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Abstract

It is a well-known fact that the performance of deep
learning models deteriorates when they encounter a
distribution shift at test time. Test-time adaptation (TTA)
algorithms have been proposed to adapt the model online
while inferring test data. However, existing research
predominantly focuses on classification tasks through the
optimization of batch normalization layers or classification
heads, but this approach limits its applicability to various
model architectures like Transformers and makes it chal-
lenging to apply to other tasks, such as object detection. In
this paper, we propose a novel online adaption approach
for object detection in continually changing test domains,
considering which part of the model to update, how to
update it, and when to perform the update. By introducing
architecture-agnostic and lightweight adaptor modules and
only updating these while leaving the pre-trained backbone
unchanged, we can rapidly adapt to new test domains
in an efficient way and prevent catastrophic forgetting.
Furthermore, we present a practical and straightforward
class-wise feature aligning method for object detection to
resolve domain shifts. Additionally, we enhance efficiency
by determining when the model is sufficiently adapted or
when additional adaptation is needed due to changes in
the test distribution. Our approach surpasses baselines on
widely used benchmarks, achieving improvements of up to
4.9%p and 7.9%p in mAP for COCO — COCO-corrupted
and SHIFT, respectively, while maintaining about 20
FPS or higher. The implementation code is available at

https://github.com/natureyoo/Continual TTA _ObjectDetection.

1. Introduction

Deep learning models excel in many vision tasks but strug-
gle with domain shifts when test data distributions diverge
from training data [3, 27, 42]. These shifts, common in
real-world settings, arise from natural variations, weather
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Figure 1. We propose an online adaptation method for object
detection in continually changing test domains. Object detectors
trained with clean images suffer from performance degradation
due to various corruption, such as camera sensor degradation or
environmental changes (Direct-Test). Updating full parameters for
online adaptation require a large number of test samples and vul-
nerable to drastic domain changes (Full-Finetuning), while using
only our lightweight adaptor is robust and quickly adapts within a
few time steps (Ours). We can further improve efficiency by skip-
ping unnecessary adaptation steps (Ours-Skip).

changes (e.g., fog, rain), camera differences (e.g., pixelate,
defocus blur), and various other factors. Test-Time Adapta-
tion (TTA) [3, 27, 32, 42, 45, 49] addresses these shifts by
adapting models to the target (test) distribution online. Con-
sidering the dynamic nature of real-world applications, it
becomes crucial to extend this approach to Continual Test-
Time Adaptation (CTA), which accounts for the ongoing
evolution of test distributions. This is particularly vital in
environments like autonomous driving, where conditions
can change continuously (e.g., from clear to rainy, or day
to night). Despite its significance, continual test-time adap-
tation for object detection remains underexplored.
Recently, several TTA methods [6, 31, 38] tailored for
object detection have been proposed. ActMAD [31] aligns
all the output feature maps (RE**W) after Batch Nor-
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malization (BN) layers [15] to adapt the test domain to be
similar to that of the training domain. However, this ap-
proach requires significant memory during adaptation and
does not explicitly consider the objects present in the image.
TeST [38] and STFAR [6] adapt to a test domain by utiliz-
ing weak and strong augmented test samples with a teacher-
student network [39], but they significantly increase infer-
ence costs since they require additional forward passes and
update steps. Also, these methods update all network pa-
rameters, making them highly inefficient in online adapta-
tion and vulnerable to losing task-specific knowledge when
the test domain experiences continual or drastic changes.

In this paper, we aim to develop an efficient continual
test-time adaptation (CTA) method for object detection. We
investigate the following three key aspects to improve ef-
ficiency; what to update: while previous TTA methods for
object detection [6, 31, 38] use full fine-tuning, updating
all parameters at test time, they are inefficient and prone to
losing task-specific knowledge in relatively complex object
detection tasks. Updating BN layers, as done in many TTA
methods for classification [18, 32, 45, 49], is not as effective
for object detection, given its smaller batch size compared
to classification and the limitation in applying various back-
bones, such as Transformer [28, 43]. how to update: several
previous TTA methods for object detection [6, 38] adapt
the model by using teacher-student networks, resulting in
a significant decrease in inference speed, which is detri-
mental during test time. While another existing method [31]
aligns feature distributions for adaptation, it does not con-
sider each object individually, focusing only on image fea-
tures, making it less effective for object detection. when to
update: most TTA or CTA methods update models using all
incoming test samples. However, it is inefficient to update
continuously the model if it is already sufficiently adapted
when the change of the test domain is not significant.

