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Abstract

The increasing prevalence of non-alcoholic fatty liver
disease (NAFLD) has caused public concern in recent
years. The high prevalence and risk of severe compli-
cations make monitoring NAFLD progression a public
health priority. Fibrosis staging from liver biopsy images
plays a key role in demonstrating the histological progres-
sion of NAFLD. Fibrosis mainly involves the deposition
of fibers around vessels. Current deep learning-based fi-
brosis staging methods learn spatial relationships between
tissue patches but do not explicitly consider the relation-
ships between vessels and fibers, leading to limited per-
formance and poor interpretability. In this paper, we pro-
pose an eXplicit vessel-fiber modeling method for Fibro-
sis staging from liver biopsy images, namely XFibrosis.
Specifically, we transform vessels and fibers into graph-
structured representations, where their micro-structures are
depicted by vessel-induced primal graphs and fiber-induced
dual graphs, respectively. Moreover, the fiber-induced dual
graphs also represent the connectivity information between
vessels caused by fiber deposition. A primal-dual graph
convolution module is designed to facilitate the learning
of spatial relationships between vessels and fibers, allow-
ing for the joint exploration and interaction of their micro-
structures. Experiments conducted on two datasets have
shown that explicitly modeling the relationship between
vessels and fibers leads to improved fibrosis staging and en-
hanced interpretability.

1. Introduction
Non-alcoholic fatty liver disease (NAFLD) is the most

prevalent liver disease globally. It affects around 30% of
the population and has raised public concern in recent years

Figure 1. Illustration of fibrosis staging from liver biopsy images
and the proposed graph-structured representation. (a) Liver biopsy
image samples with different fibrosis stages. (b) Concept illustra-
tion of different fibrosis stages. (c) The illustration of a graph-
structured representation. It graphically depicts the interaction be-
tween vessels and fibers. Vessels are regarded as nodes and the
interactions caused by fiber deposition as edges of the graph.

[26]. NAFLD consists of a spectrum of liver damage rang-
ing in severity from simple harmless fatty liver to various
degrees of fibrosis. Patients with advanced fibrosis are at an
increased risk of developing liver cancer and other compli-
cations. Consequently, an accurate diagnosis of liver fibro-
sis facilitates closer monitoring and enhances clinical care
effectiveness. In clinical practice, pathologists will assign
a semi-quantitative fibrosis stage (FIB) [31] to determine
the extent of fibrosis. Liver biopsy images offer cellular-
level visual insights into microstructures, aiding in fibrosis
staging. Diagnosing fibrosis is a laborious process with low

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11282



Figure 2. A simple graph is depicted with two white circles repre-
senting nodes connected by a red line.

agreement among pathologists. [37]. The rising number of
patients would also impose a significant diagnostic burden
on the current healthcare system. Developing an automated
image analysis model to aid pathologists is crucial.

Deep learning methods have shown promising results
in the analysis of whole-slide pathology images (WSIs)
[45–47]. Existing pathological image analysis methods can
be broadly categorized into two groups. One approach is
multi-instance learning (MIL)-based methods [25, 32]. In
the MIL framework, the WSI is treated as a collection of
instances. However, these methods may not effectively cap-
ture the spatial context and relationships between different
instances, which are crucial for the diagnosis of the dis-
ease. Another approach is graph neural network (GNN)-
based methods, which have demonstrated remarkable ca-
pabilities in analyzing WSIs [11, 12, 17]. These methods
aim to learn topological features between individual objects
such as nuclei and tissues, which are represented as graph
nodes. [40] estimate fibrosis stages by converting the WSI
into a graph, with regularly sliced image patches represent-
ing the graph nodes. While the patch-to-patch graph offers
a basic representation of spatial relationships between tis-
sue patches, it may not accurately capture fibrosis-related
micro-structures, resulting in limited interpretability.

