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Figure 1. Our FMA-Net outperforms state-of-the-art methods in both quantitative and qualitative results for ×4 VSRDB.

Abstract

We present a joint learning scheme of video super-
resolution and deblurring, called VSRDB, to restore clean
high-resolution (HR) videos from blurry low-resolution
(LR) ones. This joint restoration problem has drawn
much less attention compared to single restoration prob-
lems. In this paper, we propose a novel flow-guided dy-
namic filtering (FGDF) and iterative feature refinement
with multi-attention (FRMA), which constitutes our VSRDB
framework, denoted as FMA-Net. Specifically, our pro-
posed FGDF enables precise estimation of both spatio-
temporally-variant degradation and restoration kernels that
are aware of motion trajectories through sophisticated mo-
tion representation learning. Compared to conventional dy-
namic filtering, the FGDF enables the FMA-Net to effec-
tively handle large motions into the VSRDB. Additionally,
the stacked FRMA blocks trained with our novel tempo-
ral anchor (TA) loss, which temporally anchors and sharp-
ens features, refine features in a coarse-to-fine manner
through iterative updates. Extensive experiments demon-
strate the superiority of the proposed FMA-Net over state-
of-the-art methods in terms of both quantitative and qualita-
tive quality. Codes and pre-trained models are available at:

https://kaist-viclab.github.io/fmanet-
site.

1. Introduction
Video super-resolution (VSR) aims to restore a high-

resolution (HR) video from a given low-resolution (LR)
counterpart. VSR can be beneficial for diverse real-world
applications of high-quality video, such as surveillance
[1, 78], video streaming [14, 82], medical imaging [2, 21],
etc. However, in practical situations, acquired videos are
often blurred due to camera or object motions [4, 75, 77],
leading to a deterioration in perceptual quality. There-
fore, joint restoration (VSRDB) of VSR and deblurring is
needed, which is challenging to achieve the desired level
of high-quality videos because two types of degradation in
blurry LR videos should be handled simultaneously.

A straightforward approach to solving the joint problem
of SR and deblurring is to perform the two tasks sequen-
tially, i.e., by performing SR first and then deblurring, or
vice versa. However, this approach has a drawback with
the propagation of estimation errors from the preceding op-
eration (SR or deblurring) to the following one (deblur-
ring or SR) [55]. To overcome this, several works pro-
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Figure 2. Comparison of 3× 3 dynamic filtering. (a) conventional
dynamic filtering at location p with fixed surroundings and (b) our
flow-guided dynamic filtering (FGDF, Sec. 3.3) at position p with
variable surroundings guided by learned optical flow.

posed joint learning methods of image SR and deblurring
(ISRDB), and VSRDB methods [16, 18, 26, 72, 74, 79].
They showed that the two tasks are strongly inter-correlated.
However, most of these methods are designed for ISRDB
[16, 26, 72, 74, 79]. Since motion blur occurs due to cam-
era shakes or object motions, efficient deblurring requires
the use of temporal information over video sequences. Re-
cently, Fang et al. [18] proposed the first deep learning-
based VSRDB method, called HOFFR, which combines
features from the SR and deblurring branches using a par-
allel fusion module. Although HOFFR exhibited promising
performance compared to the ISRDB methods, it struggled
to effectively deblur spatially-variant motion blur due to the
nature of 2D convolutional neural networks (CNNs) with
spatially-equivariant and input-independent filters.

Inspired by the Dynamic Filter Network [33] in video
prediction, significant progress has been made with the dy-
namic filter mechanism in low-level vision tasks [35, 38, 53,
54, 83]. Specifically, SR [35, 38] and deblurring [19, 83]
have shown remarkable performances with this mechanism
in predicting spatially-variant degradation or restoration
kernels. For example, Zhou et al. [83] proposed a video de-
blurring method using spatially adaptive alignment and de-
blurring filters. However, this method applies filtering only
to the reference frame, which limits its ability to accurately
exploit information from adjacent frames. To fully utilize
motion information from adjacent frames, large-sized fil-
ters are required to capture large motions, resulting in high
computational complexity. While the method [54] of us-
ing two separable large 1D kernels to approximate a large
2D kernel seems feasible, it loses the ability to capture fine
detail, making it difficult to apply for video effectively.

We propose FMA-Net, a novel VSRDB framework
based on Flow-Guided Dynamic Filtering (FGDF) and
an Iterative Feature Refinement with Multi-Attention
(FRMA), to allow for small-to-large motion representation
learning with good joint restoration performance. The key

insight of the FGDF is to perform filtering that is aware
of motion trajectories rather than sticking to fixed posi-
tions, enabling effective handling of large motions with
small-sized kernels. Fig. 2 illustrates the concept of our
FGDF. The FGDF looks similar to the deformable convo-
lution (DCN) [13] but is different in that it learns position-
wise n×n dynamic filter coefficients, while the DCN learns
position-invariant n× n filter coefficients.

