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Figure 1. We propose OmniSeg3D, a 3D segmentation framework that (a) takes multi-view inconsistent 2D segmentations as input, and
outputs a consistent 3D feature field via a hierarchical contrastive learning method. This method supports (b) hierarchical segmentation,
(c) multi-object selection, and (d) holistic discretization in an interactive manner. See our project at oceanying.github.io/OmniSeg3D.

Abstract

Towards holistic understanding of 3D scenes, a general
3D segmentation method is needed that can segment diverse
objects without restrictions on object quantity or categories,
while also reflecting the inherent hierarchical structure. To
achieve this, we propose OmniSeg3D, an omniversal seg-
mentation method aims for segmenting anything in 3D all
at once. The key insight is to lift multi-view inconsistent 2D
segmentations into a consistent 3D feature field through a
hierarchical contrastive learning framework, which is ac-
complished by two steps. Firstly, we design a novel hier-
archical representation based on category-agnostic 2D seg-

†Corresponding author (fanglu@tsinghua.edu.cn, luvision.net).

mentations to model the multi-level relationship among pix-
els. Secondly, image features rendered from the 3D fea-
ture field are clustered at different levels, which can be fur-
ther drawn closer or pushed apart according to the hier-
archical relationship between different levels. In tackling
the challenges posed by inconsistent 2D segmentations, this
framework yields a global consistent 3D feature field, which
further enables hierarchical segmentation, multi-object se-
lection, and global discretization. Extensive experiments
demonstrate the effectiveness of our method on high-quality
3D segmentation and accurate hierarchical structure un-
derstanding. A graphical user interface further facilitates
flexible interaction for omniversal 3D segmentation.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
3D segmentation forms one of the cornerstones in 3D scene
understanding, which is also the basis of 3D interaction,
editing, and extensive applications in virtual reality, medi-
cal analysis, and robot navigation. To meet the requirement
of complex world sensing, a general/omniversal category-
agnostic 3D scene segmentation method is required, capa-
ble of segmenting any object in 3D without limitations on
object quantity or categories. For instance, to accurately
discretize a pavilion as shown in Fig. 1, the user needs to
accurately segment each roof, column, eaves, and other in-
tricate structures. Existing 3D-based segmentation methods
based on 3D point clouds, meshes, or volumes fall short of
these requirements. They are either restricted to limited cat-
egories due to the scarcity of large-scale 3D datasets, such
as learning-based methods [19, 26, 31], or they could only
identify local geometric similarity or smoothness without
extracting semantic information, as typified by traditional
algorithms [16, 21, 45].

An alternative approach involves lifting 2D image un-
derstanding to 3D space, leveraging the impressive class-
agnostic 2D segmentation performance achieved by recent
methods [8, 27, 29, 32, 47]. Current lifting-based meth-
ods either rely on annotated 2D masks [4, 54, 65], or are
restricted to a limited set of pre-defined classes [3, 46].
Other methods propose distilling semantic-rich image fea-
tures [29, 43] onto point clouds [42, 49] or NeRF [18, 25,
28]. However, due to the absence of boundary information,
directly distilling these semantic feature into 3D space of-
ten leads to noisy segmentations [25, 42]. Further works use
SAM [27] or video segmentation methods [38] to generate
accurate 2D masks of targeted objects, and unproject them
into 3D space [6]. However, these approaches are limited to
single-object segmentation and exhibit unstable results in
cases with severe occlusion because the 2D segmentation is
performed on each image independently.

Therefore, significant challenges still persist. First,
multi-view consistency remains an obstacle due to the sub-
stantial variations in 2D segmentations across different
viewpoints. Second, ambiguity arises when distinguish-
ing in-the-wild objects like eaves and roofs, which inher-
ently possess a hierarchical semantic structure. To this end,
we propose OmniSeg3D, an Omniversal 3D Segmentation
method which enjoys multi-object, category-agnostic, and
hierarchical segmentation in 3D all at once. We demon-
strate that a global 3D feature field (which can be formu-
lated on NeRF [37, 41, 58], point cloud [24], mesh [51, 60],
etc) is inherently well-suited for integrating occlusion-free,
boundary-clear, and hierarchical semantic information from
2D segmentations through hierarchical contrastive learning.
The key lies in hierarchically clustering 2D image features
rendered from the 3D feature field at different levels of
segmentation blocks, where the multi-level segmentations
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Figure 2. Method Overview. We utilize differentiable render-
ing on a 3D feature field to generate 2D feature points, which are
then regularized by multi-view 2D segmentations through a hierar-
chical contrastive learning strategy, resulting in a hierarchical 3D
feature field that supports versatile 3D segmentation tasks.

