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Abstract

Novel view synthesis is attractive for social media, but it
often contains unwanted details such as personal infor-
mation that needs to be edited out for a better experience.
Multiplane image (MPI) is desirable for social media
because of its generality but it is complex and computa-
tionally expensive, making object removal challenging. To
address these challenges, we propose CORE-MPI, which
employs embedding images to improve the consistency
and accessibility of MPI object removal. CORE-MPI
allows for real-time transmission and interaction with
embedding images on social media, facilitating object
removal with a single mask. However, recovering the
geometric information hidden in the embedding images
is a significant challenge. Therefore, we propose a dual-
network approach, where one network focuses on color
restoration and the other on inpainting the embedding
image including geometric information. For the training of
CORE-MPI, we introduce a pseudo-reference loss aimed
at proficient color recovery, even in complex scenes or
with large masks. Furthermore, we present a disparity
consistency loss to preserve the geometric consistency of
the inpainted region. We demonstrate the effectiveness of
CORE-MPI on RealEstate10K and UCSD datasets.

1. Introduction

The importance of visual content in applications such as so-
cial media has grown exponentially, highlighting the need
for innovative visual features to enhance user engagement
and experience on these platforms. In this digital age,
novel view synthesis (NVS) has emerged as a key tech-
nology [10, 45] that enables users to experience immersive
changes in visual content from different perspectives. How-
ever, the presence of unwanted objects, such as personal in-
formation, in synthesized images can significantly degrade
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Figure 1. An overview of CORE-MPI: We create an embedding
image that encodes MPI data into a commonly used RGB format.
The embedding image is transmitted over the Internet, allowing
users to interact with it to create a mask for object removal. The
embedding image, devoid of these objects, is then converted back
into MPI to render novel views without the unwanted objects.

the user experience, thus object removal techniques are im-
portant in the pursuit of smooth and realistic NVS. Recent
advancements in deep learning, such as the neural radiance
field (NeRF) [26] and multiplane image (MPI) [25, 54],
have shown remarkable achievements in NVS. Studies are
currently being conducted to improve these techniques for
fast [7, 12, 35, 43], and efficient [8] rendering aiming to ex-
pand their practical applications. As these methods become
more user-friendly, there is a growing interest in removing
objects within these 3D representations [27, 48].

SPIn-NeRF [27] performs object removal from NeRF
by generating a 3D object mask based on a viewpoint de-
rived from the trained NeRF model. However, this approach
is time-consuming because it requires propagation of the
object mask to the other viewpoints to create a 3D mask
and requires training the NeRF model twice. To address
these issues, recent research [48] has focused on accelerat-
ing mask generation. Despite these efforts, they have not
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Method # of views Time Results
Requires scene-
specific training

SPIn-NeRF [27] 100-200 20-45 minutes Good O
Pre-inpaint 2 or more <1 second Unstable X
Post-inpaint 2 or more <1 second Poor X
Layer-inpaint 2 or more <1 minutes Unstable X
CORE-MPI 2 or more <1 second Good X

Table 1. Comparison of object removal methods in novel view
synthesis. Pre-inpaint and Layer-inpaint are unstable due to in-
consistencies caused by multiple iterations of inpainting.

overcome the intrinsic challenges of NeRF, which requires
scene-specific training with large amounts of training data.

MPI, on the other hand, offers a distinct advantage in
that it does not require scene-specific training and can rep-
resent a 3D scene with few images. Since object removal
in MPI remains an unexplored field, we perform prelimi-
nary experiments to observe the challenges of naively im-
plemented inpainting methods for MPI, which are summa-
rized in Table 1. First, Pre-inpaint, which removes objects
from each input to MPI generator, requires an object mask
for each input image. Also, inconsistencies between filled
regions prevent the generation of proper MPIs, resulting in
broken geometry. Next, Post-inpaint, which uses a modi-
fied version of the inpainting network after generating MPI,
performs unsatisfactorily due to the high dimensionality of
MPI. Finally, Layer-inpaint, which applies the inpainting
network to MPI layer by layer, results in inconsistencies be-
tween filled layers. Also, it is inefficient because processes
should be executed for each MPI depth.