Our FMA-Net consists of (i) a degradation learning net-
work that estimates motion-aware spatio-temporally-variant
degradation kernels and (ii) a restoration network that uti-
lizes these predicted degradation kernels to restore the
blurry LR video. The newly proposed multi-attention, con-
sisting of center-oriented attention and degradation-aware
attention, enables the FMA-Net to focus on the target frame
and utilize the degradation kernels in a globally adaptive
manner for VSRDB. We empirically show that the proposed
FMA-Net significantly outperforms the recent state-of-the-
art (SOTA) methods for video SR and deblurring in ob-
jective and subjective qualities on the REDS4, GoPro, and
YouTube test datasets under a fair comparison, demonstrat-
ing its good generalization ability.

2. Related Work

2.1. Video Super-Resolution

In contrast to image SR that focuses primarily on extract-
ing essential features [15, 36, 38, 76, 80] and capturing spa-
tial relationships [10, 46], VSR faces with an additional key
challenge of efficiently utilizing highly correlated but mis-
aligned frames. Based on the number of input frames, VSR
is mainly categorized into two types: sliding window-based
methods [5, 29, 31, 35, 43, 45, 64, 67] and recurrent-based
methods [7, 9, 20, 24, 49, 50, 57].

Sliding window-based methods. Sliding window-based
methods aim to recover HR frames by using neighboring
frames within a sliding window. These methods mainly em-
ploy CNNs [31, 35, 37, 44], optical flow estimation [5, 62],
deformable convolution (DCN) [13, 64, 70], or Transformer
structures [6, 45, 47], with a focus on temporal alignment
either explicitly or implicitly.

Recurrent-based methods. Recurrent-based methods se-
quentially propagate the latent features of one frame to
the next frame. BasicVSR [7] and BasicVSR++ [9] intro-
duced the VSR methods by combining bidirectional propa-
gation of the past and future frames into the features of the
current frame, achieving significant improvements. How-
ever, the recurrent mechanism is prone to gradient vanishing
[11, 27, 50], thus causing information loss to some extent.

Although some progress has been made, all the above
methods can handle not blurry but sharp LR videos.
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Figure 3. The architecture of FMA-Net for video super-resolution and deblurring (VSRDB).

2.2. Video Deblurring

Video deblurring aims to remove blur artifacts from
blurry input videos. It can be categorized into single-
frame deblurring [41, 42, 65, 73] and multi-frame deblur-
ring [30, 34, 39, 47, 48]. Zhang et al. [75] proposed a 3D
CNN-based deblurring method to handle spatio-temporal
features, while Li et al. [43] introduced a deblurring
method based on grouped spatial-temporal shifts. Recently,
transformer-based deblurring methods such as Restormer
[73], Stripformer [65], and RVRT [48] have been proposed
and demonstrated significant performance improvements.

2.3. Dynamic Filtering-based Restoration

In contrast to conventional CNNs with spatially-
equivariant filters, Jia et al. [33] proposed a dynamic fil-
ter network that predicts conditioned kernels for input im-
ages and filters the images in a locally adaptive manner.
Subsequently, Jo et al. [35] introduced dynamic upsam-
pling for VSR, while Niklaus et al. [53, 54] applied dy-
namic filtering for frame interpolation. Zhou et al. [83]
proposed a spatially adaptive deblurring filter for recurrent
video deblurring, and Kim et al. [38] proposed KOALAnet
for blind SR, which predicts spatially-variant degradation
and upsampling filters. However, all these methods oper-
ate naively on a target position and its fixed surrounding

neighbors of images or features and cannot effectively han-
dle spatio-temporally-variant motion.

2.4. Joint Video Super-Resolution and Deblurring

Despite very active deep learning-based research on sin-
gle restoration problems such as VSR [7, 35, 45, 50, 64] and
deblurring [34, 39, 47, 48], the joint restoration (VSRDB)
of these two tasks has drawn much less attention. Recently,
Fang et al. [18] introduced HOFFR, the first deep learning-
based VSRDB framework. Although they have demon-
strated that the HOFFR outperforms ISRDB or sequential
cascade approaches of SR and deblurring, the performance
has not been significantly elevated, mainly due to the inher-
ent characteristics of 2D CNNs with spatially-equivariant
and input-independent filters. Therefore, there still remain
many avenues for improvement, especially in effectively
restoring spatio-temporally-variant degradations.