are specified by a proposed hierarchical 2D representation.
Then the clustered features will be drawn closer or pushed
apart via a hierarchical contrastive loss, which enables the
learning of a feature field that encodes hierarchical infor-
mation into feature distances, effectively eliminating se-
mantic inconsistencies between different images. This uni-
fied framework facilitates multi-object selection, hierarchi-
cal segmentation, global discretization in 3D space.

We evaluate OmniSeg3D on segmentation tasks for sin-
gle object selection and hierarchical inference. Exten-
sive quantitative and qualitative results on real-world and
synthetic datasets demonstrate our method enjoys high-
quality 3D object segmentation and holistic comprehension
of scene structure across various scales. An interactive in-
terface is also provided for flexible 3D segmentation. Our
contributions are summarized as follows:
• We propose a hierarchical 2D representation to reveal

and store the part-level relationship within objects based
on class-agnostic 2D segmentations and a voting strategy.

• We present a hierarchical contrastive learning method
to optimize a globally consistent 3D hierarchical feature
field given 2D observations.

• Extensive experiments demonstrate that our omniversal
3D segmentation framework can segment anything in
3D all at once, which enables hierarchical segmentation,
multi-object selection, and 3D discretization.

2. Related Works

2.1. 2D Segmentation

2D segmentation has experienced a long history. Early
works mainly rely on the clue of pixel similarity and con-
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tinuity [1, 13, 17] to segment images. Since the introduc-
tion of FCN [34] and large-scale 2D datasets [15, 53], there
has been a rapid expansion in research of different sub-
fields of 2D segmentation [7, 20, 26, 63]. The involve-
ment of transformer [50] in the segmentation domain has
led to the proposal of several novel segmentation architec-
tures [10, 11, 64]. However, most of these methods are lim-
ited to pre-defined class labels.

Prompt-based segmentation is a special task that enables
segmenting unseen object categories [8, 32, 47]. One recent
breakthrough is the Segment Anything Model (SAM) [27],
aiming to unify the 2D segmentation task through the intro-
duction of a prompt-based segmentation approach , is con-
sidered a promising innovation in the field of vision.

2.2. 3D Segmentation

Closed-set segmentation. The task of 3D segmentation has
been explored with various types of 3D representation such
as RGBD images [52, 55], pointcloud [22, 56, 57], and vox-
els [19, 23, 31, 33]. However, due to the insufficiency of an-
notated 3D datasets for training a unified 3D segmentation
model, they are still limited to closed-set 3D understanding,
which largely restricts the application scenarios.

Given the shortage of annotated 3D datasets [14, 61]
for the development of foundational 3D models, recent
works have proposed to lift 2D information into 3D for
3D segmentation and understanding. Some works rely
on ground truth masks [4, 12, 54, 65] or pre-trained 2D
semantic/instance segmentation models for mask genera-
tion [3, 46]. However, obtaining ground truth annota-
tion is often impractical for general scenarios, and model-
based methods typically provide closed-set object masks
only. ContrastiveLift [3] proposes to segment closed-set
3D objects via contrastive learning. However, it can-
not handle unseen classes and reveal object hierarchy. In
contrast, our method achieves panoptic, category-agnostic,
and hierarchical segmentation based on a hierarchical con-
trastive learning framework, which can be interpreted as
a sound combination of click-based segmentation methods
and holistic 3D modeling.

Open-set segmentation. LERF [25] and subsequent
works [18, 28, 49] propose to distill language feature [43]
into 3D space for open-vocabulary interactive segmenta-
tion. Since the learned feature is trained on entire images
without explicit boundary supervision, these methods prone
to produce noisy segmentation boundaries. Besides, these
methods are unable to distinguish different instances due
to the lack of instance-level supervision. Alternatively, we
take advantage of category-agnostic segmentation methods
and distill the 2D results into 3D to get a consistent feature
field and enable high-quality 3D segmentation.

