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Figure 1. (a) The proposed method demonstrates robustness to unseen face identities and topologies and effectively generates stylized
output faces with desired topologies. (b) Our stylized avatars can be animated using 3DMM blend shapes.

Abstract

Recent advances in 3D face stylization have made signif-
icant strides in few to zero-shot settings. However, the de-
gree of stylization achieved by existing methods is often not
sufficient for practical applications because they are mostly
based on statistical 3D Morphable Models (3DMM) with
limited variations. To this end, we propose a method that
can produce a highly stylized 3D face model with desired
topology. Our methods train a surface deformation network
with 3DMM and translate its domain to the target style us-
ing a paired exemplar. The network achieves stylization of
the 3D face mesh by mimicking the style of the target using
a differentiable renderer and directional CLIP losses. Ad-
ditionally, during the inference process, we utilize a Mesh
Agnostic Encoder (MAGE) that takes deformation target, a
mesh of diverse topologies as input to the stylization pro-
cess and encodes its shape into our latent space. The re-
sulting stylized face model can be animated by commonly
used 3DMM blend shapes. A set of quantitative and quali-
tative evaluations demonstrate that our method can produce

highly stylized face meshes according to a given style and
output them in a desired topology. We also demonstrate ex-
ample applications of our method including image-based
stylized avatar generation, linear interpolation of geomet-
ric styles, and facial animation of stylized avatars.

1. Introduction
Crafting animatable stylized 3D avatars that encapsulate
both personal identity and character style requires extensive
efforts from skilled artists. When creating animated films,
the artists design stylized 3D avatars whose facial appear-
ance matches the theme of the entire content while putting
careful effort into preserving the idiosyncrasy of the actors.
Similarly, on social media, artists create numerous stylized
presets so that the combinations of these presets can repre-
sent diverse identities.

To reduce the burden of manual crafting effort, gener-
ating stylized 3D faces has been a prominent area of re-
search. Recent attempts include 3D-aware generative ad-
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versarial networks (GANs) and denoising diffusion models
(DMs) [1, 12, 15, 18, 46], generating a stylized texture for
the 3D morphable model (3DMM) [2, 47], text-based ge-
ometry deformation [7, 22, 24–26], and surface deforma-
tion methods [13, 43]. These methods have successfully
demonstrated the possibility of producing high-quality and
diverse stylized 3D faces, although each method has distinct
challenges.

We identify three key elements for stylized avatar cre-
ation so that the results can be practically useful.
1. Avatar creation in a desired topology that is compatible

with conventional CG pipelines.
2. Extending stylization capabilities beyond 3DMM.
3. Generating stylized avatars that are animatable using

blend shapes.
Where each component meets the standards and demands of
the dynamic entertainment landscape 1) allowing creators to
reuse existing animation rigs and texture maps across dif-
ferent models.; 2) achieving greater diversity and flexibility
in expressing unique and non-conventional characters.; 3)
enabling animators to achieve coherent and natural move-
ments across various facial features and expressions. While
recent methods have made meaningful strides in one or two
aspects of these key elements, there has not been a method
that satisfies all three elements, as summarized in Figure 2.

Ours

Avatar in a desired topology

Stylization beyond 3DMM

Animatable 

A face, without nose

Text-based 
deformation

3D-aware
avatar generation 

3DMM-based 
avatar generation

Figure 2. Comparison of different stylized 3D face generation
methods and their limitations in meeting key elements. 3D-aware
methods cannot generate 3D face in desired topologies. 3DMM-
based methods have a limited stylization capability. Text-based
deformation models are not directly animatable. The proposed
method meets the goal of all three components.

To address this, we propose a novel method that can gen-
erate stylized 3D face meshes. This is achieved by trans-
lating the domain of a pre-trained surface deformation net-
work based on one of the most widely used 3DMM model,
FLAME [19], to a target style domain. We achieve this goal
by first training the surface deformation network with the
FLAME decoder to leverage its linear shape space com-
bined with global expression space. During fine-tuning,
we employ a directional CLIP-based domain adaptation
method [16, 35, 48], widely used in 2D domain, to retain
the face identity while reflecting the desired style.