3. Proposed Method
3.1. Overview of FMA-Net

We aim to perform video super-resolution and deblurring
(VSRDB) simultaneously. Let a blurry LR input sequence
X = {Xc−N :c+N} ∈ RT×H×W×3, where T = 2N + 1
and c denote the number of input frames and a center frame
index, respectively. Our goal of VSRDB is set to predict
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a sharp HR center frame Ŷc ∈ RsH×sW×3, where s rep-
resents the SR scale factor. Fig. 3 illustrates the architec-
ture of our proposed VSRDB framework, FMA-Net. The
FMA-Net consists of (i) a degradation learning network
NetD and (ii) a restoration network NetR. NetD pre-
dicts motion-aware spatio-temporally-variant degradation,
while NetR utilizes the predicted degradation from NetD

in a globally adaptive manner to restore the center frame
Xc. Both NetD and NetR have a similar structure, consist-
ing of the proposed iterative feature refinement with multi-
attention (FRMA) blocks and a flow-guided dynamic fil-
tering (FGDF) module. Therefore, in this section, we first
describe the FRMA block and FGDF in Sec. 3.2 and Sec.
3.3, respectively. Then, we explain the overall structure of
FMA-Net in Sec. 3.4. Finally, we present the loss functions
and training strategy for the FMA-Net training in Sec. 3.5.

3.2. Iterative Feature Refinement with Multi-
Attention (FRMA)

We use both types of image-based and feature-based op-
tical flows to capture motion information in blurry videos
and leverage them to align and enhance features. However,
directly using a pre-trained optical flow network is unstable
for blurry frames and computationally expensive [55]. To
overcome this instability, we propose the FRMA block. The
FRMA block is designed to learn self-induced optical flow
and features in a residual learning manner, and we stack
M FRMA blocks to iteratively refine features. Notably,
inspired by [8, 28], the FRMA block learns multiple op-
tical flows with their corresponding occlusion masks. This
flow diversity enables the learning of one-to-many relations
between pixels in a target frame and its neighbor frames,
which is beneficial for blurry frames where pixel informa-
tion is spread due to light accumulation [22, 25].

Fig. 4(a) illustrates the structure of the FRMA block
at the (i+1)-th update-step. Note that FRMA block is in-
corporated into both NetD and NetR. To explain the op-
eration of the FRMA block, we omit the superscript D
and R for simplicity from its input and output notions in
Fig. 3. The FRMA block aims to refine three tensors:
temporally-anchored (unwarped) feature F ∈ RT×H×W×C

at each frame index, warped feature Fw ∈ RH×W×C , and
multi-flow-mask pairs f ≡ {f j

c→(c+t), o
j
c→(c+t)}

t=−N :N
j=1:n ∈

RT×H×W×(2+1)n, where n denotes the number of multi-
flow-mask pairs from the center frame index c to each frame
index, including learnable occlusion masks ojc→(c+t) which
are sigmoid activations for stability [55].
(i+1)-th Feature Refinement. Given the features F i, F i

w,
and fi computed at the i-th update-step, we sequentially up-
date each of these features. First, we refine F i through a
3D RDB [81] to compute F i+1 as shown in Fig. 4(a), i.e.,
F i+1 = RDB(F i). Then, we update fi to fi+1, by warping
F i+1 to the center frame index c based on fi and concate-
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Figure 4. (a) Structure of i+1-th FRMA block (Sec. 3.2); (b)
Structure of Multi-Attention. FFN refers to the feed-forward net-
work of the transformer [17, 66].

nating the resultant with F 0
c and fi, which is given as:

fi+1 = fi + Conv3d(concat(fi,W(F i+1, fi), F 0
c )), (1)

where W and concat denote the occlusion-aware backward
warping [32, 55, 60] and concatenation along channel di-
mension, respectively. Note that F 0

c ∈ RH×W×C repre-
sents the feature map at the center frame index c of the ini-
tial feature F 0 ∈ RT×H×W×C . Finally, we update F i

w by
using warped F i+1 to the center frame index c by fi+1 as:

F̃ i
w = Conv2d(concat(F i

w, r4→3(W(F i+1, fi+1)))), (2)

where r4→3 denotes the reshape operation from
RT×H×W×C to RH×W×TC for feature aggregation.
Multi-Attention. Our multi-attention structure is shown
in the Fig. 4(b). To better align F̃ i

w to the center frame
index c and adapt to spatio-temporally variant degradation,
we enhance F̃ i

w using center-oriented (CO) attention and
degradation-aware (DA) attention. In the case of ‘CO at-
tention’, for the input F̃ i

w and F 0
c , it generates query (Q),

key (K), and value (V ) as Q = WqF
0
c , K = WkF̃

i
w, and

V = WvF̃
i
w, respectively. Then, we calculate the atten-

tion map between Q and K, and use it to adjust V . While
this process may resemble self-attention [17, 66] at first, our
empirical findings indicate better performance when F̃ i

w fo-
cuses on its relation with F 0

c rather than on itself. The CO
attention process is expressed as:

CO Attention(Q,K, V ) = SoftMax(QKT /
√
d)V, (3)

where
√
d denotes the scaling factor [17, 66]. The ‘DA

attention’ is the same as the CO attention except that the
query is derived from feature kD,i ∈ RH×W×C , which is
adjusted by convolution with the novel motion-aware degra-
dation kernels KD from NetD, rather than from F 0

c . This
process enables F̃ i

w to be globally adaptive to degradation.
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The motion-aware kernel KD will be described in detail in
Sec. 3.4. It should be noted that DA attention is only ap-
plied in NetR since it utilizes the predicted KD from NetD

as shown in Fig. 4. Specifically, we empirically found out
that the adoption of the transposed-attention [3, 73] in Eq.
3 shows more efficient and better performances.

3.3. Flow-Guided Dynamic Filtering

We start with a brief overview of dynamic filtering [33].
Let pk represent the k-th sampling offset in a standard con-
volution with a kernel size of n× n. For instance, we have
pk ∈ {(−1,−1), (−1, 0), . . . , (1, 1)} when n = 3. We de-
note the predicted n× n dynamic filter at position p as F p.
The dynamic filtering for images can be formulated as:

y(p) =

n2∑
k=1

F p(pk) · x(p+ pk), (4)

where x and y are the input and output features. Its naive
extension to video can be expressed as:

y(p) =

+N∑
t=−N

n2∑
k=1

F p
c+t(pk) · xc+t(p+ pk), (5)

where c represents the center frame index of the input
frames. However, such a naive extension of filtering at a
pixel position with fixed surrounding neighbors requires a
large-sized filter to capture large motions, resulting in an
exponential increase in computation and memory usage. To
overcome this problem, we propose flow-guided dynamic
filtering (FGDF) inspired by DCN [13]. The kernels are dy-
namically generated to be pixel-wise motion-aware, guided
by the optical flow. This allows effective handling of large
motion with relatively small-sized kernels. Our FGDF can
be formulated as:

y(p) =

+N∑
t=−N

n2∑
k=1

F p
c+t(pk) · x′

c+t(p+ pk), (6)

where x′
c+t = W(xc+t, fc+t) and fc+t denotes optical flow

with its occlusion mask from frame index c to c+ t.

3.4. Overall Architecture

Degradation Learning Network. NetD, shown in the
upper part of Fig. 3, takes a blurry LR sequence X as in-
put and aims to predict a motion-aware spatio-temporally
variant degradation kernels that are assumed to be used
to obtain center frame Xc from the sharp HR counterpart
Y . Specifically, we first compute the initial temporally-
anchored feature FD,0 from X through a 3D RRDB [69].
Then, we refine FD,0, FD,0

w , and fD,0 through M FRMA
blocks (Eqs. 1 and 2). Meanwhile, FD,i

w is adaptively
adjusted in the CO attention of each FRMA block based
on its relation to FD,0

c (Eq. 3), the center feature map of

FD,0. It should be noted that we initially set FD,0
w = 0

and fD,0 = {f j
c→(c+t) = 0, ojc→(c+t) = 1}t=−N :N

j=1:n . Subse-

quently, using the final refined features fD,M and FD,M
w , we

calculate an image flow-mask pair fY ∈ RT×H×W×(2+1)

for Y and its corresponding motion-aware degradation ker-
nels KD ∈ RT×H×W×k2

d , where kd denotes the degra-
dation kernel size. Here, we use a sigmoid function to
normalize KD, which mimics the blur generation process
[51, 55, 58, 61] where all kernels have positive values. Fi-
nally, we synthesize X̂c with KD and fY as:

X̂c = (W(Y , s · (fY ↑s))⃝∗ KD) ↓s, (7)

where ⃝∗ ↓s represents novel kd × kd FGDF via Eq. 6
at each pixel location with stride s and ↑s denotes ×s bi-
linear upsampling. Additionally, FD,M is mapped to the
image domain via 3D convolution to generate X̂D