To this end, (1) we propose an efficient continual test-
time adaptation method for object detectors to adapt to
continually changing test domains through the use of
lightweight adaptors which require only 0.54%~0.89% ad-
ditional parameters compared to the full model. It exhibits
efficiency in parameters, memory usage, and adaptation
time, along with robustness to continuous domain shifts
without catastrophic forgetting. Additionally, it demon-
strates wide applicability to various backbone types com-
pared to BN-based TTA methods [18, 24, 32,45, 49, 50]. (2)
To enhance the adaptation effectiveness in the object detec-
tion task, we align the feature distribution of the test domain
with that of the training domain at both the image-level and
object-level using only the mean and variance of features.
For estimating the mean of the test domain features, we
employ Exponentially Moving Average (EMA) as we can
leverage only the current incoming test samples, not the en-
tire test domain data. Due to the unavailability of training

data access, we utilize only the mean and variance of the
features from a few training samples. (3) We also introduce
two novel criteria that do not require additional resources
to determine when the model needs adaptation to enhance
efficiency in a continually changing test domain environ-
ment. As illustrated in Fig. 1, our approach Ours, employ-
ing adaptors, tends to adapt much faster to domain changes
compared to full parameter updates. This enables efficient
TTA by using only a few test samples to update the adaptor
and skipping the rest of the updates as shown in Ours-Skip.
Our main contributions are summarized as follows:

* We introduce an architecture-agnostic lightweight adap-
tor, constituting only a maximum of 0.89% of the total
model parameters, into the backbone of the object de-
tector to adapt the model in a continually changing test
domain. This approach ensures efficiency in parameters,
memory usage, and adaptation speed, demonstrating the
robust preservation of task-specific knowledge owing to
its inherent structural characteristics.

* We propose a straightforward and effective adaptation
loss for CTA in object detection tasks. This is achieved by
aligning the distribution of training and test domain fea-
tures at both the image and object levels, utilizing only the
mean and variance of a few training samples and EMA-
updated mean features of the test domain.

* We also propose two criteria to determine when the model
requires adaptation, enabling dynamic skipping or resum-
ing adaptation as needed. This enhancement significantly
boosts inference speed by up to about 2 times while main-
taining adaptation performance.

* Our adaptation method proves effective for diverse types
of domain shifts, including weather changes and sensor
variations, regardless of whether the domain shift is dras-
tic or continuous. In particular, our approach consistently
improves the mAP by up to 7.9% in COCO—COCO-C
and SHIFT-Discrete/Continuous with higher than 20 FPS.

2. Related Work

Test-time adaptation. Recently, there has been a surge of
interest in research that adapts models online using unla-
beled test samples while simultaneously inferring the test
sample to address the domain shift problem, where the
test data distribution differs from that of the training data.
There are two lines for online adaptation to the test do-
main, Test-time Training (TTT) and Test-time Adaptation
(TTA). TTT [1, 2, 27, 42] involves modifying the model
architecture during training to train it with self-supervised
loss, allowing adaptation to the test domain in the test time
by applying this self-supervised loss to the unlabeled test
samples. On the other hand, TTA aims to adapt the trained
model directly to the test domain without specifically tai-
lored model architectures or losses during training time.
NORM [37] and DUA [30] address the domain shifts by
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adjusting the statistics of batch normalization (BN) layers
using the current test samples, without updating other pa-
rameters, inspired by [23]. Following this, [24, 32, 45, 50]
and [18] update the affine parameters of BN layers using
unsupervised loss, entropy minimization loss to enhance the
confidence of test data predictions, and feature distribution
alignments loss, respectively. Several studies [16, 17] up-
date the classifier head using the pseudo-prototypes from
the test domain. However, these methods limit their appli-
cability to architectures without BN layers or to object de-
tection tasks that involve multiple objects in a single im-
age. Others [31, 40, 49] update full parameters for online
adaptation to the test domain in an online manner, but this
approach is inefficient and susceptible to the noisy signal
from the unsupervised loss. While existing TTA methods
are oriented towards classification tasks, we aim to propose
an effective and efficient method for online adaptation in the
object detection task.

Continual test-time adaptation. Recent studies [33, 46]
point out that existing TTA methods have primarily focused
on adapting to test domains following an i.i.d assumption
and may not perform well when the test data distribution
deviates from this assumption. [46] introduces a Contin-
ual TTA (CTA) method designed for scenarios where the
test domain continuously changes over time. This poses
challenges in preventing the model from over-adapting to
a particular domain shift and preserving the knowledge
of the pre-trained model to avoid catastrophic forgetting.
In the field of CTA, the self-training strategy adopting
an Exponentially Moving Average (EMA) teacher-student
structure is attracting interest as an effective algorithm en-
abling robust representation to be learned through self-
knowledge distillation. In many studies, the EMA teacher-
student structure and catastrophic restoration of source
model weights have been proposed as a solution to achieve
the goal of CTA [4, 46, 47]. Approaches using source re-
play [34], and anti-forgetting regularization [32] have also
achieved good performances in robust continuous adapta-
tion. Furthermore, there is growing attention on methods
that mitigate the computational and memory challenges as-
sociated with CTA, such as [13], which relies on updates to
batch normalization statistics.