In this work, we propose to explicitly exploit fibrosis-
related micro-structures for liver biopsy image analysis.
The progression of fibrosis, as defined by semi-quantitative
definition [31], is characterized by the deposition of fibers
around vessels in liver biopsy images, as depicted in Figure
1. (a) displays liver biopsy images with varying stages of
fibrosis (FIB-1 to FIB-4). Figure 1 (b) illustrates the con-
cept of fibrosis, where fibers are deposited around vessels
(vessels appear white, fibers appear red). Fibrosis initiates
with fiber deposition around the portal tract (FIB-1). As
fibers accumulate, they expand and connect portal tracts at
different strengths (FIB-2 to FIB-3). Eventually, fibers form
bridges, connecting portal tracts and central veins (FIB-4).
The relationship between vessels and fibers highlights the

inherent advantage of representing images with graphs, as
depicted in Figure 1 (c). The vessels in liver biopsy images
can be considered as nodes in a graph. Fibers of varying
strengths are deposited around the vessels, which can be
considered as the edges of the graph. The interactions be-
tween vessels and fibers manifest as a graph structure.

We propose a mechanism to represent histopathology
images as graphs, where the graph nodes denote vessel lo-
cations and the graph edges describe fiber features. Figure
2 shows a simple graph comprising two graph nodes (white
circle) and one graph edge (red line). The graph nodes in-
dicate the location of vessel regions, and an edge is cre-
ated when two graph nodes are nearby. In Figure 2 (a),
there is no fiber deposition between the two vessels, while
in Figure 2 (b), heavy fiber deposition is visible, with the
fibers expanding and connecting the two vessels. We repre-
sent and encode this fiber information as edge features, de-
noted by thin and thick lines. This graph definition allows
us to model the relationships between vessels and fibers.
The ability to jointly explore two micro-structures and their
interactions is crucial for graph-structured representation.
Based on primal-dual graph theory [18], we can represent
vessels and fibers as two graphs, as depicted in Figure 3.
The two graphs depict the micro-architectures of vessels
and fibers, with graph nodes indicating relevant biological
entities. Moreover, the two graphs form a primal-dual rela-
tionship. The nodes in the dual graph also serve as the edges
in the primal graph, preserving the connection information
from fiber deposition between the vessels.

This paper proposes the explicit learning of vessel-fiber
relationships for fibrosis staging (XFibrosis) from liver
biopsy images. Specifically, XFibrosis represents liver
biopsy images as a set of primal and dual graphs induced
by vessels and fibers, respectively. These generated graphs
mirror the respective micro-architectures of vessels and
fibers. The primal-dual relationship enables the model
to concurrently examine and interact with the two micro-
structures. Additionally, XFibrosis proposes a primal-dual
graph convolutional module to learn the relationships be-
tween vessels and fibers. The proposed module facilitates
information propagation within each graph, thereby en-
abling micro-structure feature learning. Moreover, by lever-
aging primal-dual relations, it is possible to induce infor-
mation propagation between the two graphs, which fosters
interaction feature learning. Our contributions are summa-
rized as follows:

• We propose an interpretable method for explicitly
learning the relationships between vessels and fibers
from liver biopsy images for the staging of fibrosis,
termed as XFibrosis.

• XFibrosis converts liver biopsy images into primal-
dual graphs induced by vessels and fibers.
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Figure 3. The basic idea of our proposed method. Vessels and
fibers are represented by two graphs forming a primal-dual rela-
tionship. The primal-dual graphs are further fed into the primal-
dual GCN module for spatial relation learning.

• We introduce a primal-dual graph convolution module
that learns the relationships between vessels and fibers
by concurrently leveraging micro-structures and inter-
actions.

2. Related Works
Multi-instance Learning on Histopathology Images.
Multiple-instance learning (MIL) [8, 21, 29] demonstrates
a robust capability in handling whole slide images where
only slide-level labels are available. In the MIL framework,
each Whole Slide Image (WSI) is considered as a bag con-
taining multiple patches cropped from the slide. The slide
is diagnosed as positive if at least one of the patches indi-
cates disease. Adhering to a strict binary assumption, MIL-
RNN [7] aggregates features from positive instances using
a recurrent neural network. AttenMIL [20] introduces an
attention-based aggregation method within the MIL frame-
work for diagnosing breast and colon cancer. For tasks
involving multiclass classification, ReMix [42] develops a
data augmentation method to increase data diversity. IB-
MIL [27] further improves feature representation by elim-
inating confounding factors. However, these patch-based
MIL methods do not adequately address fibrosis staging,
which depends on the relationships between instances.