In addition, to seamlessly integrate this 2D-based train-
ing method into the stylized 3D face generation task, we
propose a hierarchical rendering scheme that captures local
and global facial features, ensuring effective training and
identity preservation. In the inference stage, we introduce
a Mesh Agnostic Encoder (MAGE) to enable mesh agnos-
tic stylization for an input, which we call a deformation
target that has various mesh topologies. MAGE is com-
posed of pre-trained encoders from Neural Face Rigging
(NFR) [34] and latent mapping networks, which establish
correspondences between shapes by encoding mesh repre-
sentations into a topology-invariant latent space. This en-
hances the versatility and applicability of our approach in
the context of 3D face stylization. As shown in Figure 1,
our method can generate stylized 3D face models with var-
ied mesh topologies that are equipped with the animation
capability of 3DMM while ensuring consistency across di-
verse deformation target mesh representations.

2. Related Work
2.1. Stylized 3D face generation

With recent advances in the GANs and DMs that utilize
neural fields for 3D-aware face generation [3, 10], the gen-
eration of faces in diverse styles has gained popularity
[1, 12, 15, 18]. By leveraging 2D priors from generative
models, which capture various patterns and variations ob-
served in the extensive 2D training data, these methods
can generate 3D faces with various styles. However, de-
spite their success in producing consistent multi-view im-
ages through neural rendering, creating stylized faces in a
desired topology is challenging, limiting their suitability for
using existing graphics tools across different faces. On the
other hand, 3DMM-based personalized 3D face generation
methods with text-guidance [2, 47] have shown success in
producing high-fidelity stylized textures for 3D face mod-
els. However, these methods confine the shape of the gener-
ated face models within the 3DMM shape space, constrain-
ing possibilities for geometric exaggerations or abstraction
beyond the training data.

2.2. Learning-Based 3D Shape Network

Recently, learning implicit functions for 3D shapes has
demonstrated remarkable performance in representing com-
plex geometric structures [8, 23, 27, 30, 31]. In particular,
DIF-Net [5] adopted MLPs for learning a standard signed
distance function (SDF) and a volumetric deformation func-
tion, leading to comprehensive mapping between the pro-
duced SDFs. Most related to our work, DD3C [13] utilized
template deformation for 3D caricature auto-decoder. They
found that modeling each shape as a deformation of a fixed
temaplate surface effective compared to absolute position.
We advance a step further by training a surface deformation
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network on 3DMM and transfer its domain into stylization.
Another line of research aims to transfer shape deforma-

tion [39]. Recently, attempts have been made to transfer de-
formation utilizing examples [40, 43, 45] or text [7, 24, 25].
These methods can deform a mesh into a desired style and
identity using a given example. However these deformation
methods may not be as effective when it comes to coherent
control of animation.

2.3. Few-Shot Domain Adaptation

Domain adaptation refers to the process of utilizing a neu-
ral network that has been initially trained on a large dataset
from a source domain, and subsequently fine-tuning it on
a smaller dataset from a target domain. Few-shot domain
adaptation is widely researched in the 2D domain, espe-
cially with generative priors [4, 12, 20, 28, 29, 41, 42, 44].
Attempts have been made in one-shot domain adaptation
to utilize the semantic capabilities of vision-language net-
works like CLIP [35]. These networks can provide direction
for distinguishing between identity and style [6, 16, 48].
We adopt this two-way directional guidance from CLIP and
combine it with a differentiable renderer to effectively styl-
ize the face mesh while preserving the original identity us-
ing a paired exemplar.

2.4. Mesh Agnostic Deformation

Recently, mesh agnostic networks [9, 11, 32, 33, 38]
demonstrated a great potential for learning 3D information
such as dense correspondences between different 3D shape
representations without relying on consistent topology or
vertex ordering. These networks operate on meshes and en-
code shapes into a topology-invariant latent space. Specifi-
cally, NFR [34] proposed an autoencoder framework for fa-
cial expression retargeting across different mesh topologies.
The framework utilizes separate expression and identity en-
coders, both functioning in a topology-agnostic manner.

We integrate components of this approach into our
method by mapping their embeddings into our latent space.
This network translates the output of the pre-trained en-
coder from NFR to the latent space of our surface defor-
mation network. This enables any geometric shape of the
deformation target to be encoded and fed into our surface
deformation network.