SPInNeRF [38] utilizes video segmentation to initialize
2D masks and then lift them into 3D space with a NeRF. A

followed multi-view refinement stage is utilized to achieve
consistent 3D segmentation. SA3D [6] introduces an on-
line interactive segmentation method that propagates one
SAM [27] mask into 3D space and other views iteratively.
However, these methods may heavily rely on a good choice
of reference view and cannot handle complex cases such
as severe occlusion. Instead, our method can segment any-
thing in 3D all at once via a global consistent feature field,
which is more robust to object occlusion.

Hierarchical segmentation. For hierarchical segmenta-
tion, existing methods mainly rely on the paradigm of geo-
metric analysis of single-class objects [9, 39, 40, 57, 59],
which can only be applied to specific categories. In-
stead, we focus on general scenarios and achieve category-
agnostic hierarchical segmentation in 3D.

3. Methods
Given a set of 2D images with poses [37] as input, our
goal is to learn a 3D feature field that supports multi-
object, category-agnostic, and hierarchical segmentation all
at once. We first use a pretrained 2D segmentation model
to segment each image into a set of masks Msegs. The
masks are then organized into smaller units Psegs accom-
panied with a correlation indicator Chi. During training,
a pre-defined 3D feature field can be rendered to features
f ∈ RD on 2D image plane. With our proposed hierarchical
contrastive clustering strategy, the rendered features will be
forced to establish precise feature distance with right order
that corresponds to the patch relationship depicted in Chi.
In this section, we first introduce our hierarchical 2D repre-
sentation (Sec. 3.1) which models the hierarchical relation-
ship among pixels. Then a hierarchical contrastive learning
framework will be discussed (Sec. 3.2), including both basic
and hierarchical implementations for lifting 2D masks into
3D space. Implementation details are shown in Sec. 3.3. Fi-
nally, we show how to use the optimized 3D field to achieve
various 3D segmentation tasks interactively (Sec. 3.4).

3.1. Hierarchical Representation

2D Label Map Creation. We borrow the idea from [65]
that multi-view 2D label maps can be lifted into a 3D feature
field via differentiable rendering. The key difference is that
for omniversal segmentation, a 2D segmentation method
should be able to handle unseen categories. We seek so-
lution from click-based method like SAM [27], which ex-
hibits a class-agnostic property. Given an input image I , we
sample a grid of points (typically 32 × 32) as the prompts
and send them into a pretrained SAM [27] to get a set of 2D
binary masks Msegs = {mi ∈ RH×W |i = 1, ..., |Msegs|}
(see Fig. 3(a)). To create a label map as training data for
3D field optimization (as in [65]), one way is to overlap
masks in Msegs one-by-one based on their pixel counts
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Figure 3. 2D Hierarchical Representation. (a) For each image, click-based 2D segmentors provide a set of masks {mi}. (b) Directly
overlapping masks implemented by conventional methods [27] lead to the loss of hierarchical information. (c) Patch-based modeling
effectively preserves inclusion information. The hierarchical representation of each image includes a patch index map Ip and a correlation
matrix Chi, where the relevance between pi and other patches is evaluated via a voting strategy.

(see Fig. 3(b)). Unfortunately, this method (as done in
SAM [27]), may destroy the hierarchical information em-
bedded inside Msegs, since each pixel in image I may be-
long to more than one masks in Msegs (consider the fact that
a pixel belonging to the mask of a chair may also belong
to the mask of the chair’s leg). Alternatively, storing each
Msegs directly may result in high memory consumption, as
|Msegs| usually exceeds 500, using memory equivalent to
20x input images.

Hierarchical Modeling. To overcome the aforementioned
problem, we design a novel representation that preserves
the hierarchical information within each image and largely
reduces the memory consumption. Specifically, we divide
the entire 2D image into disjoint patches. As shown in
Fig. 3(a), let mi ∈ Msegs, (i = 1, ..., 4) represent masks
in Msegs. For each pixel, we create a one-hot vector to in-
dicate which masks the pixel belongs to. Then we define a
patch set Psegs, where each patch includes pixels that share
the same one-hot vector as shown in Fig. 3(c). Psegs also re-
sults in a patch index map Ip, on which each pixel contains
an index of the patch.

