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Abstract

Weakly Supervised Semantic Segmentation (WSSS) re-
lies on Class Activation Maps (CAMs) to extract spatial
information from image-level labels. With the success of
Vision Transformer (ViT), the migration of ViT is actively
conducted in WSSS. This work proposes a novel WSSS
framework with Class Token Infusion (CTI). By infusing
the class tokens from images, we guide class tokens to pos-
sess class-specific distinct characteristics and global-local
consistency. For this, we devise two kinds of token infu-
sion: 1) Intra-image Class Token Infusion (I-CTI) and 2)
Cross-image Class Token Infusion (C-CTI). In I-CTI, we
infuse the class tokens from the same but differently aug-
mented images and thus make CAMs consistent among var-
ious deformations (i.e. view, color). In C-CTI, by infusing
the class tokens from the other images and imposing the re-
sulting CAMs to be similar, it learns class-specific distinct
characteristics. Besides the CTI, we bring the background
(BG) concept into ViT with the BG token to reduce the false
positive activation of CAMs. We demonstrate the effective-
ness of our method on PASCAL VOC 2012 and MS COCO
2014 datasets, achieving state-of-the-art results in weakly
supervised semantic segmentation. The code is available
at https://github.com/yoon307/CTI.

1. Introduction
Fully supervised semantic segmentation shows great im-
provement in various fields in exchange for expensive and
labor-intensive labels. To ease the burden of acquiring la-
bels, Weakly Supervised Semantic Segmentation (WSSS)
has emerged while utilizing only weak supervision.

With the weak labels that are relatively easy to acquire
with extensive amounts, WSSS researches using image-
level labels [1, 2, 4, 12, 19, 22, 28, 44, 52, 54], scrib-
bles [29, 42], and bounding boxes [8, 18, 23, 32] are actively
conducted. Among these, our work only utilizes image-
level classification labels, the most practical and challeng-
ing setting.

Since classification labels only convey the presence

Figure 1. An overview of the proposed Class Token Infusion
(CTI). We infuse class tokens in the intermediate layer by I-CTI
and C-CTI. CTI guides class tokens and CAMs to be consistent
in view differences and possess class-specific distinct representa-
tions.

or absence of objects with specific classes at an image
level, objects are localized using Class Activation Maps
(CAMs) [56] in WSSS. Numerous studies have aimed to
improve the precision of CAMs to enable the obtained
CAMs to serve as pseudo-labels for semantic segmentation.

Before Vision Transformer (ViT) emerged, most WSSS
research relied on Convolutional Neural Networks (CNNs)
to generate CAMs. However, CNNs are trained to local-
ize the objects with limited receptive fields and the classi-
fication task itself can not impose spatial constraint, CAMs
from CNN often focus only on discriminative object regions
(i.e. sparseness).

Unlike CNNs that emphasize local features, ViTs cap-
ture long-range dependency through self-attention mech-
anisms; thus, it alleviates the sparseness problem of the
activation map. Also, the ViT model trained in a self-
supervised manner like DINO[3] or MOCO[15] shows that
the localized objects are precise enough to function as a
segmentation mask. However, since the original ViT uses
single-class tokens to perform classification, the resulting
localization map is acquired in a class-agnostic manner.
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To bring this high localization capability to WSSS, sev-
eral works employed multi-class tokens [49, 50] or directly
trained the classifier with patch tokens [35] to extract class-
specific activation maps.

Though the multi-class token-based ViT shows the best-
performing results in WSSS, several problems remain un-
solved. 1) While each class token is desirable to be distinct
and have low correlation, we experimentally observed that
the feature representation from each class token is highly
correlated across the images, as shown in Fig. 4 above. 2)
Due to the architectural nature of ViT, it is prone to over-
expand the CAMs, leading to an increase in false positive
regions [33, 35, 37]. The elevated occurrence of false posi-
tive regions in ViT can be attributed to two factors. Firstly,
ViT’s proficiency in capturing long-range dependencies en-
ables the effective extraction of global contextual informa-
tion. However, the GAP averages all features uniformly,
resulting in the activation of irrelevant regions. The second
contributing factor is the over-smoothing issue. As eluci-
dated in ToCo [37], the self-attention mechanism functions
as a low-pass filter, smoothing the input. Consequently, the
mapping of patch tokens to similar latent representations in-
tensifies, contributing to an increase in false positives.