3. Method
Our research focuses on training and fine-tuning a surface
deformation network to generate stylized 3D faces with di-
verse shapes and expressions. We start with the source face
deformation network DS that deforms the template face to
a face with different identities and expressions. Thereafter,
we fine-tune it into a target style face deformation network
DT using a paired exemplar. This process is outlined below.

1. We first train DS using FLAME in a self-supervised
manner, enabling the creation of versatile head meshes
with different shapes and expressions.

2. For fine-tuning, we assemble a paired exemplar that con-
sists of an identity exemplar mesh MS and a style exem-
plar mesh MT , sharing identity.

3. Both MS and MT jointly serve as example guidance to
fine-tune DT .

4. At inference, using MAGE andDT , the deformation tar-
get of diverse topologies can be translated into a stylized
face.

A detailed description of these processes will be provided
in the following subsections.

3.1. Deformation Network as Parametric Model

DS is a surface deformation network that deforms a tem-
plate face with the given latent vectors. We train the net-
work to generate diverse human faces with FLAME, in
a self-supervising manner. FLAME can manipulate both
the global head shape and local expressions through its
shape parameters

−→
β ∈ R300, and expression parameters

−→
ψ ∈ R100, which are the components of the FLAME pa-
rameters Φ. This empowersDS to generate diverse geomet-
ric face shapes and expressions.

To generate face meshes using these shape and ex-
pression components of Φ as input, we employ mapping
networks, Mshape and Mexp, which consist of Multi-
Layer Perceptrons (MLP). Each mapping network sepa-
rately transforms

−→
β and

−→
ψ into latent vectors, zs and ze,

respectively.

zs = Mshape(
−→
β ), ze = Mexp(

−→
ψ ) (1)

These latent vectors are then fed into DS , enabling the cre-
ation of diverse face meshes imbued with a wide range of
expressions. The mapping networks Mshape and Mexp are
trained jointly withDS during the training process. The fol-
lowing losses are employed:

L(
−→
β ,

−→
ψ ) =

∥∥∥∥∥FLAME
(−→
β ,

−→
ψ
)
−DS

([
Mshape(

−→
β )

Mexp(
−→
ψ )

])∥∥∥∥∥
2

2

(2)

Surface-Intensive Mesh Sampling To enable DS to rep-
resent various geometries, we introduce a surface-intensive
mesh sampling (SIMS) strategy during training. SIMS is
performed by randomly selecting points from the surfaces
of the face mesh, FLAME(

−→
β ,

−→
ψ ), during training DS .

Specifically, we sample approximately 4 times more points
from the surface than the number of vertices of the face
mesh. Experiment results are reported in Sec. 4.2.

3.2. LeGO
The fine-tuning process utilizes a paired exemplar, MS and
MT , to guide the adaptation of DT for the generation of
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Figure 3. Overview of our method: The upper box illustrates the inference stage, where our method takes diverse deformation targets and
generates stylized outputs. In the lower-left box, the training process of Mesh Agnostic Encoder (MAGE) is depicted. In the lower-right
box, the fine-tuning process of DT is illustrated.

stylized 3D faces. An identity exemplar mesh, MS , is gen-
erated from the FLAME decoder using Φref , and a style
exemplar mesh, MT , is manually crafted from MS . During
each iteration of fine-tuning, Φsample is sampled randomly
to generate face mesh Msamp

S from DS and corresponding
stylized 3D face Msamp

T from DT . In the fine-tuning pro-
cess, quantities of MS , MT , DS , and DT are all singular,
representing one pair of meshes and one pair of networks.

We introduce a hierarchical rendering scheme designed
to preserve semantically important features, such as the
shape and facial components, in the face mesh. With a dif-
ferentiable renderer, this approach captures significant fa-
cial features from both local and global perspectives, en-
hancing stylization fidelity and identity preservation. To
further enhance this process, we incorporate 2D-based
losses, including CLIP reconstruction loss LCLIP, CLIP in-
domain loss Lin, CLIP across-domain loss Lacross, and
3D-based losses such as vertex reconstruction loss Lvert

and style loss Lstyle. Details of each loss are elaborated
in Section 3.3.