Graph Learning on Histopathology Images. Recently,
advanced graph convolutional networks have significantly
influenced digital histopathological image analysis [3, 12,
17]. Graph representations are apt for modeling relation-
ships between biomedical entities (e.g., cells, nuclei, tis-
sues) observed in histological images. Converting the WSIs
into a graph representation is a crucial step in the analysis
of histopathological images. Current graph learning-based
methods are categorized into cell-graphs [4, 36], patch-
graphs [11,30], and tissue-graphs [1,9], based on the choice
of graph nodes. The current methods primarily focus on de-

ciphering spatial relationships between single objects, rep-
resented by graph nodes in histopathology images. The
graph edges only provide limited information, which is de-
rived from these nodes. This approach is insufficient for
fibrosis staging, which requires an in-depth examination of
two critical micro-structures: vessels and fibers.

3. Proposed Method
As shown in Figure 4, we propose an explicit vessel-fiber

modeling method for fibrosis staging from WSIs of the liver.
Each WSI is processed through a vessel-fiber segmentor,
yielding segments of vessels and fibers. In each image tile
containing the segments, two sets of key points are gener-
ated and used to form a primal-dual graph, with these key
points acting as graph nodes. These graph-structured repre-
sentations are then inputted into the primal-dual graph con-
volution module to understand the spatial relationships be-
tween vessels and fibers. The tile-level features produced by
each image tile are eventually combined to generate WSI-
level features for fibrosis staging.

3.1. Primal-Dual Graph Learning-Embedding

Fibrosis staging from liver biopsy images relies on spa-
tial relationships between vessels and fibers. A pivotal as-
pect of our approach involves generating informative graphs
that depict these spatial relationships. To drive the model to
focus on micro-structures related to fibrosis (e.g. vessels,
fibers), we first develop a vessel-fiber segmentor to extract
the vessels and fibers from the WSI Ii. Inspired by [31],
vessels (e.g., portal tracts, central veins) appear in the white
region. Fibers are colored red or blue in a specific stain
color. Following [41], we implement the vessel-fiber seg-
mentor with the mean shift algorithm. Image tiles that con-
tain vessels or fibers are cut out and transformed into graph-
structured representations.

In this section, we describe how to transform an image
tile into a primal-dual graph. It mainly involves primal-dual
graph construction and graph node embedding.

Primal-Dual Graph Construction. For each image tile
tij sliced from WSI Ii, the corresponding vessel segments
svij and fiber segments sfij , we develop a key points gen-
erator P to get the key points set Pij which describes the
micro-architectures:

Pij = P(svij , s
f
ij) (1)

where Pij contains two subsets of points Pij = {Vij , V̂ij}.
These two sets of key points carry distinct meanings. Vij =
{vij1, vij2, . . . , vijnv

ij
} denotes the centroids or contours of

segments, which are called vessel-induced key points. Us-
ing these key points as graph nodes, we construct the vessel-
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Figure 4. Overview of the proposed method. Each image tile from the WSI of the liver, containing vessel and fiber segments, is transformed
into primal-dual graph representations using primal-dual graph learning-embedding (PDEmbedding). The graph-structured data are fed
into primal-dual graph convolution (PDGCN) for learning spatial relationships. All tile-level features are aggregated to generate WSI-level
features for fibrosis staging.

induced primal graph Gij utilizing the Delaunay Triangula-
tion operator [22] T :

Gij = T (P v
ij) (2)

where the associated adjacent matrix Aij records the con-
nection information between graph nodes.