Next, we proceed to model the hierarchical structure
with patches Psegs (as the unit) and the original masks
Msegs (as the correlation binding). The core idea is that, if
two patches fall into the same mask, then these two patches
has some degree of correlation. To model the degree of the
correlation, we introduce a voting-based strategy. Specifi-
cally, for each pair of patches pi and pj , we count the num-
ber of masks that contain both pi and pj . By traversing all

the patch pairs, we get a matrix Chi ∈ RNp×Np :

Chi(pi, pj) =

Nm∑
k=1

1(pi ⊆ mk) · 1(pj ⊆ mk), (1)

where Nm = |Msegs| is the number of masks and Np =
|Psegs| is the number of patches. This process can be in-
terpreted as utilizing masks to vote for the relationship be-
tween patches. To inference the hierarchical relationship
among patches, we select a patch pi as the anchor and take
the i-th row of matrix Chi(pi, ·) = vi. We then sort the
patches according to the vote counts in vector vi and con-
struct a hierarchical tree for anchor patch pi, as illustrated in
Fig. 3(c). Patches located at higher level (smaller d) in the
tree has stronger correlation to pi, which can serve as the
guidance of the hierarchical contrastive learning introduced
in the subsequent section. As a summary, we construct the
hierarchical representation for each image, which consists
of a patch index map Ip and a correlation matrix Chi.

3.2. Hierarchical Contrastive Learning

In this section, we show how to lift the hierarchical relation-
ship of 2D patches into the 3D space through a hierarchical
contrastive learning framework.
3D feature field. Our 3D representation is built upon
NeRFs [37, 41], which uses an MLP FΘ to model the den-
sity σi and color ci of each 3D point xi ∈ R3 under view
direction di ∈ R2. Additionally, we define a segmentation
identity feature fi ∈ RD to model semantic information of
each 3D point. The formulation is shown below:

(σi, fi) = FΘ(γ1(xi)), ci = FΘ(γ1(xi), γ2(di)), (2)
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Figure 4. Hierarchical Contrastive Learning Framework. (a) For each input RGB image, we apply (b) 2D hierarchical modeling to
get a patch index map and a correlation matrix. During training, we utilize (c) NeRF-based rendering pipeline to render features from 3D
space and apply hierarchical contrastive learning (d) to the rendered features to optimize the feature field for segmentation.

where γ1 and γ2 are positional encoding functions in [41].
Subsequently, by integrating the sampled attributes ci,

σi, and fi along the ray, we can get rendered c(r) =∑n
i=1 Tiαici and f(r) =

∑n
i=1 Tiαifi on 2D image

plane [25, 37], where αi = 1 − exp(−σiδi) is the opac-
ity, Ti =

∏i−1
j=1(1 − αj) is the accumulated opacity, and

δi = ri+1 − ri is the distance between adjacent samples.
Basic implementation. In this section, we present a basic
implementation that lifts 2D segmentations into 3D space
via differentiable rendering and contrastive learning. No
hierarchical information is considered in this section.

For each image, we randomly sample N points on it and
identify the patch id of each point according to the patch
index map Ip. Then we render features fi(i ∈ [1, N ]) of
these points via differentiable rendering from the 3D fea-
ture field. For each sampled point, we designate the points
with the same patch id as positive samples, and all the other
sampled points as negative ones. The correlation between
two feature points is modelled as cosine distance fi · fj .

We apply a contrastive clustering method [30] to super-
vised the feature distance between rendered feature points.
Specifically, cluster Fi(i ∈ [1, Np]) is defined as the col-
lection of rendered features that share the same patch id i
and f ij is the j-th feature in Fi. The center of each cluster
is defined as the mean value f̄ i of features in Fi. Then for
each chosen feature point f ij , we take f̄ i and f̄k as positive
and negative samples respectively. The contrastive loss is
shown below, which favors high similarity among samples
within the same patch pi and low similarity between sam-
ples located in different patches (pi and pk):

LCC = − 1

Np

Np∑
i=1

|Fi|∑
j=1

log
exp(f ij · f̄ i/ϕi)∑Np

k=1 exp(f
i
j · f̄k/ϕk)

, (3)

where Np is the number of patch ids, ϕi is the temperature
of cluster Fi to balance the cluster size and variance: ϕi =

∑ni

j=1 ||f ij − f̄ i||2/(ni log(ni + α)), ni = |Fi|, α = 10 is
a smooth term to prevent small clusters from exhibiting an
excessively large ϕi.

Note that ConstrastiveLift [3] uses a slow-fast learning
strategy for stable training. We refer to contrastive cluster-
ing [30] to realize faster training and stable convergence.