3.3. Loss Functions

Vertex Reconstruction Loss The vertex reconstruction
loss Lvert guidesDT in learning to deform a style exemplar
mesh MT from [zrefs , zrefe ], which is mapped from Φref .
The loss utilizes Mean Squared Error (MSE) to ensure that
the vertices of the predicted mesh MT

∗, generated by DT ,

closely match MT . The loss can be written as follows:

Lvert = ∥MT −MT
∗∥22 (3)

CLIP Reconstruction Loss The CLIP reconstruction
loss LCLIP serves to maintain semantic consistency be-
tween the deformed mesh MT

∗ and MT in the CLIP space.
This is crucial because even minor displacements in 3D
space can result in surface irregularities or undesirable shad-
ing variations. The CLIP reconstruction loss can be written
as follows:

LCLIP =
∑
l∈L

∑
v∈Vl

∥EC (Rl,v (MT ))− EC (Rl,v (MT
∗))∥22

(4)
Rl,v represents the hierarchical rendering of a differen-

tiable renderer from level l and view direction v. Each view
is anchored at a predefined position on a face mesh, includ-
ing the front and both sides of the face. Each level corre-
sponds to the distance from the face to the camera. At the
highest level, where the face is captured in close-up, addi-
tional images are rendered from significant facial features
such as the nose, eyes, and lips. EC encodes rendered im-
ages into CLIP embeddings.

CLIP Directional Loss Inspired from one-shot styliza-
tion methods in the 2D domain [48], we incorporate the
CLIP in-domain loss Lin and the CLIP across-domain loss
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Lacross. Lin ensures that the direction of two distinct faces
in the source domain remains consistent in two distinct styl-
ized faces of the target style domain. In contrast, Lacross

ensures that the direction of a face from the source domain
and its corresponding stylized face in the target domain
is preserved across different faces and their corresponding
stylized faces. This can be shown in the lower right of Fig-
ure 3. Therefore our losses for CLIP in-domain and across-
domain can be written as follows:

Lin =
∑
l∈L

∑
v∈Vl

∥(EC(Rl,v(M
samp
S ))− EC(Rl,v(MS)))

− (EC(Rl,v(M
samp
T ))− EC(Rl,v(MT )))∥22

(5)

Lacross =
∑
l∈L

∑
v∈Vl

∥(EC(Rl,v(MT ))− (EC(Rl,v(MS)))

− (EC(Rl,v(M
samp
T ))− EC(Rl,v(M

samp
S )))∥22

(6)

where Msamp
S and Msamp

T refer to DS [z
samp
s ; zsamp

e ] and
DT [z

samp
s ; zsamp

e ], respectively, where [zsamp
s ; zsamp

e ] is
the latent vectors mapped from Φsample.

Style Loss We introduce a novel style loss Lstyle to cap-
ture the style of MT by utilizing surface normals. Style
loss compares surface normal, which are strongly corre-
lated with the semantic information of the mesh [5]. A
straightforward approach would involve comparing MT

with MT
samp. However, this will constrain MT

samp to
have same expression as MT , which could degrade the an-
imatability. To address this, we construct a pseudo pair for
normal calculations. This is done by generating a face mesh
through the concatenation of zrefe from MT and zsamp

s .
This approach is utilized to compute the style loss, Lstyle

without degrading the animatability while enhancing style
adherence. In short, Lstyle ensures alignment of the surface
normals from DT ([z

samp
s ; zrefe ]) with MT . The formula-

tion of the style loss can be written as follows:

Lstyle =
∑
f∈S

(
1− nf · n′f

|nf ||n′f |

)
(7)

where nf refers to the surface normal from MT while n′f
refers to the corresponding normal fromDT ([z

samp
s ; zrefe ]).

The final objective function can be written as follows:

Ltotal =λvertLvert + λCLIPLCLIP + λinLin

+ λacrossLacross + λstyleLstyle

(8)

where λvert, λCLIP, λin, λacross, and λstyle are the weight
for each loss term.