The nodes in the primal graph record the information
from the vessel. The graph edges should indicate the dif-
ference in the microenvironment around vessels, particu-
larly the connectivity caused by fiber deposition. Although
general graph convolutional networks (GCNs) are effective
in learning interactions among graph nodes, they typically
deal with a single object [4]. The edge feature is ignored
or reflects the similarity between graph nodes, which fails
to represent the fiber information. In order to represent the
fiber information that is captured in edges using GCNs, we
propose the use of a dual graph. The nodes in the dual
graph represent the edges between the nodes of the primal
graph, corresponding to the features of the fibers. Once the
primal graph is given, its dual graph Ĝij is automatically
constructed by altering the roles of graph nodes and edges
based on primal-dual graph transform operator T̂ [38]:

Ĝij = T̂ (Gij) (3)

where Ĝij is referred to as the fiber-induced dual graph.
The nodes and edges in the dual graph are determined
at the same time. The associated nodes in a dual graph
Ĝij are represented as fiber-induced key points V̂ij =
{v̂ij1, v̂ij2, . . . , v̂ijnf

ij
}. They denote the points located in

the fiber region.
The sequentially constructed graphs Gij and Ĝij repre-

sent two distinct micro-structures and form a primal-dual
relationship. The primal graph Gij portrays the topology

of the fibers extending around the vessels with graph nodes
representing the location of vessels or the end of the fiber
extension. The edge of the vessel-induced primal graph tra-
verses the fiber region, while the dual graph captures the
intricate morphological characteristics of these edges.

Graph Node Embedding. The image tile containing ves-
sels and fibers is represented by a vessel-induced primal
graph and a fiber-induced dual graph. Subsequently, it be-
comes necessary to learn a feature representation for node
embedding. In this context, only the node embedding in the
primal graph Gij is illustrated, while the node embedding
in the dual graph Ĝij follows a similar pattern.

We learn a central node representation from patches
around the centroids of graph nodes. The associated image
patch for tth graph node prijt is denoted as prijt ∈ Rr×r×3.

To retain the morphological features, deep neural
networks-based feature encoder F are used to automatically
learn a feature representation zM from image patch prijt:

zMijt = F(prijt) (4)

where zMijt ∈ RdM , dM denotes the dimension of features.
Following the usage of Position Embedding (PE) in the

vision transformer [13], the global location of each image
tile in WSIs is also important for image recognition. To re-
tain the spatial information in WSI, we encode the position
information of each patch via PE:{

zXijt = PEX(prijt)

zYijt = PEY (p
r
ijt)

(5)

where zXijt ∈ RdX and zYijt ∈ RdY are the position en-
coding based on the coordinates with respect to X-axis and
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Figure 5. Detailed structure of primal-dual graph convolution
module.

Y -axis. dX and dY are the dimensions of position feature
embedding. The (x, y) is the coordinates centered at the
image patch prijt.

Following [4, 19, 28] which mainly focus on small-scale
histopathology image datasets, the position embeddings
{zXijt, zYijt} and morphological features zMijt are stacked to-
gether to generate the node feature embedding fijt:

fijt = zMijt ⊕ zXijt ⊕ zYijt (6)

where ⊕ is the concatenation operator. The dimension of
the feature embedding fijt is the sum of these three compo-
nents: d = dM + dX + dY . Hence fijt records the infor-
mation from both morphological features and locations.

Given an image tile tij , the associated vessel-induced
primal graph is Gij(V, E), the corresponding node feature
is Fij ∈ R|V|×d. The fiber-induced dual graph is Ĝij(V̂, Ê),
the corresponding node feature is F̂ij ∈ R|V̂|×d, which also
represents the edge features for primal graph.

3.2. Primal-Dual Graph Convolution

Each image tile is converted into a graph-structured rep-
resentation. We propose a primal-dual graph convolution
module to comprehend the spatial relationships between
vessels and fibers. Figure 5 illustrates the detailed structure
of the proposed primal-dual graph convolution module.