Test-time adaptive object detection. Research on TTA for
Object Detection (TTAOD) is progressively emerging [0,
31, 38, 44]. Most existing TTAOD methods [6, 38, 44]
exploit a teacher-student network to adapt to the test do-
main, following the self-training approach commonly em-
ployed in Unsupervised Domain Adaptation for object de-
tection [7, 19, 21, 36]. However, it is inefficient for TTA
due to data augmentation requirements and additional for-
ward and backward steps, resulting in slower inference
speeds and higher memory usage. Another approach, Act-
MAD [31], aligns the distributions of output feature maps

after all BN layers along the height, width, and channel axes
to adapt to the test domain. However, this location-aware
feature alignment is limited to datasets with fixed location
priors, such as driving datasets, and is less effective for nat-
ural images like COCO. Additionally, CTA for Object De-
tection (CTAOD) have not been thoroughly explored. There-
fore, there is a need for an effective CTAOD method con-
sidering memory and time efficiency.

3. Method

To enable the efficient and effective Continual Test-time
Adaptation of Object Detectors (CTAOD), we introduce an
approach that specifies which part of the model should be
updated, describes how to update those using unlabeled test
data, and determines whether we perform model updates or
not to improve efficiency.

3.1. Preliminary

Assume that we have an object detector h o gg, here h
and g are the Rol head and the backbone, respectively with
their parameters being ©. The training dataset is denoted
as Dirain = {(zi,v:)},, where ; ~ Pigin(z) and
yi = (bbox;, ¢;), containing information on the bounding
box (bbox) and class label ¢; € C. Consider deploying the
detector to the test environments where the test data at pe-
riod T is denoted as =] ~ PrL_(x), PL,, # Pirain and
PZL,, deviates from the i.i.d. assumption. In addition, the
domain of PL_, continually changes according to T' (i.e.,
PT . # PL_1. Our goal is to adapt the detector h o g to
P, using only test data ] while making predictions.

3.2. What to update: Adaptation via an adaptor

Previous methods [6, 31, 38, 44] adapt the model to the
test domain by updating all parameters O, leading to in-
efficiency at test time and a high risk of losing task knowl-
edge from the training data. In contrast, we adapt the model
by introducing an adaptor with an extremely small set of
parameters and updating only this module while freezing
©. We introduce a shallow adaptor in parallel for each
block, inspired by [5, 14], where transformer-based mod-
els are fine-tuned for downstream tasks through parameter-
efficient adaptors, as shown in Fig. 2. Each adaptor consists
of down-projection layers Wyown € Rdx%, up-projection
layers W,,,, € R%*4 and ReLUs, where d denotes the in-
put channel dimension and r is the channel reduction ratio
set to 32 for all adaptors. We use MLP layers for the Trans-
former block (Fig. 2a) and 1x 1 convolutional layers for the
ResNet block (Fig. 2b) to introduce architecture-agnostic
adaptors. The up-projection layer is initialized to O values
so that the adaptor does not modify the output of the block,
but as the adaptor is gradually updated, it adjusts the output
of the block to adapt to the test domain. Even as the adaptor
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Figure 2. We attach an , which is a shallow and low-rank
MLP or CNN, to every NN block in parallel. We update only these
adaptors while other parameters are frozen. Our approach can be
applied to diverse architectures including CNNs and Transformers.

is updated in the test domain, the original backbone param-
eter © remains frozen and fully preserved. This structural
preservation, as evident in Ours in Fig. 1, enables robust
and efficient adaptation to domain changes by maintaining
relatively complex task knowledge in object detection and
updating very few parameters.

3.3. How to update: EMA feature alignment

To adapt the object detector to the test domain, we align
the feature distribution of the test domain with that of the
training data, inspired by [18, 31, 40]. In contrast to these
methods that solely align image feature distribution, we ad-
ditionally align object-level features in a class-wise manner,
considering class frequency, to enhance its effectiveness for
object detection. As the training data is not accessible dur-
ing test time, we pre-compute the first and second-order
statistics, denoted as py = E[Fy,] and 2. = Var[Fy,|,
where the operators [E and Var represent the mean and vari-
ance respectively. The features Fy,. = {go(z,)} are com-
puted using only 2,000 training samples, a small subset of
the training data. Since a sufficient amount of test domain
data is not available at once, and only the current incoming
test data, whose features are denoted as Ftte, is accessible at
time step ¢, we estimate the mean of test data features using
an exponentially moving average (EMA) as follows:

M%e = (1 - a) : Mitfgl +oao- E[Ftte]7 S.L. lj’toe = Htr- (D
Considering the typically small batch size in object detec-
tion compared to classification, we approximate the vari-
ance of the test features as ;. =~ ;. to reduce instability.
Image-level feature alignment. We estimate the training
and test feature distributions as normal distributions and
minimize the KL divergence between them as follows:

Limg - DKL (N(,utr) Et?')vN(,uztsea EtT'))- (2)

Region-level class-wise feature alignment. In object de-
tection, we deal with multiple objects within a single image,
making it challenging to apply the class-wise feature align-
ment proposed in [40], a TTA method for classification. To
handle region-level features that correspond to an object,
we use ground truth bounding boxes for the training data
and utilize the class predictions of Rol pooled features, f}.,
for unlabeled test data. In object detection, domain shifts
often result in lower recall rates, as a significant number of
proposals are predicted as background [22]. To mitigate this
issue, we filter out features with background scores exceed-
ing a specific threshold. Subsequently, we assign them to the
foreground class with the highest probability, as follows:

Fl' = {fi| argmaxpsy = k. pyy < 0.5}, 3
where hcls(ftte) = [pfgapbg] = [pOw"vpCfl»pbg]'

We estimate the class-wise feature distribution of the test
domain by exploiting Ftke’t and Eq.1. Furthermore, we in-
troduce a weighting scheme for aligning features of less
frequently appearing classes, taking into account the severe
class imbalance where specific instance (e.g., person) may
appear multiple times within a single image, as follows:

Nk,t _ th,t—l + ||Ft]fa,t |7 s.t. Nk,O =0

kit max; N©t

Lopj = Y _w™" - Dic, (N (., £5.), N (g, B5).
k

Here, the class-wise mean ;* and variance X% of the train-
ing and test data are obtained in the same way as the image-
level features. We can effectively adapt the object detector
by updating the model to align the feature distribution at
both the image and object levels as L = Lj;,g + Loy,

3.4. When to update: Adaptation on demand

As shown in Fig. 1, Ours, which only updates the adaptor
proposed in Sec. 3.2, efficiently adapts to changes in the test
domain, even with a small subset of early test samples. We
leverage its rapid adaptation characteristics to reduce com-
putational costs by skipping model updates (i.e., skipping
backward passes) when the model has already sufficiently
adapted to the current test domain and resuming model up-
dates when confronted with a new test domain. Therefore,
we introduce two criteria to determine when to update the
model or not as follows:

(Criterion 1) When the distribution gap exceeds the in-
domain distribution gap. Recall that L;,,, (Eq. 2) mea-
sures the distribution gap between the test and train distri-
butions. We assume a model is well-adapted to the current
test domain when L;,,q is closer to the in-domain distri-
bution gap. We measure the in-domain distribution gap by
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Figure 3. The test domain undergoes a shift every 4,000 time steps,
and each metric reaches its peak at the same intervals.

sampling two disjoint subsets, x; and x;, of training fea-
tures F},. from Sec. 3.3 as follows:

W, = DN (4, S0 ), N (1, 21)), (9

where 4., ¥, are obtained from x; ~ Piain(z) and
Wl Xf, from x; ~ Ppgin(x). In other words, if Lijy,g is
noticeably higher than the in-domain distribution gap D", ,
we consider a model encountering a test domain whose dis-
tribution differs from Pj,.q;,(z) and needs to be updated.
Based on this, we introduce a new index % Fig. 3a plots
the trend of this index during the model adafi)%ation to a con-
tinually changing test domain. It shows that the index has a
large value in the early stages of a domain change, decreases
rapidly, and then maintains a value close to 1. This index
exhibits a similar trend regardless of the backbone type and
dataset, as included in the appendix. Therefore, we establish
the criterion that model updates are necessary when this in-
dex exceeds a certain threshold, 7, as % > Ty

(Criterion 2) When the distribution ngp suddenly in-
creases. Additionally, we can determine when the test dis-
tribution changes and model updates are necessary by ob-
serving the trend of the distribution gap (i.e., Ljyg). The
convergence of L;,, indicates that a model is well-adapted
to the current test domain. To put it differently, L;,,, will
exhibit a sudden increase when the model encounters a new
test domain. We introduce an additional index, denoted as

72, representing the ratio of the current Ly, to its expo-
ema
t

nentially moving average L_, . at time ¢. We calculate it us-
ing the following formula: Lf ,, = 0.99-L{ 1 +0.01- L.
Fig. 3b illustrates the trend of the ratio of L;,,, over the
timesteps. It tends to reach a value of 1 as the loss stabilizes
at a specific level. Nevertheless, when the model encounters
shifts in the test distribution, the ratio experiences a sharp
increase, indicating the necessity of a model update when it

. L;,
exceeds a specific threshold, 75, as L > T
fna

If at least one of the two criteria is satisfied, we conclude
that the model requires adaptation and proceed to update it.