Hierarchical implementation. Here we show how to in-
corporate hierarchical information into the pipeline of con-
trastive learning. Still we cluster the sampled feature points
into Np feature sets Fi(i ∈ [1, Np]) based on the patch in-
dex map Ip. Then for each anchor patch pi, we find all
related patches according to the correlation matrix Chi and
construct a set {Si

d} where Si
d is the patch index set at level

d ∈ [1, dimax] of anchor patch pi (e.g., Si=4
d=3 = {2, 3} in

Fig. 3). Note that all the samples in the related patches are
potential positive samples in this formulation.

To achieve hierarchical contrastive clustering in 3D, we
employ the hierarchical regularization proposed in [62].
Firstly, we add a regularization term λd−1 to Eq. 3 with
a per-level decay factor λ ≤ 1, which means higher penalty
is applied to the patches with stronger correlation to the an-
chor patch pi. Secondly, a strategy for regularizing the opti-
mization order is implemented to ensure that a patch higher
in the hierarchy tree (smaller d) exhibits a higher feature
similarity with the anchor patch than patches at lower levels
(as shown in Fig. 4(d)). The final loss is shown below:

LH =

Np∑
i=1

di
max∑
d=1

λd−1

NL

|Fi|∑
j=1

∑
s∈Si

d

max(Li,j(s),Li,j
max(d−1)),

(4)
where Si

d is the patch index set at level d of anchor patch
pi, Li,j(s) is the contrastive loss that favors high similarity
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Figure 5. Qualitative performance visualization. We visualize
both scene-level and object-level feature maps (with UMAP [35])
to reveal the hierarchical structure learned by OmniSeg3D.

between f ij and feature center of patch ps (s ∈ Si
d):

Li,j(s) = − log
exp(f ij · f̄s/ϕs)∑Np

k=1 exp(f
i
j · f̄k/ϕk)

, (5)

and Li,j
max(d) is the maximum loss at level d:

Li,j
max(d) = max

s∈Si
d

Li,j(s). (6)

Since the volumetric rendering may introduce ambiguity
in the calculation of the integration, we apply normaliza-
tion loss to ensure feature vectors distributed on the sphere
surface: Lnorm = 1

N

∑N
i=1 (||fi|| − 1)

2.

3.3. Implementation details

The method is built on top of InstantNGP [41] and we fol-
lows the same parameter settings for positional encoding
and MLP FΘ. We adopt a two-stage training paradigm.
For each scene, we first train our model with Lgeo =
Lc + w1Lreg to construct right geometry, where Lc =∑

r ∥c(r)− cgt(r)∥22, and Lreg =
∑

r −o(r) log(o(r)),
o(r) =

∑N
i=1 Tiαi. Lreg is used to regularize each ray

to be completely saturated or empty. Then the feature field
will be supervised via Lsem = w2LH+w3Lnorm. The per-
level decay factor is set to λ = 0.5. The hyper-parameters
are set to w1 = 1e − 3, w2 = 5e − 4, w3 = 5e2 for all
the experiments. The ray number of each batch is 8192

and both stages are trained for 50k iterations, which takes
30 ∼ 40min in total on a single RTX 3090 GPU.

Although we choose InstantNGP [41] as our backbone,
we demonstrate that OmniSeg3D is a lightweight plug-
in which can be easily adapted to 3D representations like
mesh, point cloud, and gaussian splatting [24]. For 2D
backbones, beside of SAM [27], other click-based segmen-
tation methods like [8, 32, 47] can be used as a substitute.
Please refer to our supplementary material for more details.

3.4. Interactive Segmentation

To realize flexible and interactive 3D segmentation, we de-
velop a graphical user interface (GUI). The GUI can serve
as a novel 3D annotation tool, which may largely improve
the efficiency of 3D data annotation and help solve the 3D
data shortage problem. One typical case based on NeRF is
shown in Fig. 1. With a single click on the object of inter-
est, our model generates a score field based on feature sim-
ilarities. By adjusting the binarization threshold, the seg-
mentation can seamlessly traverse the scene hierarchy from
atomic components to entire objects, and holistic portions
of the scene. Besides, users can select and segment multi-
ple objects simultaneously through multiple clicks.