In this paper, we employ steganography, a technique for
encoding large amounts of data [31, 45] or hiding infor-
mation [2], to create embedding images that contain MPI.
As shown in Figure 1, we propose Consistency Object
Removal with Embedding MultiPlane Image (CORE-
MPI), which removes unwanted objects on embedding im-
ages to enhance consistency and accessibility of MPI object
removal. First, we render MPI with the center camera pa-
rameters to obtain a reference image that is used to generate
MPI. Then, we generate an embedding image that contains
both the geometric and color information of MPI. Since the
embedding image is a 2D image that is commonly used
on social media, it can be transmitted in real-time and the
user can directly interact with it to create unwanted object
masks. Finally, by reversing the embedding process while
maintaining the manipulations, we obtain MPI with the ob-
jects removed. This method not only allows us to remove
objects with a single mask that corresponds to the object in
the embedding image, but also eliminates inconsistency is-
sues because it uses only one inpainting. However, image
inpainting network is not designed to fill in hidden informa-
tion, thus removing objects from the embedding image can
degrade both scene content and geometric information.

To address the challenges of color consistency and ge-
ometric fidelity in embedding image inpainting, we intro-
duce a dual-network approach: one network is dedicated to
color restoration, while the other focuses on embedding im-
age inpainting. The color inpainting network restores the
reference image, reducing the blurring effect that occurs in
complex scenes or with large masks. Furthermore, we in-
troduce a pseudo-reference loss that uses the output of the
pretrained inpainting network as an approximation to guide
the inpainting process towards the ground truth. In addition,
we propose a disparity consistency loss to specifically su-
pervise the preservation of geometric information, by com-
paring between disparity maps derived from before and af-
ter object removal within MPI.

2. Related Work
Novel View Synthesis. Recent advances in novel view
synthesis have utilized several methods, including neural
radiance fields (NeRF) [26], multiplane image (MPI) [54].
NeRF has achieved impressive results and has been stud-
ied for practical applications such as using fewer im-
ages [29, 49], faster rendering [7, 12, 35] and efficiency [8].
As NeRF became more accessible, research into object
removal manipulation began [27, 42, 48]. In particular,
Weder et al. [42] proposed an algorithm for selecting plausi-
bly inpainted images to preserve view consistency inpainted
NeRF. SPIn-NeRF [27] integrated mask propagation with
depth supervision and perceptual loss to make object re-
moval NeRF user-friendly. Yin et al. [48] contributed to
reducing time by expediting the mask generation process
through multi-view segmentation. Despite these advances,
NeRF still requires scene-specific training, which is a sig-
nificant drawback for real-world applications.

On the other hand, MPI, which was first introduced in
StereoMag [54] and renders novel views from two stereo
images, can use the trained model for other scenes. MPI has
been studied to improve its quality by refining its architec-
ture [34] or increasing the number of input images [11, 25].
Srinivasan et al. [34] proposed a 3D convolutional network
to expand the range of rendered views. DeepView [11]
solved issues such as occlusion and thin objects by chang-
ing in the optimization method. Mildenhall et al. [25] pre-
sented guidelines to help users sample views that enable
high-quality view interpolation with the algorithm. More-
over, Nex [43] proposed a hybrid implicit-explicit modeling
for real-time rendering. While research has made progress
in removing artifacts and improving rendering quality, re-
search on manipulation has been limited due to the complex
multi-layer dimensions of MPI.

Steganography. Steganography aims to hide secret infor-
mation within a carrier, such as images or videos. Tradi-
tionally, spatial-based methods such as least significant bits
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Figure 2. The embedding network takes MPI with a reference image Ir and generates an embedding image Ie which contains geometric
information. The inpainting network fills in the removed embedding image with geometric information as well as color. Then, the filled
image Îe is restored back to MPI by the restoration network.