4. Experiments

Sec. 4.1 presents the two object detection benchmark
datasets with test distributions that change continuously, ei-
ther in a drastic or gradual manner, and our implementation
detail is in 4.2. Sec. 4.4 compares our method with other
TTA baselines described in Secs. 4.3.. We present detailed
ablation studies of our method analyzing the effectiveness
and efficiency of our method in terms of what, how, and
when to update the models for CTAOD in Sec. 4.5.

4.1. Datasets

We experiment with the following three scenarios.

COCO — COCO-C simulates continuous and drastic real-
istic test domain changes over a long sequence. MS-COCO
[25] collects 80 classes of common objects in their natural
context with 118k training images and 5k validation images.
COCO-C is created by employing 15 types of realistic cor-
ruptions [29], such as image distortion and various weather
conditions, to simulate test domain changes. In the experi-
ments, the model is only trained on the COCO train set and
sequentially evaluated on each corruption in the COCO-C
validation set during test-time for reproducing continually
changing test domains. Finally, the model is evaluated on
the original COCO validation set to assess how well it pre-
serves knowledge of the original domain (denoted as Org.).
SHIFT-(Discrete / Continuous) [41] is a synthetic driving
image dataset with 6 classes under different conditions us-
ing five weather attributes (clear, cloudy, overcast, fog, rain)
and three time-of-day attributes (daytime, dawn, night). In
SHIFT-Discrete, there are image sets for each attribute,
and the model is sequentially evaluated on these attributes,
cloudy — overcast — foggy — rainy — dawn — night —
clear which contains 2.4k, 1.6k, 2.7k, 3.2k, 1.2k, 1.4k, and
2.8k validation images, respectively. This simulates scenar-
ios where the domain undergoes drastic changes. In SHIFT-
Continuous, the model is evaluated on four sequences, each
consisting of 4k frames, continuously transitioning from
clear to foggy (or rainy) and back to clear.

4.2. Implementation Detail

We conduct experiments on Faster-RCNN [35] with
FPN [26], using ImageNetlk pre-trained ResNet50 [11]
and ImageNet21k pre-trained Swin-Tiny [28] backbones.
Specifically, Swin-Tiny is employed for its superior domain
transfer [20] and detection efficacy over other advanced
backbones [9]. For COCO — COCO-C with ResNet50,
we use a publicly available model trained with strong aug-
mentation [48]. Other models are trained using detectron2
framework following [35] and [28]. For test-time adapta-
tion, we always set the learning to 0.001 for the SGD opti-
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Table 1. Comparison of mAP, the number of backward and forward passes, and FPS between baselines and our model on COCO — COCO-
C. Our model consistently outperforms baselines on the two different backbones. Furthermore, Ours-Skip with ResNet notably reduces
backward passes by as much as 90.5%, leading to a significantly improved frames per second (FPS) rate by up to 109.9%.

| Noise Blur Weather Digital | # step

Backbone Method | Gau Sht Imp Def Gls Mwmn Zm Snw Frs Fog Brt Cnt Els Px Jpg Org| Avg| For.  Back| FPS
Direct-Test 9.7 114 100 134 7.5 121 52 207 248 36.1 36.0 129 19.1 49 158 43.0| 17.7] 80K 0 21.5
ActMAD 10.7 120 94 123 57 95 45 153 175 276 282 1.1 16.7 2.6 87 363 139/ 80K 80K | 8.3

Swin-T [28] Mean-Teacher 10.0 12.1 112 128 8.1 12.1 49 19.6 237 349 340 80 189 6.1 17.6 41.0| 17.2| 160K 80K | 6.9
Ours 13.6 16.6 16.1 14.0 13.6 142 83 23.7 272 374 364 272 272 222 223 423| 22.6/ 80K 80K | 9.5
Ours-Skip 133 153 15.1 140 128 139 6.5 220 254 355 349 265 259 234 202 41.2] 21.6] 80K 9.7K| 17.7
Direct-Test 9.1 11.0 98 126 45 88 46 19.1 231 384 380 214 156 53 119 442| 17.3] 80K 0 25.8
NORM 99 119 110 126 52 91 5.1 194 235 382 376 224 172 57 103 434| 17.5| 80K 0 25.8
DUA 9.8 11.7 108 12.8 52 89 5.1 19.3 237 384 378 223 172 54 10.1 44.1| 17.1] 80K 0 25.8

ResNet50[11] ActMAD 91 96 70 110 32 6.1 33 128 14.0 277 278 39 129 23 7.2 343| 105 80K 80K | 9.6
Mean-Teacher 9.6 125 120 40 29 48 3.1 162 235 35.1 340 218 166 82 127 40.3| 145/ 160K 80K | 8.1
Ours 127 178 175 124 115 113 6.6 228 269 38.6 385 28.0 251 212 222 418 22.2| 80K 80K | 10.1
Ours-Skip 144 17.1 160 139 11.7 122 63 221 255 37.7 37.1 255 241 231 21.1 428 219 80K 7.6K| 21.2

mizer, and « of Eq. 1 to 0.01, while 7; and 7 are set to 1.1
and 1.05, respectively. We use the same hyper-parameters
across all backbones and datasets, with a batch size of 4.