4. Experiments
Our experiments encompass various datasets including in-
door [37, 48] and outdoor [2, 25, 36] scenes. Qualitative re-
sults can be found in Fig. 5. For quantitative performance,
we evaluate OmniSeg3D on both hierarchical (Sec. 4.1) and
instance (Sec. 4.2) 3D segmentation tasks.

4.1. Hierarchical 3D Segmentation

Dataset. To quantitatively evaluate OmniSeg3D, we cre-
ate a scene-scale dataset with hierarchical semantic anno-
tations. We utilize the Replica dataset [48] processed by
Semantic-NeRF [65], which comprises 8 realistic indoor
scenes. We uniformly sample a total of 281 images and
manually annotate each image with a query pixel q and
two corresponding masks, the smaller one ML1 properly
included by the larger one ML2 ⊃ ML1 . ML1 and ML2

typically correspond to object parts and complete instances
respectively, as shown in Fig. 6. In case multiple levels
of reasonable segmentations Ma ⊂ Mb ⊂ Mc exist, we
choose different pairs as the ground truth (ML1

,ML2
) in

different images, so that the selected masks exhibit diverse
scales and represent the full range of possible hierarchical
relationships present in the scene.

Benchmark. We benchmark our algorithm as follows.
The model receives as input a 2D query point q in the
given frame I, and is expected to output a dense 2D score
map {score (p) |p ∈ I}. Ideally, there exist thresholds
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Figure 6. Comparison of hierarchical segmentation results on the Replica dataset. Prompts are shown as black dots. Colored pixels denote
TP: True-Positive, FP: False-Positive and FN: False-Negative respectively.

Method
mIoU (%)

Level 1 Level 2 Average

DINO [5] 67.9 64.2 66.1
LSeg [29] 51.7 82.1 66.9
SAM [27] 92.8 80.2 86.5

Ours, w/o hierarchy 93.1 80.4 86.7
OmniSeg3D (ours) 91.3 88.9 90.1

Table 1. Comparison of hierarchical segmentation on Replica [48].

th1 > th2 that, when applied to the score map, yields
ML1

⊂ ML2
respectively:

∃ thi s.t. MLi
= {p ∈ I | score (p) > thi}. (7)

For evaluation, we choose the thresholds (th1, th2) that
maximize the IoU between the predicted masks and the
ground truth (ML1 ,ML2), and define the metrics as:

IoULi = max
thi

IoU ({p ∈ I | score (p) > thi},MLi), (8)

and we have IoUAvg = (IoUL1 + IoUL2)/2.

Baseline methods. We first compare OmniSeg3D with
state-of-the-art 2D segmentation models and semantic fea-
ture extractors. SAM [27] predicts three hierarchical masks

from the point query. We compare each to the ground truth
masks (ML1

,ML2
) and report the highest IoU. DINO [5]

and LSeg [29] (based on CLIP [43]) predict a feature image,
which is converted to a score map based on cosine similar-
ities and then binarized using Eq. 8 to compute the IoU. In
addition, we compare our full method with the basic imple-
mentation in Sec. 3.2, i.e., 3D contrastive learning without
hierarchical modelling.

Results. The quantitative and qualitative results of hi-
erarchical segmentation on the Replica [48] dataset are
demonstrated in Tab. 1 and Fig. 6 respectively. Our Om-
niSeg3D achieves the highest average mIoU, while substan-
tially leading in level-2 segmentation, which shows the ad-
vantage on high-level semantic understanding.

As shown in Fig. 6, the self-supervised DINO method
struggles to delineate clear object boundaries. LSeg cap-
tures overall semantics better but fails to discriminate be-
tween instances. SAM performs well at fine-grained seg-
mentation, but occasionally fails to group together multiple
objects or large regions, resulting in lower level-2 mIoU.
Our basic implementation without hierarchical modeling
inherits these characteristics of SAM, with slightly better
metrics. Our full method achieves large improvements in
high-level segmentation while maintains comparable per-
formance in level-1 segmentation, which implies that the
hierarchical modelling effectively aggregates fragmented
part-whole correlations from multiple views. Moreover, in
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Dataset Method mIoU (%) Acc (%)

NVOS

NVOS [44] 70.1 92.0
ISRF [18] 83.8 96.4
SA3D [6] 90.3 98.2

OmniSeg3D (ours) 91.7 98.4

MVSeg
MVSeg [38] 90.9 98.9

SA3D [6] 92.4 98.9
OmniSeg3D (ours) 94.3 99.3

Replica
MVSeg [38] 32.4 -

SA3D [6] 83.0 -
OmniSeg3D (ours) 84.4 -

Table 2. Quantitative comparison of instance segmentation.

contrast to the instability in performance that 2D models
may exhibit across different resolutions, our OmniSeg3D
implicitly integrates voting-based correlations from multi-
view inputs, which distills a stable hierarchical semantic or-
der into the 3D representation, thereby enhancing global-
scale semantic clustering.