(LSB) [5, 24], pixel value differences (PDVs) [6, 44], and
difference extensions (DE) [16, 38] were commonly used.
However, they are susceptible to statistical attacks that can
reveal the hidden information. To overcome the shortcom-
ings of traditional steganography, deep learning-based ap-
proaches have been developed. These methods strive for
imperceptibility and robustness against distortion [47, 56],
and increasing the capacity for hidden data [2, 52]. In ad-
dition, heavy data such as video [57], high-resolution im-
ages [31, 46], and multiplane images [45] are embedded in a
light image for transmission and later restored to their orig-
inal form to facilitate rapid transmission over the platforms
such as social media and cloud services. However, these
embedding images, which encode a significant amount of
information, are sensitive to distortion and manipulation.

Image Inpainting. Image inpainting is a challenging task
that reconstructs damaged region in images where infor-
mation is missing. Traditionally, there are diffusion-based
methods [1, 4], which are suitable for small areas by propa-
gating information from adjacent regions, and patch-based
methods [3, 17, 36], which work well with repeated pat-
terns but not with unstructured regions. Recently, deep
learning approaches, especially generative adversarial net-
works (GAN) [13], have become mainstream. Pathak et
al. [30] proposed an inpainting model based on encoder-
decoder structure with GAN to recover squared empty re-
gions. Liu et al. [20] introduced a partial convolutional
layer for irregular random holes, and Yu et al. [50] pro-
posed a gated convolutional layer that updates according to
the shape of the mask, suitable for arbitrary masks. After
that, there have been various attempts to enhance the per-
formance of the inpainting in [21, 22, 28, 32, 37]. Ren et
al. [32] introduced a two-stage strategy for image inpaint-
ing, focusing sequentially on the structure restoration fol-
lowed by texture. Conversely, Liu et al. [22] developed

a mutual encoder-decoder framework that performs tex-
ture and structure inpainting concurrently in a single step.
LaMa [37] utilized Fourier convolutions for large recep-
tive fields, thereby enhancing both the perceptual quality of
the inpainting and the efficiency of the model parameters.
TransFill [55] employed a clean image for reference image
inpainting, while more recently, ViT [9] has been used for
image inpainting [18, 39, 51].

However, inpainting for MPI is still an unexplored re-
search area and it is also not designed for use with steganog-
raphy. In this paper, we combine these two unexplored
fields for the first time and propose an inpainting method
for the embedding image created from MPI using steganog-
raphy techniques.

3. Method

As shown in Figure 2, Consistency Object Removal with
Embedding MultiPlane Image (CORE-MPI) consists of an
embedding network, inpainting network, and restoration
network. We use an embedding image that encodes MPI
into a common RGB image to not only remove objects, but
to make MPI more accessible. This section provides back-
ground knowledge on MPI in Section 3.1 and introduces a
novel method for consistent object removal in MPI through
the embedding image space. The overall pipeline of CORE-
MPI is structured in three steps: (1) embedding MPI into a
single RGB image (Section 3.2), (2) object removal within
the embedding image (Section 3.3), and (3) MPI restoration
from the embedding image (Section 3.4).

3.1. Preliminary: MPI

MPI consists of a set of fronto-parallel RGBα planes, uni-
formly sampled in depth within a view of the reference cam-
era frustum. To generate MPI, we adopt StereoMag [54],
utilizing two images with calibrated camera parameters.

20083



Mathematically, given the images I1 and I2 with camera
parameters c1 and c2, MPI generation operates as follows:

F(I1, I2, c1, c2) → (C,α), (1)

where C and α are color images and alpha maps, respec-
tively, with dimensions w × h × 3 × n and w × h × n.
Here, w and h represent the width and height respectively,
while n denotes the number of depth layers, with n set
to 32 in our experiments. MPI allows for the synthesis
of novel-view images through planar transformation and
alpha-composition techniques, as detailed in [54]. The dis-
parity map D is synthesized from the alpha maps using the
following formula:

D =

n∑
i=1

(d−1
i αi

n∏
j=i+1

(1− αj)), (2)

where di is the inverse depth value of each layer. Note that
our method can be integrated not only with StereoMag but
also with other MPI generation models.