4.3. Baselines

Direct-Test evaluates the model trained in the training do-
main without adaptation to the test domain. ActMAD [31]
is a TTA method aligning the distribution of output features
across all BN layers. To apply ActMAD to the Swin Trans-
former-based model, we align the output features of the
LN layers. We implement Mean-Teacher using a teacher-
student network framework to reproduce as close as possi-
ble to TeST [38], as its implementation is not publicly avail-
able. We follow the FixMatch [39] augmentation method
and report results after tuning all hyper-parameters in our
scenario. NORM [37] and DUA [30], TTA methods ini-
tially designed for classification, are directly applicable to
detection tasks by either mixing a certain amount of current
batch statistics or updating batch statistics via EMA. How-
ever, these are only compatible with architectures contain-
ing BN layers. Additional details are provided in Appendix.

4.4. Main Results

We compare the performance of each method using mAP
and efficiency metrics, including the number of forward and
backward passes, as well as FPS during test-time adapta-
tion. Results of COCO and SHIFT are in Tab. 1 and 2, re-
spectively.

COCO — COCO-C. Tab. 1 demonstrates the effective
adaptation performance of Ours in the challenging COCO
benchmark with 80 classes due to object-level class-wise
feature alignment. ActMAD also aligns feature distribution
for TTA, but is not effective since it only aligns whole fea-
ture maps without considering specific classes in the im-
age. NORM and DUA, applicable only to ResNet [11], show
minimal performance improvement by adaptation as they
are not specifically tailored for object detection and only
modify batch statistics across the entire feature map. Ad-

ditionally, ActMAD and Mean-Teacher, updating full pa-
rameters, gradually lose task knowledge in the continually
changing test distributions, resulting in much lower perfor-
mance on Org., the domain identical to the training data,
than that of Direct-Test. In contrast, Ours effectively pre-
vents catastrophic forgetting by freezing the original param-
eters of the models and updating only the adaptor, obtain-
ing performance on par with Direct-Test on the Org. do-
main and consistently high performance across corrupted
domains, with an average mAP improvement of 4.9%p
compared to that of Direct-Test. Furthermore, leveraging
the rapid adaptation ability of the adaptor, Ours-Skip, which
skips unnecessary adaptation, allows using only a maxi-
mum of about 12% of the total samples for adaptation with-
out significant performance loss. This leads to a substantial
improvement in inference speed, more than doubling com-
pared to other TTA methods, reaching over 17.7 FPS.

SHIFT-Discrete. Ours is also effective in SHIFT, which
simulates continuous changes in weather and time in driv-
ing scenarios according to the left section of Tab. 2. Espe-
cially, Ours shows significant improvements in mAP by 7-
9%p, particularly for the foggy and dawn attributes where
Direct-Test obtains lower performance due to severe do-
main shift. In contrast, with ActMAD, catastrophic forget-
ting takes place when adapting to the cloudy and overcast
weather. This is due to the updating of the full parame-
ters, despite that Direct-Test already shows proficient per-
formance in these conditions. As a result, the performance
in the later domains is worse than that of the Direct-Test.
DUA, which updates batch statistics using EMA, shows
a gradual decrease in performance as the domain contin-
uously changes, resulting in much lower performance in
the original clear domain (i.e., clear). On the other hand,
NORM, which utilizes the statistics of the current batch
samples, exhibits no catastrophic forgetting and relatively
good adaptation, as SHIFT is a relatively easier task com-
pared to COCO due to having only 6 classes. Compared to
NORM, Ours shows better adaptation performance, and is
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Table 2. Comparison of mAP, the number of backward and forward passes, and FPS between baselines and our model on SHIFT-Discrete
and SHIFT-Continuous. Baselines perform effectively in a particular setting but lack generalizability across various settings. Our method
consistently achieves results that are either better or on par with the best model in all settings, demonstrating its strong stability. Ours-Skip
also effectively reduces the number of backward passes without compromising mAP performance, resulting in a higher FPS.