To tackle the issues mentioned above and generate more
precise CAMs, this paper introduces two methods: Class
Token Infusion (CTI) and Background Token (BGT). Here,
each method is designed to resolve the issues in ViT, re-
spectively. In the CTI, as shown in Fig. 1, we propose two
types of class token infusion: Intra-image Class Token in-
fusion (I-CTI) and Cross-image Class Token Infusion (C-
CTI). The class tokens encapsulate information about patch
tokens as they undergo the attention process within the ViT
layer to satisfy the goal of classification. However, we em-
pirically find that classification loss is insufficient to make
each class token distinct and observe overlaps in the feature
space among different class tokens. Thus, with the proposed
CTI, we aim to enhance the representation capability of
class tokens, ensuring that each token uniquely condenses
information relevant to its respective class. In the I-CTI, we
first apply two different transformations to the image, pro-
ducing positive pair images. By infusing intermediate class
tokens from this pair and imposing the resulting CAMs to
be consistent, we bestow global and local consistency upon
CAMs. In the C-CTI, similar to the infusion method em-
ployed in I-CTI, we conduct class token infusion from the
other images with at least one shared class. By ensuring
consistency in CAMs before and after infusing class tokens
obtained from different images, each class token enhances
its ability to condense class-specific information and thus
improves CAMs. Besides the CTI, we introduce the con-
cept of background (BG) CAMs to ViT to address the issue
of over-expansion. Though many prior CNN-based works
utilize BG CAMs [6, 12, 48] in the training pipeline, less

research focus is made on ViT-based WSSS to incorporate
BG during training. By incorporating the BG token into
ViT and instructing the network to predict BG CAMs, we
can proficiently address false activations.

To show the effectiveness of our method, we conduct
comparisons with the other state-of-the-art (SoTA) WSSS
methods with two widely used datasets: PASCAL VOC
2012 [11] and MS COCO 2014 [30] datasets. In both
datasets, the proposed framework achieves a new SoTA.

The contribution of this paper is twofold:
• We propose two forms of Class Token Infusion (CTI)

methods to enhance the class-specific representation ca-
pability of class tokens and improve the quality of CAMs
in ViT.

• We define a background token and propose a simple yet
effective method to utilize the background CAMs in the
learning process of ViT. We also demonstrate that utiliz-
ing the background token greatly reduces the false acti-
vation of CAMs.

2. Related Works
2.1. Weakly Supervised Semantic Segmentation

Improving CAMs Quality. To localize the object with
only image-level labels, most WSSS approaches utilize
Class Activation Maps [56] from CNNs. However, these
CAMs (i.e. seeds) tend to focus on the discriminative re-
gions of objects and localize imprecise boundaries. To
enable CAMs to localize non-discriminative regions, var-
ious approaches have been researched in WSSS. By eras-
ing the most discriminative regions and guiding the clas-
sifier to keep searching for object-related regions, Adver-
sarial Erasing (AE) methods [19, 25, 40, 51, 55] effec-
tively expands the CAMs. Other than AE methods, prior
works introduced various training protocols such as sub-
categories [4], cross-image semantic relations [13, 26, 39],
complementary patches [54]. Recently, local-global consis-
tency [16] and local prototype clustering [50] effectively ex-
tract non-discriminative features. In addition to expanding
CAMs, many attempts [6, 12, 20, 48, 57] have been made
to obtain CAMs with precise boundaries. By leveraging
the strength of contrastive learning in semantic representa-
tion learning, many works with prototype-based contrastive
learning [6, 48, 57] were actively conducted. ACR [20] first
brought the reconstruction task to WSSS by conducting ad-
versarial learning of the reconstructor and classifier.
Refining CAMs Since the pseudo-pixel-level ground truth
generated from CAMs contains noisy information, several
works have attempted to refine CAMs to get reliable la-
bels. PSA [1] and IRNet [2] estimate the semantic affinity
between pixels to further improve the mask quality. Adv-
CAM [22] explored the less-discriminative region by ma-
nipulating the image in an anti-adversarial manner in a di-
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rection to increase the classification score. Under-fitting
strategy [28] to relieve the noisy information of pseudo la-
bels or estimating the uncertainty of CAMs [27] by scal-
ing the CAMs prediction multiple times are also proposed.
Mat-Label [43] proposed an image-matting-based pseudo-
label generation pipeline, and MARS [17] integrated the un-
supervised semantic segmentation to WSSS for the removal
of biased region. Though these post-processing methods
efficiently improve the quality of CAMs, these methods are
dependent on the initial seeds and can be used in conjunc-
tion with CAMs improvement methods, our method targets
to improve the CAMs.

