaluation,
we re-annotate the AFLWR test set and illustrate a few of
these corrections using green dots in Fig. 3. In the follow-
ing sections, we use AFLWRO and AFLWRC to denote the
original and corrected dataset respectively.
Implementation Details. We pretrain our models on the
CelebA dataset using MAE with three backbones: DeiT-T,
DeiT-S and DeiT-B. All models were trained for 400 epochs
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Figure 4. Qualitative results on landmark matching. The reference/ground-truth are shown in the top/bottom row. The middle rows show
the matching results of our method and prior works, grouped column-wise by errors occurring with the eyes, nose and lip corner landmarks
respectively. Our method outputs consistently more accurate matching resulting from leveraging higher fidelity projected features.

with a batch size of 512, a learning rate of 3e-4 and patch
size of 8. Following DVE [46], we resize the image to
136×136 and crop the center 96×96 as input for both land-
mark matching and regression. We set the attentive rate η to
0.25 for DeiT-B and 0.1 for DeiT-T and DeiT-S. We apply
clustering after the third encoder layer and set the number
of clusters Kc to 4. For the LCR loss, the three repellence
hyperparameters are set to rattn−attn = 5, rattn−inattn =
5, rinattn−inattn = 2. Ablation studies on the various hy-
perparameters are included in the Supplementary Material.

4.1. Landmark Matching

Evaluation Protocol. Following [46], 1000 reference-and-
test image pairs are generated from MAFL test set for eval-
uation. The first 500 pairs serve as the benchmark for land-
mark matching between same identities, which contains
the original image and its thin-plate-spline (TPS) deformed
counterpart. The other 500 pairs are of different identi-
ties. During evaluation, all feature maps are bi-linearly up-
sampled to the image resolution. Landmark representations
of the reference image are used to query the test image.
The location with the highest cosine similarity is consid-
ered as the matched prediction. Finally, we compute the
Mean Pixel Error between the prediction and ground-truth.
Quantitative Results. We compare our method with exist-
ing SOTA methods in Table 1 by grouping the results based
on the final feature size. We use three different backbones
to control the number of parameters for a fair comparison.
In the first group, our model with DeiT-T, being a fraction

Table 1. Quantitative evaluations on landmark matching. We
report the mean pixel error between the prediction and ground-
truth on 1000 image pairs sampled from MAFL. The best and sec-
ond best results are shown in bold and underline respectively. We
group the results by the projected feature dimension. Our method
outperforms all prior works by large margins within each group
for both the same and different identity settings.

Method #Param. Feat. Same Diff.
Millions Dim. Mean Pixel Error↓

DVE[46] 12.4 64 0.92 2.38
CL[9] 23.8 64 0.92 2.62
LEAD[19] 23.8 64 0.51 2.60
Ours DeiT-T 5.4 64 0.47 1.99
CL[9] 23.8 128 0.82 2.19
Ours DeiT-S 21.4 128 0.31 1.69
CL[9] 23.8 256 0.71 2.06
LEAD[19] 23.8 256 0.48 2.50
Ours DeiT-S 21.4 256 0.33 1.72
Ours DeiT-B 85.3 256 0.27 1.61

of the size of prior works, already outperforms the SOTA. In
the second and third group, our method visibly outperforms
prior works by large margins of ∼20% and ∼44% for the
same and different identities respectively. We attribute this
to the highly potent initial features from the MAE pretrain-
ing, which, when strategically refined through selective cor-
respondence using CARB, yields distinctive final features
that were vital for successful landmark matching.
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Table 2. Quantitative evaluations on landmark detection with all annotated samples. We compare our method with existing SOTA and
report the error as the percentage of inter-ocular distance on four human face datasets: MAFL, AFLWM , AFLWR and 300W. For AFLWR,
we report the results on both the original (AFLWRO) and corrected (AFLWRC ) datasets. Our method, despite using significantly smaller
features by avoiding expensive hypercolumns, outperforms prior works on all four datasets, even with our smallest backbone, DeiT-T.