3.4. Mesh Agnostic Encoder

NFR [34] employs DiffusionNet [38] for encoding and
decoding face meshes, facilitating face retargeting across

different topologies. Given NFR’s proficiency in extract-
ing identity and expression details from faces with varying
topologies, we extend its encoders to create a MAGE, as de-
picted in Figure 3. MAGE consists of ID2ID and exp2exp,
both being MLPs that receive embeddings from each ID en-
coder and expression encoder pre-trained in NFR. Finally,
given intermediate vectors from both ID2ID and exp2exp,
the latent mapper outputs the latent vectors for DS .

MAGE is trained in a self-supervised manner by ran-
domly sampling β andψ and passing them through the map-
ping networks of DS to obtain [zs; ze]. Training involves
comparing [ẑs; ẑe], predicted from MAGE, with their corre-
sponding ground truth latent vectors [zs; ze]. The objective
function of the encoder uses a MSE loss as follows:

Lenc = ∥[zs; ze]− [ẑs; ẑe]∥22 (9)

where [ẑs; ẑe] is MAGE [DS([zs; ze])]. With this encoder,
we can project a face mesh with diverse topologies into the
latent space of DS .

3.5. Inference

After training, DT is capable of generating a stylized 3D
face mesh with a desired topology from a deformation target
mesh that has an arbitrary topology. This is accomplished
by first projecting the deformation target into a latent vector,
using MAGE. This latent vector is then fed as input to DT ,
allowing it to deform the template face of the desired topol-
ogy into a stylized 3D face mesh. The resulting stylized face
preserves both the identity of the deformation target and the
desired style while providing animation control.

4. Experiments
4.1. Qualitative Evaluation
We evaluate our method based on three key elements for
stylized 3D head avatar creation: Avatar creation in a de-
sired topology, stylization beyond 3DMM, and animation
capability with blend shapes. Also, implementation details
are provided in supplementary material.

Avatar in a Desired Topology To evaluate the capability
of our method in producing a mesh with a desired topol-
ogy from the deformation target of arbitrary topologies, we
first apply a re-meshing technique that includes Loop sub-
division [21] and mesh simplification [37] to meshes from
FLAME. We also use original meshes from the CoMA [36]
and ICT-FaceKit [17] directly as additional diverse meshes.
To visually confirm that our method can align different
mesh topologies with a desired template face, we enhance
the resulting meshes with a checkerboard texture. The vi-
sual results, as shown in Figure 4, demonstrate that our
method consistently produces stylized 3D faces with the de-
sired topology, regardless of variations in the topology of
the deformation target.
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Figure 4. Demonstration of stylized 3D faces with desired topol-
ogy, regardless of deformation target variations.

Stylization Capability We evaluate our method across
various styles to assess its stylization capability. As shown
in Figure 5, our method can generate a broad spectrum
of styles encompassing human-like and non-human-like
faces while preserving the original identities of the given
face mesh. Our method also demonstrates the capability
to achieve stylization across various geometries, including
face masks and point clouds.
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Exemplar

Figure 5. Stylization results across diverse styles and identities.
Our approach generates varied styles while preserving the defor-
mation target identity and generalizing to diverse geometric repre-
sentations like masks and point clouds.

Animation Capability Using parameters from 3DMM,
our method can animate facial expressions in the resulting
stylized 3D faces. As illustrated in Figure 6, our method
can generate 3D stylized faces with various expressions.
This allows applications such as video-driven stylized talk-
ing heads, which are elaborated in supplementary material.

Figure 6. Visualization of dynamic expressions in stylized 3D
faces.

4.2. Quantitative Evaluation

For a quantitative evaluation, we measured the average
CLIP style preservation (CLIP-SP) and CLIP identity
preservation (CLIP-IP) scores. These metrics reflect the
trade-off between preserving style and identity, making
their averages crucial for validating stylization. For both
metrics, we calculated the cosine similarity of CLIP em-
beddings from rendered meshes. Specifically, for CLIP-SP,
we compared the embeddings of the generated stylized face
mesh and style exemplar mesh. For CLIP-IP, we compared
the embeddings of the generated stylized face mesh and de-
formation target mesh. For dataset, we sampled 8 differ-
ent face mesh from FLAME without expression and manu-
ally crafted stylized mesh corresponding to each identities.
Also, for the quantitative evaluation, we randomly sampled
another 10 different identities without expression to be used
as deformation targets.