2.2. Vision Transformer with WSSS

With the powerful attention mechanism, ViT shows great
improvements in various vision tasks. In line with this,
many works [14, 31, 36, 37, 49, 50] are proposed to bring
powerful localization capability to WSSS. After the suc-
cessful migration of ViT to Weakly Supervised Object
Localization (WSOL) in TS-CAM [14], MCTformer [49]
leverages multi-class tokens to extract class-specific atten-
tion maps in the self-attention mechanism. AFA [36] pro-
posed an end-to-end Transformer-based framework while
utilizing the affinity from attention for CAMs refinement.
With the advent of the Vision-Language foundation model,
i.e. CLIP, Xu et al. [50] and Lin et al. [31] proposed frame-
work to transfer the rich class representation capability of
CLIP for WSSS. ToCo [37] points out the over-smoothing
issue in ViT and addresses the issue by contrasting the class
token from a global view with class tokens from local posi-
tive/negative images. ToCo [37] shares similarities with our
approach by enhancing the representation capability of the
class token. However, ToCo [37] focuses on ensuring rep-
resentation consistency within a single image, whereas our
method aims to achieve consistency for class tokens across
both intra- and cross-images. Furthermore, our method op-
timizes with BG CAMs and BG token, while ToCo [37]
requires two additional hyperparameters to distinguish the
reliable foreground, background, and uncertain regions.

3. Method
In this section, we propose a ViT-based token infusion
framework to overcome the limitations of conventional
multi-class token-based WSSS methods. In our work, we
introduce a Background Class Token (BGT) to reduce the
false positive activation of CAMs. Then, to enhance the
representation capability of Class Token, we also propose
Intra/Cross-image Class Token Infusion (I/C-CTI).

3.1. Overall Framework

The overall framework of our method is shown in Fig. 2.
As shown in the figure, three paired images are utilized for
training. For the given RGB image I, we apply various

transformations (e.g., color jittering, resizing and cropping)
and construct a strong-positive image İ. Also, we sample
one image if there are any overlapping class labels and use
it as a weak-positive image Ï. To propagate those images
to the network, each image is split into N × N patches
and embedded as patch tokens Tpatch ∈ RN2×D with em-
bedding dimension D. Though we inherit [49] that uses C
foreground (FG) class tokens Tcls−fg ∈ RC×D, one more
class token Tcls−bg ∈ RD that represent background is
used to form input class tokens Tcls ∈ R(C+1)×D in our
framework. The class tokens Tcls and patch tokens Tpatch

are concatenated to form input token Tinput ∈ RP×D.
Here, P is the sum of the length of the class token and
patch token (P =C +1+N2). After adding the positional
embedding to the input token Tinput, the token is propa-
gated to L transformer blocks. When Tk denotes the out-
put token from kth transformer block, we can acquire the
CAMs M ∈ RN×N×(C+1) from the patch token output
TL

patch ∈ RN2×D by applying reshaping and 2D convo-
lutional layer. Note that the channel dimension of CAMs
is C + 1 instead of C due to BG CAM (Mbg ∈ RN×N ).
To produce class prediction ypred ∈ RC , we pool the class
token output TL

cls in embedding dimension except for BG
token output. With multi-label soft margin loss, Lcls com-
putes the entropy difference between class prediction ypred
and classification labels y. Also, the classification loss
at the patch level Lcls−patch is calculated by pooling the
CAMs M (w/o BG) in spatial dimensions. Details on how
we train the background token and infuse class tokens are
explained in the following section.

3.2. Background Class Token

Though the Multi-Head Self-Attention (MHSA) mecha-
nism in ViT effectively enlarges the CAMs to localize non-
discriminative regions, it often leads to overly searching ob-
ject non-related regions. Thus, we introduce a BG class
token to ViT-based WSSS to reduce these false activation
regions. Methods for improving CAMs using background
information have been actively researched in CNN-based
WSSS [6, 12, 48]. However, there has been minimal explo-
ration of utilizing background in the context of ViTs while
training. In our work, we explicitly define the background
class token and guide it to interact with other patch/class
tokens. With the self-attention map A ∈ RP×P that com-
putes Scaled Dot-Product Attention [41] between querys
Q ∈ RP×D and keys K ∈ RP×D, we extract class-patch
attention Acp ∈ RN×N×(C+1) and patch-patch attention
App ∈ RN2×N2

similar to [49] by aggregating the self-
attention maps along the L layers.