3.2. Embedding Image Generation

Given a generated MPI, the embedding process starts with
the acquisition of a reference image Ir, which is the basis
for MPI embedding. By rendering MPI with central camera
parameters, we can obtain Ir that has the same viewpoint
as the one used to create MPI. It is a suitable candidate for
embedding image that encodes MPI information because it
has color information of MPI. Then, a feature extractor pro-
duces the crucial information from each MPI layer. The ex-
tracted features for the color and alpha channels, denoted as
fc and the alpha feature fα, respectively, are derived from
separate convolutional layers. These features are then com-
bined by element-wise multiplication with the alpha values
to form MPI feature fMPI , as shown in the equation:

fMPI = (α⊙ fC)⊕ fα, (3)

where, ⊕ is concatenation and ⊙ represents the Hadamard
product. After that, the embedding network based on the
U-Net architecture incorporates this fMPI and Ir to make
the embedding image Ie, by facilitating the compression of
geometric information in the image residuals through a skip
connection. To optimize the embedding network, we use
an embedding loss Le that includes the mean squared error
(MSE) and the perceptual loss for high-level feature simi-
larity, as expressed in the following equation:

Le = λer ∥ Ir − Ie ∥2 +λep ∥ ϕ(Ir)− ϕ(Ie) ∥, (4)

where λer and λep are weight terms, and ϕ corresponds to
a pretrained VGG-19 [33], promoting the preservation of
perceptual features crucial for color reproduction in Ie.

Fusion 
Module

Embedding
Inpainting

Color
Inpainting

Figure 3. Structure of the fusion process for embedding image in-
painting. The fusion module estimates combining ratios to merge
the restored reference and embedding images.

3.3. Object Removal from Embedding Image

The embedding image containing geometric information is
in the RGB format, which is commonly used in social me-
dia. This format supports user-friendly interaction, enabling
the creation of masks M over specific areas for the removal
of objects within Ie. Once the areas with undesired objects
are masked, image inpainting network is utilized to restore
the masked regions. However, the image inpainting net-
work is designed to recover the color of the image, not to
reconstruct hidden information. As a result, it is limited in
its ability to revive images that contain hidden information,
especially when masks are large and scenes have complex
elements. Therefore, we adopt dual-network approach: a
color and embedding image branches. Both branches em-
ploy the same inpainting model, LaMa [37]. The color in-
painting branch fills in the reference image, while the em-
bedding inpainting branch focuses on the hidden geometric
information in the embedding image. To integrate the in-
painted reference image Îr with the inpainted embedding
image Îe, a fusion module is utilized. The fusion module
estimates the combining ratios for the inpainted images, as
shown in Figure 3. Then, two images are fused as follows:

Îm = Îr ·Mc + Îe · (1−Mc), (5)

where Îm is the merged image and Mc is the combining
ratios with values ranging from 0 to 1. By Mc, Îr and Îe
are smoothly combined, ensuring Îm maintains visual co-
herence and preserves restored color and geometric details.

For color inpainting branch training, we introduce a
pseudo-reference loss function. Pseudo-reference loss uses
the output of pretrained inpainting network as a pseudo-
ground truth for easier color recovery:

Lpse =∥ Îr − Îpse ∥2 . (6)

Here, Îpse is the result of applying a pretrained inpainting
model to Ir with M . Since estimate Îr is made easier in
comparison to predicting Ir, it enables stable training for
the inpainting network. In parallel, the embedding inpaint-
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ing branch is trained with combination loss functions as:

Lf = λfr ∥ Ie − Îe ∥2 +λfp ∥ Φ(Ie)− Φ(Îe) ∥, (7)

where λfr, and λfp are weight terms, and Φ corresponds
to segmentation ResNet50 with dilated convolutions used
in [37]. To improve the quality of the inpainted textures and
the coherence of the geometry, we integrate a discriminator
Dξ that considers the geometry in the scene. The discrimi-
nator and generator losses are defined as follows:

LD = − logDξ(Ie, D)− [logDξ(Îe, D̄)⊙M ]

−[log(1−Dξ(Îe, D̄))⊙ (1−M)],
(8)

LG = − logD(Îe, D̄), (9)

LAd = LD + LG. (10)

Here, D and D̄ are disparity maps synthesized from the
original MPI and the restoration MPI, respectively. The
function of the discriminator is not limited to discriminat-
ing between the original and inpainted embedding images;
it also evaluates geometric consistency, certifying that the
restored content appears faithful and accurately matches the
geometry of the scene. Following [37], we incorporate gra-
dient penalty Lgp [23] and feature matching loss Lfm [40]
into final inpainting loss Linp.

Lgp = ||∇Dξ(Ie)||2, (11)

Lfm = ||Di
ξ(Ie, D)−Di

ξ(Îe, D̄)||, (12)

Linp = Lf + λAdLAd + λpseLpse + λgpLgp + λfmLfm,
(13)

where Di
ξ denotes ith layer of Dξ, and λAd λpse, λgp, and

λfm are weight terms.

3.4. MPI Restoration from Embedding Image

The restoration network is designed to reverse the embed-
ding process, converting the embedding image back to MPI
representation. Importantly, this transformation ensures
that manipulations, such as object removal, are preserved;
objects removed from the embedding images are not present
in the restoration MPI. The network is trained using an
adaptive MSE to MPI LMPI , which is expressed as:

LMPI = λc ∥ C ⊙ α− C̄ ⊙ ᾱ ∥2 +λα ∥ α− ᾱ ∥2, (14)

where, λc, and λα are weight terms, and C and α are the
colors and alpha maps of original MPI, and C̄ and ᾱ are
the colors and alpha maps of restoration MPI. LMPI is in-
strumental in ensuring that the color and alpha channels

in the restored MPI are consistent with the original, pre-
manipulation state. In addition, a loss function for maintain-
ing visual consistency in novel views LNov is implemented:

LNov = λnr ∥ In−Īn ∥2 +λnp ∥ ϕ(In)−ϕ(Īn) ∥1, (15)

where, λnr, and λnp are weight terms, and In and Īn are
rendered images from original MPI and restoration MPI
with randomly generated camera parameters.

We also introduce disparity consistency loss, which su-
pervises synthesized disparity maps for improving the geo-
metric restoration for inpainted region.

Ldr =∥ D − D̄ ∥2, (16)

where D and D̄ are the disparity maps from the original
and restoration MPI. Furthermore, we incorporate an edge-
aware smoothness to promote disparity smoothness while
respecting image edges:

Ldsm = |∂xD̄|e−|∂xIr| + |∂yD̄|e−|∂yIr|. (17)

The final disparity consistency loss is as follows:

Ldc = λdrLdr + λdsmLdsm, (18)

where, λdr, and λdsm are weight terms. As a result, the
total loss for the restoration network is as follows:

LR = LMPI + LNov + Ldc. (19)

4. Experiments
4.1. Experimental Settings

Datasets. We use the RealEstate10K [54] dataset, which is
commonly used for MPI. In addition, we use UCSD [19]
with human mask and background pairs that can be used as
target masks and ground truth data.
• RealEstate10K: About 80,000 video clips, derived from

10,000 YouTube videos featuring various interior and ex-
terior scenes are provided. It provides a substantial vol-
ume of data, including 10 million frames with corre-
sponding camera parameters. For our purposes, frames
are cropped to a standardized resolution of 512 × 512.
Our training set consists of 62,184 clips, while the test set
includes 1,500 clips and generated free-form masks [50].