Comparison with Baselines on Mesh Stylization We
compared our stylized face generation results with those
produced by baselines that can deform a mesh into differ-
ent styles: Deformation Transfer [39], TextDeformer [7],
and X-mesh [22]. In case of Deformation Transfer [39], we
identified the correspondences between the identity exem-
plar mesh and the deformation target using 68 facial land-
marks along with 9 additional points on the forehead in
order to apply learned deformation. TextDeformer and X-
mesh employ a text-guided deformation that operates on an
input mesh. For both methods, the input face is deformed
based on the same descriptive text to generate stylized out-
puts. All these baselines were evaluated on three different
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Table 1. Quantitative results are presented for comparison with baselines and ablations, featuring averages of CLIP-SP and CLIP-IP. The
highest scores are denoted in bold, while the second highest scores are underlined.

Mesh Type FLAME Loop Simplified Overall-Average
Methods CLIP-SP CLIP-IP Average CLIP-SP CLIP-IP Average CLIP-SP CLIP-IP Average Average

Ours 0.9867 0.9347 0.9607 0.9833 0.9350 0.9592 0.9559 0.8987 0.9273 0.9491
Ours w/o Lstyle 0.9809 0.9374 0.9591 0.9768 0.9339 0.9553 0.9542 0.8987 0.9265 0.9470

Ours w direct Lstyle 0.9865 0.9348 0.9607 0.9833 0.9356 0.9595 0.9550 0.8973 0.9262 0.9488
w/o hierarchical rendering 0.9846 0.9349 0.9597 0.9824 0.9334 0.9579 0.9569 0.8985 0.9277 0.9484

Text deformer 0.8641 0.8363 0.8502 0.8630 0.8425 0.8528 0.8534 0.8173 0.8353 0.8461
X-mesh 0.8626 0.8602 0.8614 0.8817 0.8950 0.8884 0.8635 0.8448 0.8541 0.8680

Deformation transfer 0.9768 0.9376 0.9572 0.9598 0.9576 0.9587 0.9254 0.9288 0.9271 0.9477

mesh topologies: FLAME and FLAME with Loop subdivi-
sion and mesh simplification.

We present qualitative comparison results on stylized 3D
face generation in Figure 7. Deformation Transfer is capa-
ble of generating faces that follow the style; however, it ex-
hibits artifacts, including anomalies and concavities on the
surface due to the calculation of displacement and its direct
transfer. In contrast, text-based methods fall short in fol-
lowing styles. Our method, on the other hand, can generate
stylized 3D faces that adhere to both the input identity and
style example without any artifacts.

In quantitative evaluation, shown in Table 1, our method
obtained the highest average scores computed from CLIP-
SP and CLIP-IP. This clearly demonstrates that our ap-
proach achieves better performance in mesh stylization
while preserving input identity compared to deformation
baselines. More details and examples are provided in the
supplementary material.

Ours Deformation
Transfer

Text
Deformer X-MeshDeformation 

Target

“Pixar Child”

Style exemplar

“Bulldog makeup”

Figure 7. Qualitative comparison on stylization. Our method ad-
heres to style and identity without artifacts unlike Deformation
Transfer. Text-based approaches fail to match styles from text.

Surface-Intensive Mesh Sampling To test the proposed
sampling method SIMS, we conducted a study on the recon-
struction task comparing three different sampling variants
for training DS . SIMS is surface-intensive sampling, us-
ing approximately four times more points sampled from the
mesh surface compared to mesh vertices. Hybrid sampling,
originally proposed in DD3C [13], sampled points both ver-

Table 2. Reconstruction comparison with mesh sampling methods

Reconstruction loss↓ (all in e-5)
Methods original simplified loop-1 loop-2 average

SIMS(Ours) 1.790 1.635 1.612 1.591 1.657
Hybrid 2.300 2.019 2.138 2.118 2.144
Vertex 1.955 5.866 3.258 2.959 3.509

tices and faces in similar ratio (∼1.1 times). Vertex-only
used just the vertices of the mesh.

For the experiment, we calculated the reconstruction loss
on four different experiment settings: (1) original FLAME,
(2) a simplified FLAME mesh with 1/4 the vertex count, (3)
FLAME with one loop subdivision, and (4) FLAME with
two loop subdivisions. The reconstruction loss was com-
pared to the ground truth position using mean squared error.
As shown in Table 2, SIMS achieved the lowest error by a
large margin on all experiments. Hybrid sampling generally
performed better than vertex-only sampling.