The training objective to get the BG CAM is formulated
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Figure 2. Visualization of the proposed framework. Our framework initiates with three paired images - two images I and İ originated from
the same image with different transformation, and the Ï is sampled from the other images that share at least one same class with I. These
images are fed into the ViT block with C class tokens and a single background token. At the intermediate layer of the ViT, we perform
Intra-image Class Token Infusion (I-CTI) and Cross-image Class Token Infusion (C-CTI). In I-CTI, class tokens corresponding to existing
classes of İ are infused to class tokens belonging to I. In C-CTI, a single class token from the overlapping classes between I and Ï is
infused. The background token and background CAM are colored in black, while classification loss is omitted for simplicity. Note that the
networks are weight-shared.

as follows:

Lbcam = |{1− {App ×max
c∈C

(X(c))}} − (App ×X(0))|1,
(1)

where X = Acp⊙M. Here, ⊙ and × respectively represent
element-wise and matrix multiplication. | · |1 and C are L1
loss and set of foreground classes, respectively. Here, X(c)
means the feature map at cth channel. The output App ×X
is normalized to 0-1 via min-max normalization.

3.3. Class Token Infusion

In this section, we propose Class Token Infusion (CTI)
to ensure that the class tokens are robust to image view
variation (global-local view consistency) and have a class-
specific distinct representation. As shown in Fig. 2, we ap-
ply infusion method between the class token outputs (TL1

cls,
ṪL1

cls, T̈L1

cls) from three images; original image I, strong-
positive image İ, and weak-positive image Ï, at the interme-
diate layer L1. Here, we propose two types of class token
infusion: 1) Intra-image Class Token Infusion (I-CTI) and
2) Cross-image Class Token Infusion (C-CTI).
Intra-image Class Token Infusion To make the ViT pro-
duce consistent CAMs for image view change, we pro-
pose I-CTI. Though the image I and strong-positive im-
age İ come from the same image, different augmentation

techniques such as color jittering and cropping/resizing,
are employed. When we formulate the forward process
as Ti

cls,T
i
patch = Fi(T

i−1
cls ,Ti−1

patch), where Fi is the ith

transformer block of ViT, I-CTI can be written as follows:
Ti+1

cls ,Ti+1
patch = Fi+1(T

i
cls,T

i
patch), i < L1

T̃i+1
cls , T̃i+1

patch = Fi+1(S̃(Ti
cls, Ṫ

i
cls, Ċ),Ti

patch), i = L1

T̃i+1
cls , T̃i+1

patch = Fi+1(T̃
i
cls, T̃

i
patch), i > L1,

(2)
where T̃, S̃(·), and Ċ denote the token output as a result
of the I-CTI, infusion operation, and set of all classes, re-
spectively. S̃(·) is the operation that executes S̃c(·) for each
c ∈ Ċ, where the detailed formula for S̃c(·) is as follows:

S̃c(T1,T2, Ċ) =
T1(c) +T2(c)

2
. (3)

By applying S̃, class tokens Ṫcls are infused to class to-
kens of Tcls. As shown in the second row of Eq. 2, the
infused class token, which is result of S̃(TL1

cls, Ṫ
L1

cls, Ċ), in-
teracts with the patch token TL1

patch in transformer block F
with self-attention mechanism and produce Token T̃. After
applying T̃ to transformer block F several times, we can
obtain the T̃L; the final result of token infusion. Then, we
minimize the difference M and M̃ in CAMs-level which
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are from TL
patch and T̃L

patch, respectively. This constraint
can be formulated as follows:

Li−cti =

C+1∑
c=0

|M(c)− M̃(c)|1. (4)