‘ SHIFT-Discrete SHIFT-Continuous
‘ mAP # step ‘ mAP # Avg. step
Backbone Method | cloudy overc. fog  rain  dawn night clear| Avg.| For.  Back.| FPS | clear¢+fog  clear<rain | For.  Back.| FPS
Direct-Test 50.0 389 23.1 451 269 395 459| 385| 153K O 27.5 18.1 21.1 4K 0 28.3
ActMAD 49.8 384 214 431 190 320 448 | 355 | 153K 153K] 9.3 15.6 16.3 4K 4K 9.8
Swin-T [28] Mean-Teacher 50.0 392 257 454 260 375 422 380 | 30.6K 153K 7.8 204 24.3 8K 4K 6.5
Ours 50.3 392 322 467 304 399 443 404 | 153K 153K 11.2 23.9 22.6 4K 4K 11.6
Ours-Skip 50.3 39.7 29.1 471 302 415 459 | 40.6 | 153K 6.1K | 20.0 25.1 23.8 4K 0.83K| 19.2
Direct-Test 494 379 197 431 20.1 353 456 359 | 153K O 30.1 12.1 15.4 4K 0 30.0
NORM 49.7 38.6 229 447 251 374 455 37.7| 153K O 30.1 16.9 19.4 4K 0 30.0
DUA 452 315 277 319 152 186 21.1| 273 | 153K O 30.1 22.5 224 4K 0 30.0
ResNet50[11] ActMAD 492 377 180 406 160 329 443 | 341 | 153K 153K 113 12.7 16.3 4K 4K 11.2
Mean-Teacher 49.6 384 268 434 266 33.1 41.6| 37.1 | 30.6K 153K 9.9 16.0 20.8 8K 4K 9.8
Ours 49.7 387 274 463 274 37.6 438 | 38.7| 153K 153K| 129 20.9 219 4K 4K 13.9
Ours-Skip 49.7 388 269 462 276 388 450 39.0| 153K 89K | 215 20.0 22.5 4K 0.75K] 21.3

Table 3. Comparison of adaptation performance (mAP), the num-
ber of trainable parameters (# Params), and memory usage (Cache)
according to which part of the backbone is updated. SD / SC de-
notes SHIFT-Discrete/Continuous, respectively.

| mAP # Params Cache
Backbone Trainable Params ‘ SD SC Num Ratio Avg. Max
Full-params 38.4 20.6 27.7M 100% 0.86 11.0
Swin-T LayerNorm 38.5 20.0 0.03M 0.1% 0.65 7.49
adaptor (Ours) 404 232 0.15M 0.5% 0.65 6.96
Full-params 37.6 204 23.7M 100% 1.65 9.29
ResNet50 BatchNorm 379 20.2 0.05M 0.2% 147 9.11
adaptor (Ours) 38.7 21.7 0.2IM 09% 148 5.41

also applicable to BN-layer-free Swin Transformers.

SHIFT-Continuous. In scenarios where the test domain
gradually changes across the entire sequence, Ours also
demonstrates effectiveness, improving mAP by up to 7%p,
as shown in the right section of Tab. 2. While DUA performs
well in the clear to foggy transition, it is prone to catas-
trophic forgetting in situations where the sequence becomes
longer, and the test domain changes more diversely, as seen
in the left section. Our strategy for determining when model
adaptation is necessary is particularly effective in SHIFT. It
improves FPS by about 9, reaching about 20 FPS, while en-
hancing mAP. This is likely due to avoiding overfitting that
can occur when adapting to all repetitive frames in SHIFT,
which consists of continuous frames, leading to improve-
ments in both inference speed and adaptation performance.

4.5. Additional Analyses

We aim to demonstrate the effectiveness and detailed anal-
ysis of our proposed model in terms of 1) which parts of, 2)
how, and 3) when the model should be updated.

Which part to update? Tab. 3 shows how updating dif-
ferent parts of the backbone model affects the performance
and the memory usage during continual test-time adapta-

Table 4. Ablation on each component of our loss. SHIFT-D / C
denotes SHIFT-Discrete / Continuous, respectively. The left and
right value in each cell corresponds to the mAP for the Swin-T
and ResNet50 backbone, respectively.

Limg Lob;j | coco SHIFT-D.  SHIFT-C.

- - 1777173 38.5/359 19.6/13.8
v - 16.7/18.1  36.6/37.0 19.1/16.0
v no class weight 17.8/18.9  39.7/38.0 25.1/23.4
v class weight w®?t | 22.6/222 404/38.7 23.2/21.7

tion. We compare (1) updating full parameters, (2) affine
parameters of the normalization layer, and (3) our proposed
adaptor for each backbone on the SHIFT dataset. Although
our adaptor has fewer parameters, about 0.9% or less of the
full parameters, it demonstrates the best adaptation perfor-
mance. Updating only the affine parameters of the normal-
ization layer, while having fewer parameters, seems less ef-
fective for adaptation in object detection compared to clas-
sification [32, 45]. Additionally, our adaptor requires only
about 60% of the memory compared to updating the full
parameters, making it memory-efficient.