Method #Params. Feature Hypercol. MAFL AFLWM AFLWRO AFLWRC 300W
Millions Dim. Used Inter-ocular Distance (%)↓

DVE[46] 12.6 64 ✗ 2.76 6.96 6.33 5.58 4.58
CL[9] 23.8 3840 ✓ 2.76 6.17 5.69 5.06 4.84
LEAD[19] 23.8 3840 ✓ 2.44 6.05 5.71 5.11 4.87
Ours DeiT-T 5.4 256 ✗ 2.20 5.89 5.54 4.86 4.22
Ours DeiT-S 21.4 512 ✗ 2.08 5.33 5.40 4.69 3.94
Ours DeiT-B 85.3 1024 ✗ 2.07 5.23 5.33 4.60 3.95

Qualitative Results. We visualize our landmark matching
results between different identities and compare our results
with existing SOTA methods in Fig. 4. The mismatches
on different landmarks when using CL [9] and LEAD [19]
are shown in different columnar groups, e.g., the first group
of three columns contain eye-related mismatches. Our
method clearly achieves a more accurate matching perfor-
mance across all landmarks even on difficult examples such
as those wearing eye-glasses. Admittedly, our method ex-
periences some failures when the poses of reference and test
samples are vastly dissimilar or when landmark regions are
severely occluded. Some of the failure cases are shown in
the Supplementary Material.

4.2. Landmark Detection

Evaluation Protocol. Following prior works [9, 19, 46], we
freeze the pretrained backbone and projector, and only train
a light-weight regressor. Our regressor consists of a con-
volution block (instead of a linear layer) and a linear layer
when training on all annotated samples. The convolution
block utilizes the spatial context to produce I intermediate
heatmaps for each landmark which are converted to I pairs
of 2D coordinates by a soft-argmax operation and fed to a
linear layer that outputs the final landmark prediction. We
set I = 50 for all experiments [9, 19, 46]. We leverage the
first and second stage concatenated features as a more ro-
bust input to the regressor as we expect the backbone to pro-
vide rich task-agnostic representations during the first stage
and the projector to supplement task-specific cues critical
for landmark detection during the second stage. For a fair
comparison, the reported results are produced with their of-
ficial implementation and checkpoints, if available.
All Annotated Samples. We compare our method with
prior works on landmark detection benchmarks in Table 2.
Once again, even with our smallest backbone DeiT-T, being
a fraction of the size of prior works, outperforms existing
SOTA. Considering our best results, our method achieves
∼9%-15% performance gain across different benchmarks.

Such a compelling performance is an attestation to the ex-
cellent discriminative ability of our features, which pro-
vide intricate disambiguation cues to the regressor for locat-
ing landmarks. We also highlight that all methods achieve
lower error with our re-annotated AFLWRC test set, hence
confirming the higher annotation quality.
Limited Annotated Samples. We compare our method
with prior works on landmark detection under limited anno-
tation in Table 3. Our method outperforms all existing SSL-
based methods with significant performance gain under all
annotation and feature dimension settings. Specifically, we
achieved a relative gain of 8.6% on average and as high
as 20.1% compared to the existing SOTA. Furthermore, we
observe a smaller standard deviation with repeated experi-
ments, indicating that our method produces optimal features
more consistently, hence attesting to its robustness.

4.3. Ablation Studies

Importance of Each Component. To better understand our
proposed SCE-MAE framework, we report the component-
wise ablation analysis on the landmark matching task in Ta-
ble 4. The first three rows indicate the usage of only the
first-stage backbone features, while the last two rows, re-
spectively, indicate the inclusion of clustering and LCR loss
in our framework. CL [9] and LEAD [19] utilize hyper-
columns whereas we leverage the vanilla last layer features
of the pretrained MAE, which we indicate as Baseline. Us-
ing the backbone alone, our baseline outperforms CL and
LEAD, validating our motivation that MIM is a more suit-
able pretext task for landmark representation learning. We
observe that the clustering assists the matching between the
same identity while the LCR loss boosts the matching per-
formance between different identities. Overall, these trends
align with our expectations: initially, the region-level first-
stage MAE features capture local intricacies but are too raw
to generalize the landmarks across different identities; the
clustering disambiguates the landmarks from the unimpor-
tant regions, which improves the same identity matching
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Table 3. Quantitative evaluations on landmark detection with limited annotated samples. We compare our method with existing
SOTA under different annotation settings on the AFLWM dataset and report the error as the percentage of inter-ocular distance. Our
method proves to be more effective by offering notably lower errors and more robust by yielding a lower std of errors than prior works.