Cross-image Class Token Infusion To guide each class to-
ken to possess class-distinct and specific information, we
propose C-CTI. To perform classification using ViT, class
tokens interact with patch tokens and are modified to pos-
sess image-specific information. Thus, global contextual
representation corresponding to the class is stored in the
class token. However, we empirically find that classification
is insufficient to guide class tokens to learn class-relevant
information, and the feature representation from each class
token is highly correlated. To resolve this problem, in C-
CTI, we infuse class tokens from the other images: I and Ï.
By guiding the resulting CAMs to be similar before and af-
ter infusing class tokens, the class token maintains a mean-
ingful global representation that can express each class. At
the same time, the model can learn to focus on the unique
class-relevant characteristics by sharing a unique represen-
tation obtained from different images. Similar to Eq. 2, the
C-CTI can be written as follows:
Ti+1

cls ,Ti+1
patch = Fi+1(T

i
cls,T

i
patch), i < L1

T̂i+1
cls , T̂i+1

patch = Fi+1(Ŝ(Ti
cls, T̈

i
cls, C̈),Ti

patch), i = L1

T̂i+1
cls , T̂i+1

patch = Fi+1(T̂
i
cls, T̂

i
patch), i > L1,

(5)
where T̂ and C̈ denote the token output as a result of C-CTI
and the set which contains selected class, respectively. The
infusion operation Ŝ for C-CTI can be expressed as follows:

Ŝc(T1,T2, C̈) = 1c/∈C̈T1(c)+1c∈C̈
T1(c) +T2(c)

2
, (6)

where 1P denotes the indicator function that returns 1 if
P is satisfied, and 0 otherwise. Here, by applying Ŝ, only
one shared class between image I and weak-positive image
Ï is sampled, and the corresponding class token is infused.
Then, we minimize the difference M and X̂ in CAMs-level
which are from TL

patch and T̂L
patch, respectively. This con-

straint can be formulated as follows:

Lc−cti =

C+1∑
c=1

|M(c)− X̂(c)|1. (7)

Here, to leverage the class-patch attention Acp informa-
tion from the other images, we used X̂ instead of M̂.
Training Objective In the proposed CTI, only the class to-
kens from İ and Ï are infused to class token from I, while
the patch tokens from İ and Ï are not utilized in the deeper
layers. In I-CTI at layer i = L1, only the class token

Ti
cls (from I) and the class token Ṫi

cls (from İ) are fused.
The patch token Ṫi

patch is not utilized further in the deeper
layer (i > L1). As shown in the second and third row of
Eq. 2, only the patch token Ti

patch is forwarded with the
infused class token S̃(TL1

cls, Ṫ
L1

cls, Ċ) and forms T̃L. Since
the shape of CAMs is determined by patch tokens (of the
last layer) and M̃ is based on patch tokens obtained from
image I, M̃ thus shares the same position with M. Since
the C-CTI shares a similar infusion mechanism, the ‘shape’
of M, M̃, M̂ are the same. The final loss of the proposed
framework is formulated as follows:

Lall = Lcls + Lcls−patch

+ λLbcam + Li−cti + Lc−cti,

where λ is hyperparameter that balance the weight with re-
spect to Lcls.

4. Experiments
4.1. Experimental Settings

Datasets Following the prior WSSS works, we evaluate our
method on the PASCAL VOC 2012 dataset [11] and the
MS-COCO 2014 dataset [30], two most widely used bench-
marks. The PASCAL VOC 2012 dataset contains 20 fore-
ground object classes and one background class with 10582,
1449, and 1456 images in train, val, test set, respectively.
The MS-COCO 2014 dataset, which is a more challenging
dataset with 82k train set and 40k val set, consists of 80
foreground object classes and one background class.
Evaluation Metric For the evaluation of semantic segmen-
tation performance, we use mean Intersection over Union
(mIoU) by following the prior works [20, 49–51]. The
mIoU of the semantic segmentation model is evaluated on
val set while the CAMs performance is evaluated on train
set. The results on the PASCAL VOC 2012 test set are eval-
uated through the online official server.
Implementation Details In our framework, we use DeiT-S
pre-trained on ImageNet [9] as a backbone of classifier for
the fair comparison with previous ViT-based WSSS [14, 20,
49, 50]. The classification network is trained for 60 epochs
on both datasets, employing the Adam optimizer with an
initial learning rate of 5e-4 and a batch size of 64. As
in MCTformer [49], the same data augmentation methods
are applied with different image resize scales, and images
are cropped to 224 × 224. Unlike the MCTformer [49],
in which the multiple class tokens are initialized with the
same pre-trained class token, our method splits the class to-
ken with a fully-connected layer. Using a fully connected
(FC) layer for class tokens does not improve performance
(mIoU 64.9%) when used solely with a classification loss.
However, using class tokens with an FC layer is effective
when incorporating with the background owing to the cor-
relation between the background and the foreground. The
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Table 1. Ablation study on the PASCAL VOC 2012 train set. Bold
numbers represent the best results. P: Precision, R: Recall.†: We
re-implement the baseline [49] for a fair comparison within our
setting.