Since vessels and fibers are two distinct micro-structures,
we first develop two separate graph convolutional layers, Gp

and Gd, to learn their micro-architectures:{
H l

ij = σ ◦ N ◦ Gp(Aij , H
l−1
ij )

Ĥ l
ij = σ ◦ N ◦ Gd(Âij , Ĥ

l−1
ij )

(7)

where H0
ij = Fij , Ĥ0

ij = F̂ij are the hidden representation.
Each graph convolutional layer is followed by a graph fea-
ture normalization layer N [14] and a non-linear activation
layer σ [2]. ◦ denotes the function composition. The graph
node features are updated by exchanging information with
its neighbors.

In addition to the micro-architectures, the interactions
between vessels and fibers are also important for fibrosis
staging. Leveraging the primal-dual graph property, the
nodes in the dual graph function as edges of the primal
graph. Consequently, we employ the edge-enhanced graph
convolution layer Ge. This layer utilizes multidimensional

features from nodes and edges for information propagation,
leading to the following updates in the hidden representa-
tions:

[H l
ij ; Ĥ

l
ij ] = Ge(Aij , [H

l−1
ij ; Ĥ l−1

ij ]) (8)

The tile-level features for each image tile emerge from the
aggregation of node features, derived from both the vessel-
induced primal graph and the fiber-induced dual graph.
We utilize the sum-pooling operation Poolsum to amal-
gamate graph representations, subsequently generating the
tile-level features fij . The power of this method comes
from its ability to capture the whole structure of the full
graph representation.

fij = Poolsum(H l
i,j , Ĥ

l
ij) (9)

where fij ∈ Rdh , and dh denotes the dimension of hidden
feature space.

For each WSI xi, we obtain a set of tile-level represen-
tations {fi1, . . . , fini}. We then aggregate these tile-level
features to create a WSI-level representation. Since fibrosis
only occurs in tissue regions that have experienced dam-
age or an immune response, not all regions contribute to it.
Therefore, our goal is to select the most significant, typi-
cally damaged or responsive areas, to create WSI-level fea-
tures. Inspired by TopK pooling introduced in [16], for a
given tile-level representation fij ∈ Rdh , we calculate an
importance score sij using the scorer function Sθ:

sij = Sθ(fij) (10)

where the importance score sij indicates the importance of
image tile tij . Tiles in the image with a higher score are
more likely to be fibrosis. WSI-level features fi are gener-
ated by applying mean pooling on selected top ki tile-level
representations via Pooltopkmean:

fi = Pooltopkmean(fi1, . . . , fini
; ki)

ki = argmin
k

k∑
j=0

sij > sδ
(11)

where sδ is the saturation threshold that indicates the level
of contribution for these selected k image tiles. It aims to
select enough image tiles whose accumulated contribution
is above a threshold sδ . In this way, ki is adaptively calcu-
lated in each image sample.

Multi-layer perceptrons (MLPs) are employed as the
classifier to estimate fibrosis stage ŷi:

ŷi = MLP (fi) (12)

Given the ground truth fibrosis stage y, the objective func-
tion to minimize for learning the model is defined as cross-
entropy loss Lbase:

Lbase =
1

N

N∑
i=0

yilogŷi (13)
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Table 1. Fibrosis staging with different methods on Liver-Fibrosis-SR dataset

Methods AUCFIB≥1 AUCFIB≥2 AUCFIB≥3 AUCFIB≥4 AUC Accuracy

MIL
ReMix [42] 42.50±14.80 59.86±9.44 56.29±10.49 65.70±13.36 56.09±8.53 36.73±7.74
DTFD [48] 83.70±8.15 77.23±8.42 82.57±7.64 76.79±10.18 80.07±3.09 42.22±8.16
IBMIL [27] 83.18±10.92 78.17±8.25 81.75±7.49 86.51±6.89 82.40±2.99 45.76±8.81

General GNNs
GATv2 [6] 62.03±16.12 63.88±10.00 66.74±9.45 69.64±11.17 65.57±2.89 37.48±8.15
ARMA [5] 46.33±16.99 68.48±8.78 63.69±11.27 58.56±14.35 59.26±8.25 37.75±8.43
HGNN [9] 70.17±14.29 67.31±9.2 72.32±8.7 72.87±10.5 70.67±2.19 41.15±8.54