• UCSD: There are 96 dynamic multi-view videos cap-
tured in outdoor settings with 10 synchronized action
cameras focusing on human subjects. It includes human
masks and background images, making it ideal for re-
moval within MPI. The dataset is divided into 86 train-
ing videos and 10 test videos, each with a frame size of
640× 360. To avoid dynamic backgrounds in our evalua-
tion, we select 7 test videos and further choose 100 clips
from each, amounting to 700 clips for our test set. To mit-
igate human-related artifacts like shadows, we apply a 5
× 5 kernel dilation two times to refine the human masks.
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RealEstate10K [54] UCSD [19]
Methods Render Disparity Render Disparity

PSNR↑ SSIM↑ LPIPS↓ FID↓ L1↓ L2↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ L1↓ L2↓

Pre-inpaint 27.948 0.923 0.0880 77.956 0.1180 0.1670 36.838 0.976 0.0290 46.161 0.0141 0.0219
Post-inpaint 26.992 0.911 0.1030 95.039 0.0610 0.0870 35.912 0.973 0.0810 59.681 0.0154 0.0207
Layer-inpaint 28.699 0.936 0.0710 65.873 0.0410 0.0560 36.676 0.974 0.0313 51.483 0.0201 0.0251

Embedding-Base 28.807 0.935 0.0774 80.254 0.0680 0.0880 37.477 0.981 0.0282 58.810 0.0196 0.0266
Embedding-Disparity 28.821 0.936 0.0746 76.518 0.0467 0.0674 37.431 0.981 0.0279 56.225 0.0159 0.0216
Embedding-Guide 29.756 0.942 0.0632 62.813 0.0504 0.0696 38.310 0.983 0.0223 43.922 0.0167 0.0228
CORE-MPI 29.790 0.943 0.0628 59.616 0.0459 0.0648 38.367 0.983 0.0220 43.829 0.0149 0.0205

Table 2. Quantitative comparison on RealEstate10K and UCSD datasets. Render evaluates the rendered view, while Disparity evaluates
the difference in the disparity map for scene consistency. The best performance is highlighted in bold and the second best in underline.

Implementation Details. In our implementation, we gen-
erate MPI from pairs of images using StereoMag [54]. We
then use LaMa [37] as our inpainting network with free-
form masks during the training. For stable training, the
training procedure is divided into two stages: In the first
stage, we focus on training the embedding and restoration
networks. This phase involves over 50,000 iterations with
a batch size of 15, using the Adam optimizer with a fixed
learning rate of 4e−5. In the second stage, we train the in-
painting and restoration networks while keeping the embed-
ding network fixed. This stage also consists of 50,000 iter-
ations. The learning rates are set to 4e−4 for the inpainting
network and 1e−4 for the discriminator.

Baselines. Since our work is the first attempt for object
removal in MPI, we have established several baselines that
focus on the method of object removal in MPI scenario. To
demonstrate the superior performance of our proposed com-
ponents, we compare these baselines against various abla-
tions of CORE-MPI.
• Pre-inpaint: Objects are removed from each image be-

fore MPI is generated. MPI is then generated from the
recovered images with the inpainting model.

• Post-inpaint: Objects are removed by applying a
channel-extended inpainting model directly to MPI.

• Layer-inpaint: After MPI is generated, to remove the
target object, an inpainting model is applied separately to
each layer for both color and alpha of MPI.

• Embedding-Base: Embedding-Base conducts object re-
moval by encoding MPI into an embedding image. For
training, a combination of embedding, inpainting, novel
view, and MPI losses are used.

• Embedding-Disparity: Building on Embedding-Base,
this version integrates disparity consistency loss to im-
prove scene consistency.

• Embedding-Guide: An extension of Embedding-
Disparity, this method introduces the pseudo-reference
loss to the embedding image inpainting network.

• CORE-MPI: Building on Embedding Disparity, CORE-

Sample view & Mask Pre-inpaint Post-inpaint Layer-inpaint CORE-MPI

Figure 4. Comparison of CORE-MPI with baselines on the
Realestate10K dataset. For each scene, the first row is the ren-
dered view and the second is the disparity map.

MPI integrates a color inpainting branch and adopts the
pseudo-reference loss for its training. A fusion module is
then used to combine the recovered images.