Lbcam Li−cti Lc−cti P(%) R(%) mIoU (%)
Baseline† 75.2 81.8 64.7

(a) ✓ 78.7 82.6 67.6
(b) ✓ ✓ 79.0 83.7 68.7
(c) ✓ ✓ 78.9 84.7 69.0
(d) ✓ ✓ ✓ 80.0 84.0 69.5

Figure 3. Comparison of CAM between the Baseline and Ours
with only background CAM loss, Lbcam, applied. The red box
indicates the over-activated regions towards the background area.

background token is initialized with zeros. For the C-CTI,
to prevent cases where no corresponding classes exist in the
mini-batch, we stacked the class tokens into memory and
used them. To balance the magnitude of weight with re-
spect to Lcls, the λ is set to 0.1. To generate the pseudo
labels for the training of the semantic segmentation model,
we employed the same post-processing model (IRN [2])
as in prior WSSS works [20, 22, 24, 50, 53]. For the se-
mantic segmentation model, Deeplab-V1 with a ResNet38
backbone is used for the PASCAL VOC 2012 dataset. For
the MS COCO 2014 dataset, we used Deeplab-V2 with a
ResNet101 backbone. Additional training details are in the
Supp. Materials.

4.2. Ablation Studies

Component analysis To demonstrate the importance of
each method we propose, we ablate the methods as shown
in Table 1. By bringing the concept of background CAMs
to ViT with a background token, we can obtain a 2.9%p

Figure 4. t-SNE comparison result between Baseline [49] (top)
and Ours (bottom). Class tokens Ti

cls in layer i ∈ {2, 7, 11} are
used for t-SNE and sampled from the PASCAL VOC 2012 train
set (10,582 images). Only the class token existing in each image
is sampled. Each class is represented with distinct colors and the
color scheme follows the legend at the top.

gain compared to the baseline (Table 1-a). CAMs results
in Fig. 3 clearly show the effect of background token. BG
CAM visualization results are in the Supp. Materials. With
the proposed intra-class token infusion (I-CTI), we can get
additional performance improvement with 1.1%p (Table 1-
b). We boost the performance to 69.5% with the proposed
cross-class token infusion (C-CTI) as in Table 1-d.
Importance of Background Class Token To emphasize
the importance of utilizing the BG class token Tcls−bg in
our approach, we conducted an experiment by training the
baseline model without the BG class token but with BG
CAM. To achieve this, we increased the number of class
prediction heads for the patch token from C to C+1 and
trained it solely with Lbcam. Since X(0) is not defined
in the absence of the BG class token, we trained it using
M(0). The results indicated a 4.1%p decrease compared to
the baseline, underscoring the significance of the BG class
token Tcls−bg in training a BG CAM.
Role of Class Token Infusion The class tokens Ti

cls in
layer i ∈ 2, 7, 11 are visualized using t-SNE in Fig. 4 to
demonstrate the effectiveness of Token Infusion. Specif-
ically, the class tokens corresponding to the class labels
are sampled from the PASCAL VOC 2012 train set, which
comprises 10,582 images. Referring to the t-SNE results of
the Baseline [49] in Fig. 4 above, we observe that class to-
kens acquired in the early layers (i.e., Layer 2) exhibit some
degree of distinctiveness between classes. However, the
feature space is not well-separated in the intermediate (i.e.,
Layer 7) and late layers (i.e., Layer 11). The t-SNE result
of Layer 11 suggests a lack of clear separation in the feature
space among classes. In contrast, as illustrated in the figure
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Table 2. The performance (mIoU,%) variation of the proposed
method based on the infusion index L1. Results consistently out-
perform the baseline, which is 64.7%. Peak performance, denoted
in Bold, is observed at layer 3.