GNNs for Fibrosis GNN-Fibrosis [40] 58.23±14.48 69.53±9.20 69.93±8.45 76.30±14.00 68.50±6.51 43.46±8.14
Ours 83.58±13.77 78.39±8.29 86.11±7.36 87.93±6.50 84.00±3.59 53.63±7.97

where N is the number of WSIs.
Considering that the FIB reflects the degree of disease

severity in fibrosis. Inspired by [15], we apply more sub-
stantial penalties to estimated fibrosis stages that signifi-
cantly deviate from the actual stages. This process is de-
scribed by the following regularization loss Lreg:

Lreg =
1

N

N∑
i=0

C∑
c=0

ŷci ||c− yi||22 (14)

where ŷci is the estimated probability on class c. C is the
number of classes. || · ||22 denotes the L2-Norm distance.

So, the final objective function L is the combination of
Lreg and Lreg:

L = Lbase + λLreg (15)

where λ is the balance weights between two loss terms.

4. Experimental Results
In this section, we first describe the datasets that are used

to carry out experiments and then report the experimental
settings and present results. More experimental results are
presented in the supplementary materials.

Datasets and Evaluation Metrics. Liver-Fibrosis-SR
[49] contains 132 liver WSI collected from 132 patients
with NAFLD. The liver tissue sections are stained with
Sirius Red (SR). FibrosisMT-v1.0 contains 47 liver WSIs
from two age groups [33] [49]. These WSIs are scanned
under a lens 40×. The liver tissue sections are stained
with Masson’s and Triise (MT). Each liver biopsy image
has been assigned a fibrosis stage (FIB 0-4) by an expert
pathologist. Detailed information on datasets is provided
in supplementary materials. Evaluation metrics For each
dataset, we randomly split all patients into 3 groups and
validated the method using three-fold cross-validation. Fol-
lowing [40, 43, 44], we choose the accuracy and area un-
der the receiver operating characteristic values (AUC) as
the evaluation matrix. Comprehensive details regarding the
evaluation metrics used in our implementation can be found
in the supplementary materials.

Implementation details. The model is trained using the
Adam optimizer for 100 epochs. The initial learning rate
is set to 1e−4. We adopt a learning rate schedule of expo-
nential decay with power 0.9. The batch size is set to 2.
Following [15], we set the balance weights to λ = 0.05.
The saturation threshold sδ = 0.65 is determined by cross-
validation. More implementations are described in the Sup-
plementary Materials.

4.1. Comparison With State-of-the-Art Methods

We compare our method against the SOTA MIL-based
methods ReMix [42], DTFD [48], IBMIL [27] and the
GNN-based methods GATv2 [6] ARMA [5] GNN-Fibrosis
[40], HGNN [9].

Table 1 shows the fibrosis staging results on the Liver-
Fibrosis-SR dataset. It demonstrates that the proposed
method is effective in modeling vessel-fiber relations for fi-
brosis staging. Compared to general GNN-based methods,
MIL-based methods show a better performance. IBMIL
achieves the second-best results with an AUC of 82.40%
and an accuracy of 45.76%. The regular grid image tiles do
not accurately represent the spatial relationships between
vessels and fibers. Rather than building graphs with reg-
ular grid image tiles, our method builds vessel and fiber-
induced graphs which enable the model to focus on fibrosis-
related regions. The graph-structured representations more
accurately depict the micro-architectures associated with
the fibrosis stage. We observe similar performance when
conducting experiments on the smaller FibrosisMT-v1.0
dataset, which consists of patients from two age groups, as
shown in Table 2. Our method consistently improves fibro-
sis staging performance independent of datasets, achieving
the best performance with a mean AUC of 92.82% and an
accuracy of 64.40%.