Sharp ∈
RT×H×W×3, which is only used to train the network.
Restoration Network. NetR differs from NetD which
predicts flow and degradation in Y . Instead, NetR com-
putes the flow in X and utilizes it along with the predicted
KD for VSRDB. NetR takes X , FD,M , fD,M , and KD

as inputs. It first computes FR,0 through a concatenation
of X and FD,M using a RRDB and then refines three fea-
tures, FR,0, FR,0

w , and fR,0 through the cascaded M FRMA
blocks. Notably, we set FR,0

w = 0 and fR,0 = fD,M in
this case. During this FRMA process, each FR,i

w is glob-
ally adjusted based on both FR,0

c and the adjusted kernel
kD,i through CO and DA attentions, where kD,i represents
the degradation features adjusted by convolutions from KD.
Subsequently, fR,M is used to generate an image flow-mask
pair fX ∈ RT×H×W×(2+1) for X , while FR,M

w is used
to generate the high-frequency detail Ŷr and the pixel-wise
motion-aware ×s upsampling and deblurring (i.e. restora-
tion) kernels KR ∈ RT×H×W×s2k2

r for warped X , where
kr denotes the restoration kernel size. Ŷr is generated by
stacked convolution and pixel shuffle [59] (High Freq. Re-
con. Block in Fig. 3). The pixel-wise kernels KR are nor-
malized with respect to all kernels at temporally co-located
positions over X , similar to [38]. Finally, Ŷc can be ob-
tained as Ŷc = Ŷr + (W(X, fX) ⃝∗ KR) ↑s, where ⃝∗ ↑s
represents proposed flow-guided ×s dynamic upsampling
at each pixel location based on Eq. 6. Furthermore, FD,R

is also mapped to the image domain through 3D convolu-
tion, similar to NetD, to generate X̂R

Sharp ∈ RT×H×W×3,
which is only used in FMA-Net training.

3.5. Training Strategy

We employ a two-stage training strategy to train the
FMA-Net. NetD is first pre-trained with the loss LD as:
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Methods # Params (M) Runtime (s) REDS4
PSNR ↑ / SSIM ↑ / tOF ↓

Super-Resolution + Deblurring
SwinIR [46] + Restormer [73] 11.9 + 26.1 0.320 + 1.121 24.33 / 0.7040 / 4.82
HAT [10] + FFTformer [41] 20.8 + 16.6 0.609 + 1.788 24.22 / 0.7091 / 4.40

BasicVSR++ [9] + RVRT [48] 7.3 + 13.6 0.072 + 0.623 24.92 / 0.7604 / 3.49
FTVSR [56] + GShiftNet [43] 45.8 + 13.0 0.527 + 2251 24.72 / 0.7415 / 3.69

Deblurring + Super-Resolution
Restormer [73] + SwinIR [46] 26.1 + 11.9 0.078 + 0.320 24.30 / 0.7085 / 4.49
FFTformer [41] + HAT [10] 16.6 + 20.8 0.124 + 0.609 24.21 / 0.7111 / 4.38

RVRT [48] + BasicVSR++ [9] 13.6 + 7.3 0.028 + 0.072 24.79 / 0.7361 / 3.66
GShiftNet [43] + FTVSR [56] 13.0 + 45.8 0.102 + 0.527 23.47 / 0.7044 / 3.98

Joint Video Super-Resolution and Deblurring
HOFFR [18] 3.5 0.500 27.24 / 0.7870 / -

Restormer∗ [73] 26.5 0.081 27.29 / 0.7850 / 2.71
GShiftNet∗ [43] 13.5 0.185 25.77 / 0.7275 / 2.96

BasicVSR++∗ [9] 7.3 0.072 27.06 / 0.7752 / 2.70
RVRT∗ [48] 12.9 0.680 27.80 / 0.8025 / 2.40

FMA-Net (Ours) 9.6 0.427 28.83 / 0.8315 / 1.92

Table 1. Quantitative comparison on REDS4 for ×4 VSRDB. All results are calculated on the RGB channel. Red and blue colors indicate
the best and second-best performance, respectively. Runtime is calculated on an LR frame sequence of size 180× 320. The superscript ∗

indicates that the model is retrained on the REDS [52] training dataset for VSRDB.

LD = l1(X̂c, Xc) + λ1

+N∑
t=−N

l1(W(Yt+c, s · (fYt+c ↑s)), Yc)

+λ2l1(f
Y , fY

RAFT ) + λ3 l1(X̂
D
Sharp, XSharp)︸ ︷︷ ︸

Temporal Anchor (TA) loss

,
(8)

where fY represents the image optical flow contained in fY ,
and fY

RAFT denotes the pseudo-GT optical flow generated
by a pre-trained RAFT [63] model. XSharp is the sharp
LR sequence obtained by applying bicubic downsampling
to Y . The first term on the right side in Eq. 8 is the recon-
struction loss, the second term is the warping loss for optical
flow learning in Y from center frame index c to c + t, and
the third term is the loss using RAFT pseudo-GT for further
refining the optical flow.
Temporal Anchor (TA) Loss. Finally, to boost perfor-
mance, we propose a TA loss, the last term on the right side
in Eq. 8. This loss sharpens FD while keeping each fea-
ture temporally anchored for the corresponding frame in-
dex, thus constraining the solution space according to our
intention to distinguish warped and unwarped features.