Evaluation Metrics. Following [45], we assess the ren-
dering quality by averaging the results from nine rendered
views. The evaluation metrics include peak signal-to-
noise ratio (PSNR) [15], structural similarity index mea-
sure (SSIM) [41], learned perceptual image patch similar-
ity (LPIPS) [53], Frechet inception distance (FID) [14]. In
addition, we measure the L1 and L2 errors of the disparity
map to evaluate the consistency of the rendered views.

4.2. Experimental Results

Quantitative Comparison. Table 2 presents our com-
parative analysis, showing quantitative results of the pro-
posed CORE-MPI against established baselines on the
RealEstate10K and UCSD datasets. On the RealEstate10K
dataset, we observe notable differences between the meth-
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Figure 5. Visualization of ablation experiment results of embedding methods on UCSD. The first and second rows are rendered views from
different viewpoints, and the third row shows the disparity map.

ods, particularly in the PSNR of the rendered view. Among
the baselines, Post-inpaint has the lowest performance,
while Layer-inpaint leads, indicating its effectiveness in
rendering. Despite a higher PSNR, Embedding-Base does
not perform as well as Layer-inpaint in perceptual met-
rics such as LPIPS and FID. The Embedding-Disparity
shows an improvement in disparity map accuracy, which
improves the quality of the rendered view. The Embedding-
Guide achieves significant rendering performance improve-
ments, but slightly reduces disparity accuracy compared to
Embedding-Disparity. CORE-MPI shows comprehensive
improvements in all six evaluation metrics, which can be
attributed to the improved disparity map quality.

On the UCSD dataset, the trends mirror those seen on
RealEstate10K, with Pre-inpaint performing best on the L1
error of the disparity map. However, Pre-inpaint performs
relatively poorly on L2 error, indicating the presence of
outliers. In contrast, Post-inpaint shows a better L2 error,
showing that it is robust to outliers. Apart from the L1 error,
CORE-MPI outperforms all other methods, which confirms
the robustness of our approach.

Qualitative Comparison. Figure 4 qualitatively com-
pares results of the baselines and our method on
RealEstate10K data. The first example shows the result of
removing a chair from a room. Pre-inpaint, which removes
the object prior to MPI generation, causes inconsistencies
between the inpainted scenes, disrupting the disparity map
and ruining the rendered view. Post-inpaint struggles with
color restoration, leading to a blurred output where the dis-
tinction between the floor and carpet is lost. Layer-inpaint
hard to distinguish the line between the desk and the floor,
while CORE-MPI recovers the desk and floor with a clear
distinction. The second example shows the result of remov-
ing a tree from an outdoor scene. Here, the removed region
is large and complex, making it difficult for both Pre-inpaint

and Layer-inpaint, which require multiple feedforwards of
the inpainting model. Pre-inpaint fills the sky differently in
the input image, and Layer-inpaint restores the tree back-
ground area differently in each layer, resulting in blurry
rendering views. These experiments demonstrate the lim-
itations of applying multiple feedforwards of the inpainting
model over region and complex scenes. However, CORE-
MPI, which requires inpainting only once, produces a plau-
sibly filled result without these inconsistencies.

Furthermore, Figure 5 shows visual comparisons
embedding-based methods and CORE-MPI on the UCSD
dataset. Embedding-base recovers the removed region as
blurred, and poorly recovers the window behind it. With
disparity supervision, Embedding-Disparity achieves a no-
ticeable improvement in the reconstructed disparity map.
However, the rendering results still appear confused. In
contrast, Embedding-Guide succeeds in restoring the color
and creating a window where the person has been removed,
but it is restored at the same disparity as the adjacent tree,
thus the window is incorrectly positioned in the rendered
view. Our complete method, CORE-MPI, significantly cor-
rects these geometric inaccuracies, producing results that
are consistent across rendered views.