4.2. Graph Interpretation On WSIs

The procedure for generating vessel-induced primal
graphs and fiber-induced dual graphs on the WSI is first
demonstrated in this section, as depicted in Figure 6. The
benefits of introducing the primal-dual graph to compre-
hend vessel-fiber relations are demonstrated by utilizing K-
Means [23] to cluster the tile-level features represented by
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Table 2. Fibrosis staging with different methods on FibrosisMT-v1.0 dataset

Methods AUCFIB≥1 AUCFIB≥2 AUCFIB≥3 AUCFIB≥4 AUC Accuracy

MIL
ReMix [42] 67.76±22.77 71.18±16.18 72.41±16.69 95.27±8.30 76.66±10.88 50.11±12.61
DTFD [48] 67.18±20.20 88.90±10.75 86.72±10.67 91.11±11.74 83.48±9.54 58.73±12.95
IBMIL [27] 75.48±15.21 85.27±13.57 85.29±16.72 91.77±14.51 84.45±5.82 60.21±14.38

General GNNs
GATv2 [6] 73.30±18.53 79.46±14.87 72.93±17.71 33.57±17.19 64.82±18.22 35.94±13.99
ARMA [5] 73.62±20.18 72.38±16.64 65.12±18.82 65.13±35.13 69.06±3.96 41.39±14.56
HGNN [9] 73.86±17.80 73.63±15.78 65.01±18.90 59.99±23.75 68.12±5.90 53.89±14.31

GNNs for Fibrosis GNN-Fibrosis [40] 76.01±17.31 80.86±14.20 69.48±17.52 67.08±17.56 73.36±5.43 51.16±14.57
Ours 80.09±13.71 98.53±3.43 95.72±6.05 96.94±5.83 92.82±7.42 64.40±14.40

WSI Fibers/Vessels segmentation Key points derived from segments Dual-graphPrimal-graph

Figure 6. Visualization of the primal-dual graph-based representation. The WSI depicts detected vessel and fiber segments highlighted in
white and red, respectively. Key points derived from these segments indicate central vessel locations and fiber region contours, represented
as white points. The nodes in the primal graph are used as points, which are then directly converted into the corresponding dual graph.

the graph, with the clusters visualized using t-stochastic
neighbor embedding (t-SNE) [10], as illustrated in Figure 7.
The distribution of the importance score estimated by TopK
on WSI is also plotted and shown in Figure 8. Selected
samples are used to illustrate the topology represented by
primal graphs in supplementary materials.

Primal-Dual Graph Generation. The primal-dual graph
generation procedure is demonstrated in Figure 6. Starting
with a WSI, vessel and fiber segments (rendered in white
and red colors) are first detected. Key points, which indicate
the central locations of vessels or the contour of the fiber
regions (rendered as white points), are derived from these
segments. These derived key points are utilized as graph
node sets. Using Delaunay Triangulation [22], the primal
graph is constructed. The primal graph is directly converted
into the dual graph. Finally, a collection of primal and dual
graphs represents a WSI. These graphs are constructed on
image tiles that contain vessels or fibers.

Graph Embedding Cluster. The benefits of introducing
graph-structured representations are demonstrated by using
K-Means to cluster the tile-level representations. After ex-
perimenting with different numbers of clusters, it was found
that setting clusters = 15 leads to easier interpretation.
We then plot the feature embedding using t-SNE [39]. As
shown in Figure 7, graph representations show better dis-

criminability. Each feature cluster has a clear boundary with
each other. Some points are also sampled from the clusters,
and their associated image tiles and graphs are visualized.
From a geometric perspective, graph-structured representa-
tions enable the model to cluster fiber regions. The samples
in each cluster correspond to the specific characteristics of
the graphs. The image tiles on the left depict a large area
of dense fibers, which are represented by complex graphs.
Conversely, simple graphs show the smaller fibers in the
image tiles from the other clusters. The fiber density and
structure are well reflected by the graphical representation.