Ablation Study To perform an ablation study, we trained
our model DT using different settings: 1) “Ours w/o
Lstyle,” where the style loss was removed; 2) “Ours w direct
Lstyle,” where the style loss was directly compared between
DT ([zs

samp; ze
samp]) and MT ; 3) “Ours w/o hierarchical

rendering,” where a single canonical view was used to cal-
culate the Lin and Lacross. The results are displayed in
Figure 8 and Table 1. The results produced by ”Ours” and
”Ours w direct Lstyle” do not show any artifacts unlike the
results produced by w/o Lstyle and w/o hierarchical ren-
dering, which exhibit surface artifacts. However, “Ours w.
direct Lstyle” forcesDT ([zs

samp; ze
samp]) andMT , which

have different expressions, to have the same normals; thus,
it discards the expression. As a result, while “Ours w. di-
rect Lstyle” does stylize effectively, it cannot animate. Con-
versely, “Ours” not only stylizes well but is also animat-
able. Additional ablation study results regarding animation
are presented in the supplementary material.
User Study We conducted a user study with 34 partici-
pants to evaluate different stylized face generation methods
on human perception. A total of eight different styles were
used. Each participant was presented with 20 questions and
asked to choose the result that best followed the style while
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Style exemplar Deformation 
target

Ours Ours W/O 
𝐿_𝑠𝑡𝑦𝑙𝑒

Ours W direct 
𝐿_𝑠𝑡𝑦𝑙𝑒

Ours W/O 
hierarchical rendering

Figure 8. Visualization on ablation study.

preserving the identity. As shown in Table 3, our method
received higher scores compared to the baseline methods.
Ours outperformed the text-based stylization methods by a
large margin and scored higher than the method requiring
correspondence specification.

Table 3. Results from the user perceptual study given style ex-
emplar and the deformation target. The percentage represents the
selected frequency.

Method User Score
Ours 60.65%
Deformation transfer 38.17%
Text deformer 0.44%
X-mesh 0.74%

5. Applications
5.1. Style Interpolation

LeGO enables linear style interpolation as illustrated in Fig-
ure 9, through weight blending. Diverse styles are seam-
lessly blended to create new stylized meshes by linearly
interpolating weights from DT 1 and DT 2 using following
equation:

Wnew = αWDT 1 + (1− α)WDT 2 (10)

Here, WDT 1
and WDT 2

denote the network weights for
DT 1 andDT 2, respectively, while α represents the blending
weight controlling the interpolation.

Style A Style B

Figure 9. Linear interpolation of Style A and Style B

5.2. Image-based 3D Stylized Avatar Generation

A stylized 3D face can be generated from a single portrait
by first using methods that reconstruct 3D faces from 2D
portraits. Among these methods, we employed MICA [49]
to reconstruct a 3D face from an image. This reconstructed
shape was then fed into LeGO to create stylized faces. The
results are visualized in Figure 10.

Exemplar

Figure 10. Visualization of generating stylized 3D faces from 2D
portraits [14].

6. Limitation and Conclusion
We presented a novel approach for generating stylized 3D
face meshes, considering three key elements. First, we pro-
posed a surface deformation network that can generate a
face in the desired topology using SIMS. Second, by the
domain adaptation with hierarchical rendering, we achieved
superior stylization capability. Lastly, Using 3DMM prior,
we can generate a stylized face equipped with the animation
capability.

In addition, we proposed MAGE for practical usage,
which can take diverse mesh topologies as input, and a
novel style loss that adheres to the style effectively while
preserving animation ability. Comprehensive experimental
results demonstrate that our method is capable of generating
a stylized mesh with consistent topology given deformation
target meshes exhibiting significant topological variation.

While our method shows promising results and enables
significant advancements in practical avatar creation, it also
has challenges to address. At inference, achieving a styl-
ized output with the same topology as the input requires a
two-stage process involving template replacement with the
mean face mesh. Addressing these efficiency and practical-
ity challenges is crucial for further enhancing our approach.
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