L1 2 3 4 5 6 7 8 9 10
mIoU(%) 68.8 69.5 68.6 68.9 69.4 68.7 69.0 68.7 68.8

Table 3. Comparisons between our method and the other WSSS
methods. Methods that use the same post-processing methods
(PSA [1] or IRN [2]) are listed in the table. The mIoU (%) on
the PASCAL VOC 2012 train set is reported for CAMs (Seed)
and pseudo-ground-truth (Mask), respectively. The backbone for
each method is also listed (Backbone). Bold represents the best
results. Results above the table line are CNN-based, while those
below are ViT-based.

Methods Backbone Seed Mask
CDA [38] ICCV 21 ResNet38 58.4 66.4
OC-CSE [19]ICCV 21 ResNet38 56.0 66.9
EDAM [45] CV PR21 ResNet38 52.8 68.1
AMR [34] AAAI22 ResNet50 56.8 69.7
ReCAM [7]CV PR22 ResNet50 54.8 70.5
RIB [21] NeurIPS ResNet50 56.5 70.6
CLIMS [47]CV PR22 ResNet38 56.6 70.5
PPC [10]CV PR22 ResNet38 61.5 70.1
AEFT [51] ECCV 22 ResNet38 56.0 71.0
ACR [20] CV PR23 ResNet38 60.3 72.3
MCT [49] CV PR22 DeiT-S 61.7 69.1
FPR [5] ICCV 23 DeiT-S 63.8 -
ACR+ViT [20] CV PR23 DeiT-S 65.5 70.9
USAGE [33] ICCV 23 DeiT-S 67.7 72.8
Ours DeiT-S 69.5 73.7

below, the t-SNE results support the idea that class tokens
from our method yield well-distinguished feature spaces not
only in the final layer but across all layers. Considering
that CAMs from ViT utilize the class-patch attention Acp

that is aggregated from all layers, this clear separation be-
tween classes in feature space can help to improve the qual-
ity of CAMs. The qualitative comparison results between
the baseline [49] and our approach in Fig. 5 support that the
CAMs generated by our methods exhibit greater distinctive-
ness and do not encroach upon the regions of other classes,
while the CAMs from the baseline activate the wrong re-
gions (red box). Since the class tokens from the baseline
are not well-separated, as illustrated in Fig 5 above, the ac-
tivation of ‘Bus’ class intrudes the regions of ‘Train’ class,
while the activation of the ‘Person’ class extends into the
regions of the ‘Bus’ class with higher confidence.
Effect of infusing index To show the effect of an index
in infusion, we conduct an ablation study. As shown in Ta-
ble 2, the performance in mIoU (%) is calculated by varying
the infusion index L1 from 2 to 10 where the total number
of layers L is 12. The performance is highest when the in-

Figure 5. Qualitative comparison results between the Baseline
(top) and Ours (bottom). Here, the red box indicates the false pos-
itive activation.

Table 4. Semantic segmentation performance comparison in mIoU
(%) with the existing WSSS methods. Sup. denotes supervision;
I: image-level label, S: Saliency maps, L: pre-trained Language
model. For a fair comparison, only the methods using the same
post-processing methods (PSA [1] or IRN [2]) are listed in this
table. Bold numbers represent the best results.

Methods Backbone Seg. Sup. Val Test
OC-CSE [19]ICCV 21 ResNet38 V1 I 68.4 68.2
ReCAM [7]CV PR22 ResNet101 V2 I 68.5 68.4
CPN [54]ICCV 21 ResNet38 V1 I 67.8 68.5
RIB [21]NeurIPS21 ResNet101 V2 I 68.3 68.6
CLIMS [47] CV PR22 ResNet101 V2 I+L 69.3 68.7
PMM [28]ICCV 21 ResNet38 V1 I 68.5 69.0
EDAM [45] CV PR21 ResNet101 V2 I+S 70.9 70.6
FPR [5] ICCV 23 ResNet38 V1 I 70.0 70.6
Spatial-BCE [46]ECCV 22 ResNet101 V2 I 70.0 71.3
AEFT [51]ECCV 22 ResNet38 V1 I 70.9 71.7
ACR [20] CV PR23 ResNet38 V1 I 71.9 71.9
L2G [16] CV PR22 ResNet38 V1 I+S 72.0 73.0
MCT [49] CV PR22 ResNet38 V1 I 71.9 71.6
ACR+ViT [20] CV PR23 ResNet38 V1 I 72.4 72.4
USAGE [33] ICCV 23 ResNet38 V1 I 71.9 72.8
Ours ResNet38 V1 I 74.1 73.2

fusion index L1 is set to 3. There is a slight performance
difference depending on the index performing the infusion,
but it consistently demonstrates high performance. Refer-
ring to the t-SNE results of baseline [49] in Fig. 4 above,
the feature space of class tokens becomes less distinct in
the later layers, thus the effectiveness of the proposed CTI
is more evident when conducted in the early layers. Yet it
still brings a minimal 1.0%p increase when compared to the
case without CTI (Table 1-(a)). With these robust results,
we set the infusion index to 3.