Method Feat. Number of Annotated Samples
Dim. 1 5 10 20 50 100

DVE[46] 64 14.23 ± 1.45 12.04 ± 2.03 12.25 ± 2.42 11.46 ± 0.83 12.76 ± 0.53 11.88 ± 0.16
CL[9] 64 24.87 ± 2.67 15.15 ± 0.53 13.52 ± 1.08 11.77 ± 0.68 11.57 ± 0.03 10.06 ± 0.45
LEAD[19] 64 21.80 ± 2.54 13.34 ± 0.43 11.50 ± 0.34 10.13 ± 0.45 9.29 ± 0.41 9.11 ± 0.25
SCE-MAE (Ours) 64 18.41 ± 1.21 11.79 ± 0.44 10.57 ± 0.24 9.65 ± 0.14 8.60 ± 0.17 8.31 ± 0.06
CL[9] 128 27.31 ± 1.39 18.66 ± 4.59 13.39 ± 0.30 11.77 ± 0.85 10.25 ± 0.22 9.46 ± 0.05
LEAD[19] 128 21.20 ± 1.67 13.22 ± 1.43 10.83 ± 0.65 9.69 ± 0.41 8.89 ± 0.20 8.83 ± 0.33
SCE-MAE (Ours) 128 20.14 ± 1.76 11.99 ± 0.71 10.40 ± 0.22 9.25 ± 0.14 8.49 ± 0.19 7.96 ± 0.21
CL[9] 256 28.00 ± 1.39 15.85 ± 0.86 12.98 ± 0.16 11.18 ± 0.19 9.56 ± 0.44 9.30 ± 0.20
LEAD[19] 256 21.39 ± 0.74 12.38 ± 1.28 11.01 ± 0.48 10.06 ± 0.59 8.51 ± 0.09 8.56 ± 0.21
SCE-MAE (Ours) 256 17.08 ± 1.35 11.28 ± 0.54 10.30 ± 0.09 8.95 ± 0.08 8.20 ± 0.20 7.58 ± 0.09

Table 4. Component-wise ablation on landmark matching. The
first three rows compare the results using backbone features only.
Our raw MAE features (Baseline) are compared against the hyper-
columns used in CL and LEAD. The last two rows indicate the
inclusion of the clustering and the LCR loss in our framework.

Method Cluster LLCR
Same Diff.
Mean Pixel Error↓

CL [9] - - 0.69 5.37
LEAD [19] - - 2.35 6.22
Baseline ✗ ✗ 0.55 3.51

SCE-MAE (Ours)
✓ ✗ 0.30 4.04
✓ ✓ 0.27 1.61

performance; and finally, the LCR loss forges critical local
correspondences between important facial regions, result-
ing in the best performance for both settings.
Visualization of Landmark Representations. We visual-
ize the t-SNE plots of the landmark representations corre-
sponding to 1000 test images in Fig. 5. Since LEAD [19]
only performs knowledge distillation in its second stage, we
use the first-stage hypercolumn representations as it can be
considered as the upper bound of the second-stage objec-
tive. For each method, we execute t-SNE 100 times and
report the mean and standard deviation of the Silhouette
Coefficient [39], a metric (higher is better) indicating the
quality of the clustering as a function of the mean intra-
cluster (lower is better) and inter-cluster (higher is better)
distance. For CL [9], the samples within the cluster are
more scattered, resulting in a higher intra-cluster distance.
For LEAD, though the clusters are more dense, the clusters
of the left/right lip corner and nose are not clearly separated,
resulting in a lower inter-cluster distance. Our method re-
sults in both well-separated and dense clusters, which is re-
flected by a high Silhoutte Coefficient, thereby corroborat-
ing the superior quality of our landmark representations.

CL [9] LEAD† [19] SCE-MAE (Ours)
SC: 0.602 ± 0.013 SC: 0.613 ± 0.014 SC: 0.679 ± 0.013

Left Eye Right Eye Nose Left Lip Corner Right Lip Corner

Figure 5. t-SNE plot of the landmark representations. † denotes
the usage of the stage 1 hypercolumn representations. SC denotes
the Silhouette Coefficient [39], a score (higher is better) which
measures the quality of the clustering. Our method results in both
a clear separation between the landmarks and the densest landmark
clusters, resulting in the highest Silhouette Coefficient.

5. Conclusion
In this work, we present SCE-MAE, a two-stage frame-
work to tackle the self-supervised face landmark estimation
tasks. To learn effective and locally distinct representations,
we target structured improvements on both stages. For the
first stage, we leverage the region-level MAE instead of
instance-level SSL methods to derive more potent initial
representations. For the second stage, we demonstrate that
it is beneficial to identify important facial regions and di-
rectly hone only the salient correspondences. Our approach
yields discriminative and high-quality landmark represen-
tations that result in superior performance over prior SOTA
works on both the landmark matching and detection tasks.
Due to the nature of facial data, we believe that further re-
search on the sparsification of the correspondence computa-
tion through the systematic elimination of insignificant cor-
respondences could allow future self-supervised landmark
estimation methods to better exploit inter-landmark depen-
dencies and form higher-caliber landmark representations.
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