After pre-training, the FMA-Net in Fig. 3 is jointly
trained as the second stage training with the total loss Ltotal:

Ltotal = l1(Ŷc, Yc) + λ4

+N∑
t=−N

l1(W(Xt+c, fXt+c), Xc)

+ λ5 l1(X̂
R
Sharp, XSharp)︸ ︷︷ ︸

Temporal Anchor (TA) loss

+λ6LD,
(9)

where the first term on the right side is the restoration loss,
and the second and third terms are identical to the second
and forth terms in Eq. 8, except for their applied domains.

4. Experiment Results
Implementation details. We train the FMA-Net using the
Adam optimizer [40] with a mini-batch size of 8. The ini-

tial learning rate is set to 2 × 10−4, and reduced by half
at 70%, 85%, and 95% of total 300K iterations in each
training stage. The training LR patch size is 64 × 64, the
number of FRMA blocks is M = 4, the number of multi-
flow-mask pairs is n = 9, and the kernel sizes kd and kr are
20 and 5, respectively. The coefficients [λi]

6
i=1 in Eqs. 8

and 9 are determined through grid searching, with λ2 set to
10−4 and all other values set to 10−1. We consider T = 3
(that is, N = 1) and s = 4 in our experiments. Addition-
ally, we adopted the multi-Dconv head transposed attention
(MDTA) and Gated-Dconv feed-forward network (GDFN)
modules proposed in Restormer [73] for the attention and
feed-forward network in our multi-attention block.

Datasets. We train FMA-Net using the REDS [52] dataset
which consists of realistic and dynamic scenes. Following
previous works [45, 50, 70], we use REDS4 1 as the test set,
while the remaining clips are for training. Also, to evaluate
generalization performance, we employ the GoPro [51] and
YouTube datasets as test sets alongside REDS4. For the Go-
Pro dataset, we applied bicubic downsampling to its blurry
version to evaluate VSRDB. As for the YouTube dataset,
we selected 40 YouTube videos of different scenes with
a resolution of 720 × 1, 280 at 240fps, including extreme
scenes from various devices. Subsequently, we temporally
and spatially downsampled them, similar to previous works
[23, 55, 58], resulting in blurry 30 fps of 180× 320 size.

Evaluation metrics. We use PSNR and SSIM [71] to
evaluate the quality of images generated by the networks,
and tOF [12, 55] to evaluate temporal consistency. We also
compare the model sizes and runtime.

1Clips 000, 011, 015, 020 of the REDS training set.
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4.1. Comparisons with State-of-the-Art Methods

To achieve VSRDB, we compare our FMA-Net with the
very recent SOTA methods: two single-image SR models
(SwinIR [46] and HAT [10]), two single-image deblurring
models (Restormer [73] and FFTformer [41]), two VSR
models (BasicVSR++ [7] and FTVSR [56]), two video de-
blurring models (RVRT [48] and GShiftNet [43]), and one
VSRDB model (HOFFR [18]). Also, we retrain one single-
image model (Restormer∗ [73]) and three video models
(BasicVSR++∗ [9], GShiftNet∗ [43], and RVRT∗ [48]) us-
ing our training dataset to perform VSRDB for a fair com-
parison. It should be noted that Restormer∗ [73] is modified
to receive concatenated T frames in the channel dimension
for video processing instead of a single frame, and we added
a pixel-shuffle [59] block at the end to enable SR.

Table 1 shows the quantitative comparisons for the test
set, REDS4. It can be observed in Table 1 that: (i) the
sequential approaches of cascading SR and deblurring re-
sult in error propagation from previous models, leading to
a significant performance drop, and the use of two models
also increase memory and runtime costs; (ii) the VSRDB
methods consistently demonstrate superior overall perfor-
mance compared to the sequential cascade approaches, in-
dicating that the two tasks are highly inter-correlated; and
(iii) our FMA-Net significantly outperforms all SOTA meth-
ods including five joint VSRDB methods in terms of PSNR,
SSIM, and tOF. Specifically, our FMA-Net achieves im-
provements of 1.03 dB and 1.77 dB over the SOTA algo-
rithms, RVRT∗ [48] and BasicVSR++∗ [9], respectively.
The clip-by-clip analyses for REDS4 and the results of all
possible combinations of the sequential cascade approaches
can be found in the Supplemental, including demo videos.