4.3. Ablation Study

LLFF MPI generator. We mainly use StereoMag to gen-
erate MPI, but CORE-MPI is not limited to a specific MPI
generator. We experiment with LLFF model [25], which
uses five images to generate MPIs and performs novel view
synthesis using multiple MPIs. Since there are no object-
free images in the LLFF dataset, we use free-form masks.
Pre-inpaint generates MPI poorly due to inconsistencies in
the inpainted images, and Table 3 shows the comparison
with other baselines. Post-inpaint shows a significant per-
formance drop due to the accumulation of degradation in
a single MPI when rendering a novel view. CORE-MPI
performs the best on all four metrics. Furthermore, Fig-
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Render
Method PSNR↑ SSIM↑ LPIPS↓ FID↓
Post-inpaint 25.048 0.9190 0.0808 128.4170
Layer-inpaint 34.256 0.9623 0.0293 27.0671
CORE-MPI 34.813 0.9637 0.0292 25.2438

Table 3. Quantitative results on LLFF dataset with LLFF model.

Original Removed View 1 Removed View 2

Figure 6. Visualization of object removal from LLFF using
CORE-MPI, showing the rendered views and the disparity map.

ure 6 shows that CORE-MPI produces plausible results for
synthesizing novel views after object removal in the LLFF
dataset. This experiment demonstrates that CORE-MPI can
use a variety of MPIs.

Comparison to SPIn-NeRF. NeRF achieves impressive
results in novel view synthesis, and to improve its usabil-
ity, SPIn-NeRF [27] has explored NeRF-based object re-
moval. To show the strengths of MPI, we compare CORE-
MPI with SPIn-NeRF. Table 4 shows the object removal re-
sults for each of the 10 scenes in the SPIn-NeRF dataset.
CORE-MPI demonstrates its effectiveness by outperform-
ing SPIn-NeRF on all scenes, even though the same inpaint-
ing model [37] is used. Figure 7 visualizes these experi-
mental results, providing a clear comparative illustration of
the performance. Note that, we use a pretrained model on
RealEstate10K without the need for further training. A sig-
nificant advantage of CORE-MPI is that it does not require
per-scene training and offers fast inference speeds, making
it practical for real-world applications.

5. Conclusion
In this paper, we present Consistency Object Removal with
Embedding MultiPle Image (CORE-MPI) for object re-
moval in multiplane image. CORE-MPI effectively solves
the challenges associated with high-dimensional data, in-
cluding computational cost and inconsistencies within in-
painted regions, by operating within the embedding im-
age space. To generate plausible results, we introduce a
novel pseudo-reference loss that uses a pretrained inpaint-

Dataset SPIn-NeRF CORE-MPI
LPIPS↓ FID↓ LPIPS↓ FID↓

1 0.2471 377.02 0.1071 296.31
2 0.4379 375.73 0.1635 343.95
3 0.2865 327.83 0.1836 131.33
4 0.2168 178.75 0.1464 163.96
7 0.1733 106.41 0.0961 90.91
9 0.2834 322.60 0.1192 175.24
10 0.2054 88.52 0.0945 57.01
12 0.3269 271.45 0.1798 122.67

book 0.1586 150.30 0.1022 108.94
Trash 0.2152 179.48 0.1055 71.11
Total 0.2551 184.90 0.1300 110.74

Table 4. Quantitative results of object removal on SPIn-NeRF
dataset. For an in-depth evaluation, we provide a dataset-specific
comparison with SPIn-NeRF.

Sample view & Mask SPIn-NeRF CORE-MPI

Figure 7. Qualitative comparison with SPIn-NeRF.

ing network to create a pseudo-ground truth. Furthermore,
we propose a disparity consistency loss to improve consis-
tency. We establish baselines for object removal in MPI
and validate CORE-MPI on the RealEstate-10k and UCSD
datasets. CORE-MPI is also compared to NeRF-based ob-
ject removal, demonstrating the performance benefits and
the advantages of using MPI. We anticipate that CORE-MPI
will provide a cornerstone for novel view synthesis applica-
tions, particularly in social media.

Limitation and Future work Even though CORE-MPI
utilizes the dual-network approach and disparity loss for
preserving geometric information, it does not explicitly
consider disparity within the inpainting network itself. In
the future, we plan to develop a novel inpainting model de-
signed to inherently restore geometric information, outper-
forming the current dual-network strategy for hidden infor-
mation.
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