Importance Score On WSI. The estimated importance
score on WSIs of the liver is visualized to demonstrate that
our proposed model indeed learns to focus on the fibrosis
region. Regions with higher scores (rendered in red) are
more likely to have fibrosis. The distribution of importance
scores on slides diagnosed as FIB-1 to FIB-4 is demon-
strated in Figure 8. The concentration of the importance
score mainly in regions containing fibers or vessels aligns
with clinical practice. This alignment occurs because our
approach transforms only those image tiles containing ves-
sels or fibers into graph-structured representations, rather
than building graphs on whole-slide images. The creation of
accurate graphical representations through this method al-
lows for explicit modeling of fibrosis, thereby enhancing in-
terpretability. Furthermore, our model is capable of geomet-

11288



Figure 7. t-SNE plot of image tiles containing vessels or fibers
clustered by k-means clustering method using tile-level features.

FIB-2
FIB-3

FIB-1
FIB-4

Figure 8. Distribution of the importance score on WSIs. The im-
portance scores are in the range from 0 to 1 (blue to red). Regions
with higher scores are more likely to be fibrosis regions.

rically distinguishing between two fiber regions, even when
they have similar densities. Despite some areas demonstrat-
ing a higher fiber density than the actual fibrosis area (FIB-
1 to FIB-4), our model assigns them a lower importance
score. This discrepancy is primarily due to the variations in
typologies and positions of these areas, as illustrated in the
graphical representation.

4.3. Ablation Study On Graph Convolution

Effectiveness of PDGCN. To evaluate the effectiveness
of our proposed PDGCN module, we initially exclude the
PDGCN and employ solely the PDEmbedding for fibrosis
staging. As demonstrated in Table 3, utilizing only PDEm-
bedding, the model attains an AUC of 80.14% and an ac-
curacy of 48.77%. Each image tile comprises vessels and
fibers, facilitating the model’s focus on the disease region
inducing fibrosis. The incorporation of the PDGCN results
in an increase of 3.96% and 4.86%. The enhancements
are attributable to the spatial relationships between vessels
and fibers discerned by the PDGCN. The PDGCN encodes
morphological features in graph nodes, allowing the model
to exchange messages between graphs and extract multi-

Table 3. Effectiveness of primal-dual graph convolutional block.

Methods AUC Accuracy
PDEmbedding 80.14±3.15 48.77±4.63

PDEmbedding + PDGCN 84.00±3.59 53.63±7.97

Table 4. Variants of GCN architecture choice.

GCN layers AUC Accuracy
GEN [24] 82.85±2.39 44.08± 3.74
GATv2 [6] 82.98±1.75 47.15±3.61
PDN [34] 82.14±3.14 43.73±1.88

Transformer [35] 81.10±2.44 42.53±5.62
PDGCN (Ours) 84.00±3.59 53.63±7.97

dimensional information from graph nodes and edges.

Variances of GCN. We compare the proposed PDGCN
with other edge-enhanced graph convolutional networks
[6, 24, 34, 35]. Keeping the PDEmbedding the same, we
replace the PDGCN with these modules to enable spatial
learning of fiber and vessel connections. As shown in Ta-
ble 4, compared with other edge-enhanced graph convo-
lution methods, the proposed PDGCN demonstrates lead-
ing performance. As observable, our proposed PDGCN
surpasses the edge-enhanced graph convolution methods in
performance. All edge-enhanced graph convolution meth-
ods concentrate on learning node features while overlook-
ing the abundant edge information furnished by fibers. The
proposed PDGCN comprises two distinct graph convolu-
tional layers, capable of learning features from vessels and
fibers independently. Additionally, the proposed PDGCN
can merge features of vessels and fibers to enhance under-
standing of their relationship.

5. Conclusion
In this paper, our proposed model utilizes a primal-dual

graph to explicitly interpret vessel-fiber interactions for fi-
brosis staging in liver biopsy images. We use a vessel-
induced primal graph and a fiber-induced dual graph to
capture topological details of fibrosis-associated structures
identified in WSIs. Furthermore, a primal-dual graph con-
volution module is introduced to independently learn the
features of both vessels and fibers while concurrently un-
derstanding their interactions. Experimental results from
two datasets demonstrate the effectiveness of our proposed
method in terms of classification performance and inter-
pretability. Future research may involve studying the mod-
eling of multiple tissue or cellular components by analyzing
multiple subgraphs.
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