Methods
GoPro YouTube

PSNR ↑ / SSIM ↑ / tOF ↓ PSNR ↑ / SSIM ↑ / tOF ↓
Restormer∗ [73] 26.29 / 0.8278 / 3.66 23.94 / 0.7682 / 2.87
GShiftNet∗ [43] 25.37 / 0.7922 / 3.95 24.44 / 0.7683 / 2.96

BasicVSR++∗ [9] 25.19 / 0.7968 / 4.04 23.84 / 0.7660 / 2.97
RVRT∗ [48] 25.99 / 0.8267 / 3.55 23.53 / 0.7588 / 2.78

FMA-Net (Ours) 27.65 / 0.8542 / 3.31 26.02 / 0.8067 / 2.63

Table 2. Quantitative comparison on GoPro [51] and YouTube test
sets for ×4 VSRDB.

Table 2 shows the quantitative comparisons on GoPro
[51] and YouTube test sets for joint models trained on
REDS [52]. When averaged across both test sets, our FMA-
Net achieves a performance boost of 2.08 dB and 1.93 dB
over RVRT∗ [48] and GShiftNet∗ [43], respectively. This
demonstrates that our FMA-Net has good generalization in
addressing spatio-temporal degradation generated from var-
ious scenes across diverse devices. Figs. 1(a) and 5 show
the visual results on three test sets, showing that the images
generated by our FMA-Net are visually sharper than those
by other methods.

Restormer* [73] GShiftNet* [43]

BasicVSR++* [9] RVRT* [48]

FMA-Net (Ours) GT

GoPro [51] Blurry LR Frame

Restormer* [73] GShiftNet* [43]

BasicVSR++* [9] RVRT* [48]

FMA-Net (Ours) GT

YouTube Blurry LR Frame

Figure 5. Visual results of different methods on REDS4 [52], Go-
Pro [51], and YouTube test sets. Best viewed in zoom.

4.2. Ablation Studies

We analyze the effectiveness of the components in our
FMA-Net through ablation studies for which we train the
models on REDS [52] and test them on REDS4.
Effect of flow-guided dynamic filtering (FGDF). Table
3 shows the performance of NetD and NetR based on the
degradation kernel size kd and two dynamic filtering meth-
ods: the conventional dynamic filtering in Eq. 5 and the
FGDF in Eq. 6. Average motion magnitude refers to the av-
erage absolute optical flow [63] magnitude between the two
consecutive frames. Table 3 reveals the following observa-
tions: (i) conventional dynamic filtering [33, 35, 38] is not
effective in handling large motion, resulting in a significant
performance drop as the degree of motion magnitude in-
creases; (ii) our proposed FGDF demonstrates better recon-
struction and restoration performance than the conventional
dynamic filtering for all ranges of motion magnitudes. This
performance difference becomes more pronounced as the
degree of motion magnitude increases. For kd = 20, when
the average motion magnitude is above 40, the proposed
FGDF achieves a restoration performance improvement of

kd f Network
Average Motion Magnitude

[0, 20) [20, 40) ≥ 40 Total

10
✗

NetD 44.97 / 0.055 39.81 / 0.245 32.04 / 0.871 43.14 / 0.128
NetR 27.85 / 1.713 27.51 / 3.922 24.69 / 6.857 27.69 / 2.489

✓
NetD 45.38 / 0.049 42.18 / 0.165 37.72 / 0.474 44.25 / 0.092
NetR 28.64 / 1.436 28.46 / 3.469 25.54 / 6.558 28.52 / 2.157

20
✗

NetD 45.94 / 0.047 42.02 / 0.193 35.50 / 0.689 44.53 / 0.104
NetR 28.10 / 1.566 27.54 / 3.835 24.24 / 6.989 27.86 / 2.365

✓
NetD 46.57 / 0.041 43.49 / 0.151 38.23 / 0.430 45.46 / 0.082
NetR 28.91 / 1.289 28.91 / 3.057 26.17 / 5.841 28.83 / 1.918

30
✗

NetD 46.25 / 0.042 42.95 / 0.161 37.53 / 0.464 45.07 / 0.087
NetR 28.30 / 1.589 28.10 / 3.589 25.58 / 6.258 28.19 / 2.292

✓
NetD 46.89 / 0.037 44.12 / 0.133 39.30 / 0.349 45.90 / 0.072
NetR 28.91 / 1.283 28.98 / 3.013 26.37 / 5.666 28.89 / 1.897

Table 3. Ablation study on the FGDF (PSNR↑ / tOF↓).
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Methods
# Params Runtime NetR (sharp HR Ŷc)