4.2. 3D Instance Segmentation

While designed for omniversal 3D segmentation, our
method is able to handle 3D instance segmentation as a sub-
task. Different from existing methods [6, 38], we do not
require instance-specific training. The 3D feature field of
OmniSeg3D is trained only once for each scene and reused
for different instances, while still performing competitively
on datasets proposed by previous work.

We follow NVOS [44], SPIn-NeRF [38] and SA3D [6]
to benchmark 3D instance segmentation as prompt propaga-
tion. For each scene, given prompts (scribbles or masks) in
the reference view, the algorithm is supposed to segment the
instance in the target view. The predicted mask is compared
with the ground truth segmentation. As shown in Tab. 2,
OmniSeg3D outperforms the baseline methods in terms of
mIoU and pixel-wise accuracy, while alleviating the need to
retrain different segmentation fields for the same scene.

4.3. Ablation Studies

Hierarchical decay. As illustrated in Eq. 4, we apply a
decay λ ∈ [0, 1] to downweight the contrastive loss for
patches of lower correlation with the anchor. Setting λ = 0
resembles the basic implementation without hierarchical
modeling, while setting λ = 1 puts equal emphasis on sam-
ples from all hierarchies, enhancing high-level semantics.
Tab. 3 demonstrates hierarchical segmentation results on the
Replica dataset. With the increase of λ, IoUL1 decreases
while IoUL2 increases, reaching IoUL1 ≈ IoUL2 at λ = 1.
We choose λ = 0.5 with the highest average mIoU, imply-
ing a balance between local and global semantic clustering.

Hierar. Per-level Hierar. mIoU (%) Instance
model decay λ Lv.1 Lv.2 Avg. mIoU (%)

× - 93.1 80.4 86.7 83.6
✓ 0.1 92.5 84.7 88.6 84.3
✓ 0.2 92.1 86.5 89.4 84.6
✓ 0.5 91.3 88.9 90.1 84.4
✓ 1 89.2 89.2 89.2 83.3

Table 3. Ablation of hierarchical modelling on Replica.

Feat. dim. 4 8 16 32 64 128

Avg. mIoU 89.8 91.8 93.0 93.0 93.1 93.2

Table 4. Ablation of feature dimensions on room-0 of Replica.

Feature dimension. We study how the dimension D of
semantic features affects the performance of hierarchical
contrastive clustering. The Tab. 4 indicates that the average
mIoU rises with D and levels off after D = 16, suggesting
that a D of 16 is sufficient for our algorithm.

5. Limitations
Due to the absence of a clear definition for hierarchy lev-
els, there is no assurance that the objects will be segmented
at the same level by simply clustering features with one
threshold. To address this issue, text-aligned hierarchical
segmentation may be a future direction. Besides, since the
contrastive learning is applied on single images, two objects
that have never appeared in the same image may have sim-
ilar semantic feature. This problem can be alleviated by in-
troducing local geometric continuity, but global contrastive
learning across images is also a topic worth exploring.

6. Conclusion
In this paper, we propose OmniSeg3D, an omniversal seg-
mentation method that facilitates holistic understanding of
3D scenes. Leveraging a hierarchical representation and
a hierarchical contrastive learning framework, OmniSeg3D
effectively transforms inconsistent 2D segmentations into
a globally consistent 3D feature field while retaining hi-
erarchical information, which enables correct hierarchi-
cal 3D sensing and high-quality object segmentation per-
formance. Besides, variant interactive functionalities in-
cluding hierarchical inference, multi-object selection, and
global discretization are realized, which may further enable
downstream applications in the field of 3D data annotation,
robotics and virtual reality.

Acknowledgements This work is supported in part by Nat-
ural Science Foundation of China (NSFC) under contract
No. 62125106 and 62088102, in part by Tsinghua-Zhijiang
joint research center.

20619



References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien

Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic superpix-
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