4.3. Comparisons to State-of-The-Arts

PASCAL VOC As shown in Table 3, we compare the per-
formance of CAMs (seed) and pseudo pixel-level ground-
truth (Mask) on train set. Our method shows better perfor-
mance both at the seed and mask levels. Compared with
the second best result [33], we achieve +1.8%p and +0.9%p
gain at seed and mask performance, respectively. In Table 4,
the performance of the semantic segmentation on the PAS-
CAL VOC 2012 dataset is listed. The semantic segmenta-
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Figure 6. Our semantic segmentation results on VOC 2012 (left) and COCO 2014 (right). From top to bottom: Image, Ours, GT.

Table 5. Comparison in mIoU (%) performance between the pro-
posed method and the existing WSSS methods. Evaluation is con-
ducted on MS-MOCO 2014 val set. Bold numbers represent the
best results.

Methods Backbone Seg. Sup. Val
IRNet [2]CV PR19 ResNet50 V2 I 41.4
ReCAM [7]CV PR22 ResNet101 V2 I 42.9
SIPE [6]CV PR22 ResNet38 V1 I 43.6
RIB [21]NeurIPS21 ResNet101 V2 I 43.8
FPR [5] ICCV 23 ResNet101 V2 I 43.9
L2G [5] ICCV 23 ResNet101 V2 I+S 44.2
AEFT [51]ECCV 22 ResNet38 V1 I 44.8
ACR [20] CV PR23 ResNet38 V1 I 45.3
MCT [49] CV PR22 ResNet38 V1 I 42.0
USAGE [33] ICCV 23 ResNet101 V2 I 44.3
Ours ResNet101 V2 I 45.4

tion trained with these high-quality labels outperforms the
SoTA both on val and test set with a great margin. In-
terestingly, our semantic segmentation model shows better
performance than the pseudo-labels, considering that other
methods show slightly lower performance than the pseudo-
labels. Furthermore, though increasing performance be-
comes more challenging as it saturates, we have more than
1.7%p gain on val set compared to the second-best model.
MS COCO As shown in Table 5, we also trained and eval-
uated our model on MS COCO 2014 dataset. Though the
dataset contains more classes with complex scenes, our
method shows promising results with 45.4% mIoU and
supports the robust generalization ability of our model.
ViT-based WSSS methods have exhibited superior perfor-
mance compared to CNN-based methods on PASCAL VOC
2012. However, on the MS COCO 14 dataset, they have
shown lower performance due to false activation and activa-
tion overlap between classes. However, with the proposed

method, we reduce the gap by effectively reducing the false
activation regions while guiding class tokens to be distinct.
Additional CAMs and semantic segmentation visualization
results are in the Supp. Materials.

5. Conclusion

In this work, we aim to enhance the class-specific repre-
sentation capability of the class tokens in ViT to localize
the objects in an image distinctively. For this, we propose
two types of Class Token Infusion (CTI): Intra-image Class
Token Infusion (I-CTI) and Cross-image Class Token In-
fusion (C-CTI), which infuses the class tokens from the
same or other images. In I-CTI, we infused the class to-
kens from the same but augmented image to the class to-
ken from the original image. By guiding the CAMs before
and after the infusion to be the same, we bestow global-
local consistency. C-CTI extends this infusion process to
the other images with at least one shared class. Through
the C-CTI, both class tokens and CAMs possess consistent
class-specific knowledge that can be shared across the im-
ages. Furthermore, to reduce the false activation of CAMs,
we incorporate the Background Token (BGT) into ViT. We
also experimentally demonstrate that using BGT effectively
addresses over-expansion issues. Extensive experimental
results on the VOC and COCO support the validity and
generalizability of the proposed method. We also achieved
state-of-the-art in both datasets.
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