(M) (s) PSNR ↑ / SSIM ↑ / tOF ↓
The number of multi-flow-mask pairs n

(a) n = 1 9.15 0.424 28.24 / 0.8151 / 2.224
(b) n = 5 9.29 0.429 28.60 / 0.8258 / 2.054

Deformable Convolution [13]
(c) w/ DCN (#offset = 9) 10.13 0.426 28.52 / 0.8225 / 2.058

Loss Function and Training Strategy
(d) w/o RAFT & TA Loss 9.61 0.434 28.68 / 0.8274 / 2.003
(e) w/o TA Loss 9.61 0.434 28.73 / 0.8288 / 1.956
(f) End-to-End Learning 9.61 0.434 28.39 / 0.8190 / 2.152

Multi-Attention
(g) self-attn [73] + SFT [68] 9.20 0.415 28.50 / 0.8244 / 2.039
(h) CO attn + SFT [68] 9.20 0.416 28.58 / 0.8262 / 1.938
(i) self-attn [73] + DA attn 9.61 0.434 28.80 / 0.8298 / 1.956
(j) Ours 9.61 0.434 28.83 / 0.8315 / 1.918

Table 4. Ablation study on the components in FMA-Net.

1.93 dB compared to the conventional method. Additional
analysis for Table 3 can be found in the Supplemental.

Blurry LR DCN

Ours GT

(a) Target frame (b) Comparison

(c) Offset & mask (DCN) (d) Optical flow & mask (Ours)

Figure 6. Offsets and mask (DCN [13]) vs. Multi-flow-mask pairs
f (FMA-Net). Analysis of the multi-flow-mask pairs f compared to
the DCN [13]. The offset and optical flow maps with their largest
deviations are visualized with their corresponding masks.

Design choices for FMA-Net. Table 4 shows the ablation
experiment results for the components of our FMA-Net:

(i) Table 4(a-b, j) shows the performance change in the num-
ber of multi-flow-mask pairs n. As n increases, there is a
significant performance improvement in NetR, accompa-
nied by a slight increase in memory cost. The best results
are observed in Table 4(j) with n = 9;

(ii) Table 4(c) shows the result of implicitly utilizing motion
information through DCN [13] instead of using our multi-
flow-mask pairs f. With the same number of offsets and
n, our method achieves 0.31 dB higher performance com-
pared to using DCN. This is due to the utilization of the
self-induced sharper optical flows and occlusion masks,
as shown in Fig. 6;

(iii) Table 4(d-f, j) shows the performance change depending
on the used loss functions and training strategies. The
‘RAFT’ in Table 4(d) refers to the use of l1(fY , fY

RAFT )

Blurry LR Ours w/o TA loss

Ours w/ TA loss GT

(a) Target frame (b) Comparison

(c) Average 𝐹𝐹𝑐𝑐
𝑅𝑅,𝑀𝑀 w/o TA loss (d) Average 𝐹𝐹𝑐𝑐

𝑅𝑅,𝑀𝑀 w/ TA loss

Figure 7. Analysis of the TA loss.

in Eq. 8 for NetD. The effectiveness of our loss functions
in Eqs. 8 and 9 can be observed from Table 4(d-e, j), espe-
cially with our new TA loss which anchors and sharpens
each feature with respect to the corresponding frame in-
dex as shown in Fig. 7, leading to 0.1 dB PSNR improve-
ment (Table 4(e) and (j)). Also, our two-stage training
strategy achieves 0.44 dB improvement (Table 4(f));

(iv) For the ablation study on our multi-attention (CO + DA
attentions), we replaced them with self-attention [73] and
spatial feature transform (SFT) [68] layer that is a SOTA
feature modulation module, respectively. The results in
Table 4(g-j) clearly demonstrate that our multi-attention
approach outperforms the SOTA self-attention and mod-
ulation methods with a 0.33 dB improvement.
Similarly, NetD exhibits the same tendencies as NetR.

See the results and analysis in the Supplemental.

5. Conclusion
We propose a novel VSRDB framework, called FMA-

Net, based on our novel FGDF and FRMA. We iteratively
update features including self-induced optical flow through
stacked FRMA blocks, and predict a flow-mask pair with
flow-guided dynamic filters, which enables the network to
capture and utilize small-to-large motion information. The
FGDF leads to a dramatic performance improvement com-
pared to conventional dynamic filtering. Additionally, the
newly proposed temporal anchor (TA) loss facilitates model
training by temporally anchoring and sharpening unwarped
features. Extensive experiments demonstrate that our FMA-
Net achieves best performances for diverse datasets with
significant margins compared to the recent SOTA methods.
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