Ablation study on each component in our loss. Tab. 4
presents the effects of image-level feature alignment, L4,
object-level feature class-wise alignment L.;, and class
frequency weighting w"* proposed to address class im-
balance. Aligning only the image-level feature distribu-
tion with L;,,, (first row) leads to modest adaptation in
the ResNet50 backbone, while performance in the Swin-
T backbone is even lower than without adaptation. No-
tably, aligning object-level features with L,; leads to
a substantial improvement, with the mAP increasing by
approximately 10%p compared to the no-adaptation sce-
nario. Introducing class-specific frequency-based weighting
wk?, despite a slight performance decrease in the SHIFT-
Continuous setting, proves highly effective, particularly in
scenarios with significant class imbalance, such as COCO
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Figure 4. Comparison of mAP and FPS from Ours-Skip with vary-
ing values of 71 (¢) and 7> (A) against Evenly-Skip (x), adapting
every IN-th instances, on COCO—COCO-C using both (a) Swin-
T and (b) ResNet50. The upward and rightward movement indi-
cates a better strategy with higher mAP and faster inference speed,
showing that Ours-Skip is consistently better than Evenly-Skip.
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Figure 5. Analysis of the adaptation of Ours-Skip.

with 80 classes, where it enhances the mAP by around 5%p.

Trade-off between adaptation performance and effi-
ciency according to different skipping strategies. Fig. 4
presents mAP and FPS depending on the values of 7; and 7
in the Sec. 3.4 on COCO — COCO-C, which are used for
two criteria to determine when the adaptation is needed. We
also show the simple baseline Evenly-Skip, which adapts ev-
ery N-th step and skips the rest. In Fig. 4, the blue lines (A)
show the results when 7 is changing from 1.0 to infinity,
where only criterion 2 is used, while 75 is fixed at 1.05. As
71 decreases, more adaptation is required, leading to slower
FPS but higher mAP. The green lines (¢) show the results of
changing 72, where ‘7 = inf” denotes using only criterion
1, without criterion 2. For all main experiments, we set 7
and 75 as 1.1 and 1.05, respectively, considering the balance
between mAP and FPS. Additionally, our skipping strategy
consistently outperforms Evenly-Skip, achieving higher val-
ues in both mAP and FPS. This indicates that our criterion
for deciding when to bypass model updates provides an ef-
fective balance between accuracy and speed.

When do models actually update? We analyze when the
model actually skips adaptation and only performs infer-
ence or actively utilizes test samples for model adaptation
based on the two criteria we propose. This analysis is con-
ducted in COCO to COCO-C with 15 corruption domains
and 1 original domain. Fig. 5a plots the number of back-
ward passes, i.e., the number of batches of test samples used
for adaptation, with different values of 7y for the two back-
bones. The horizontal and vertical axes represent sequen-
tially incoming test domains and the cumulative backward
numbers, respectively. A steep slope in a region indicates
frequent adaptation, while a gentle slope indicates skip-
ping adaptation, performing only inference. Notably, even
without explicit information about when the test domain
changes, the model actively performs adaptation, especially
right after the test domain changes. This trend is consis-
tent regardless of changes in 7 value or backbone type. The
number of backward passes largely depends on the value
of 71 rather than the backbone type, suggesting that a con-
sistent 7; value can be used irrespective of the backbone.
Fig. 5b illustrates adaptation patterns by dividing backward
steps for each domain in the case of Swin-T backbone with
71 = 1.1. More clearly, it shows that adaptation occurs ac-
tively around the points where each domain changes, and af-
terward, adaptation happens intermittently or almost not at
all. The light pink bars represent the performance of Direct-
Test, showing that domains with initially high model per-
formance tend to have less adaptation, while domains with
lower performance initially need more adaptation. In other
words, the amount of skipping adaptation is proportional to
the amount of the domain shift. Interestingly, the second do-
main, *Shot Noise’, shows almost no adaptation despite the
lower performance of the Direct-Test. We conjecture that
the preceding domain, *Gaussian Noise’, shares a similar
nature of noise, leading the model to decide that additional
adaptation steps may not be necessary. As a result, our skip-
ping strategy enables the model to efficiently adapt, consid-
ering both the original domain the model is trained on and
the previous domain the model has been adapted to.

5. Conclusion

We introduce an efficient Continual Test-time Adaptation
(CTA) method for object detection in the continually chang-
ing domain. Our approach involves 1) lightweight adaptors,
2) class-wise object-level feature alignment, and 3) skip-
ping unnecessary adaptation, offering highly efficient and
effective solution to diverse domain shifts. It significantly
improve mAP performance in various CTA scenarios with-
out serious slowdown in the inference speed.
Acknowledgement This work was supported by NRF grant
(2021R1A2C3006659) and IITP grants (2021-0-01343,
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