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Sketch A living room with a couch and chair.

Pose Garage kits, a figurine with purple hair and blue eyes.

Depth Photograph sunrise at bow lake by Jag Canape on 500px.

Conditions (a) ControlNet [44] (b) ControlNet-100 (c) T2IAdapter [26] (d) T2IAdapter-100 (e) Ours
Figure 1. We explore a novel aspect of learning diffusion conditions, requiring only a magnitude of a thousand times fewer examples (only
100 vs. 100k) compared to existing methods like ControlNet [44] and T2IAdapter [26]. The “-100” suffix in our model names indicates
training with just 100 text-image-condition pairs. Our method achieves both structural consistency and high-quality generation with these
limited samples, delivering performance comparable to the fully trained models of our competitors.

Abstract
In this paper, we delve into a novel aspect of learning

novel diffusion conditions with datasets an order of magni-
tude smaller. The rationale behind our approach is the elim-
ination of textual constraints during the few-shot learning
process. To that end, we implement two optimization strate-
gies. The first, prompt-free conditional learning, utilizes a
prompt-free encoder derived from a pre-trained Stable Diffu-
sion model. This strategy is designed to adapt new conditions

*The first two authors contributed equally.
†Corresponding authors (xuemx@scut.edu.cn, huaidongz@scut.edu.cn).

to the diffusion process by minimizing the textual-visual cor-
relation, thereby ensuring a more precise alignment between
the generated content and the specified conditions. The
second strategy entails condition-specific negative rectifica-
tion, which addresses the inconsistencies typically brought
about by Classifier-free guidance in few-shot training con-
texts. Our extensive experiments across a variety of condition
modalities demonstrate the effectiveness and efficiency of our
framework, yielding results comparable to those obtained
with datasets a thousand times larger. Our codes are avail-
able at https://github.com/Yuyan9Yu/BeyondTextConstraint.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Segmentation (a) w. text (b) w/o. text
Figure 2. Segmentation-conditioned text-to-image generation of
ControlNet-100 w. and w/o. text condition. Incorporating text
constraints would lead to structurally inconsistent regions (bounded
by red boxes), when only limited training exemplars are available.

1. Introduction
Large-scale generative models [9, 18, 19, 33], notably

the Stable Diffusion (SD) series [33], have significantly ad-
vanced image synthesis. These models produce high-fidelity
images with visually striking content from concise textual
prompts. However, despite the versatility of textual descrip-
tions in directing the visual elements of generated images,
they frequently lack precision in conveying intricate details
such as spatial layouts, poses, shapes, and forms, when rely-
ing solely on text prompts.

To enhance user control over the content generated by in-
corporating additional exemplar images, ControlNet [44] and
T2IAdapter [26] have been developed to augment pretrained
SD models with controllable adapters. These adapters in-
troduce novel conditioning factors without finetuning the
original SD models, enriching the capability of them. While
these encoders are effective in adapting to new conditions,
they require extensive fine-tuning with large datasets (at least
tens of thousands of examples) for each unique modality of
conditioning. The necessity for substantial data collection
and meticulous annotation imposes significant limitations in
terms of both financial and time resources. This requirement
often renders it infeasible for users to acquire sufficient data
for the adaptation process, thus limiting practical applicabil-
ity in real-world scenarios.

Given the aforementioned challenges, we are prompted
to explore the question: ‘Is it possible for diffusion mod-
els to effectively learn novel diffusion conditions with ex-
tremely limited training data of a scale manageable by ordi-
nary users?’ This paper investigates a pertinent issue in the
field: adapting pre-trained Text-to-Image generative models
to new condition modalities with a scarce number of exem-
plars. A naive strategy, such as directly fine-tuning the model
on a constrained dataset, might lead to discrepancies with
the intended condition [16]. This issue is notably apparent
in the misalignment of spatial structures, including sketches,
semantic maps, or poses.

This phenomenon can be attributed to the complex inter-

Depth Segmentation
Figure 3. Conditioned text-to-image generation of our method after
introducing prompt-free conditional learning. The text prompts
for depth and segmentation are “Dragon and phoenix in fantasy
world art.”, and “A piece of chocolate cake on a plate.”, respectively.
While the generated images are more structurally consistent with
the given exemplar, however, part of the contents (bounded by red
rectangles) in the aligned region disagree with the given text.

play between text prompts and image features, especially
through the cross-attention mechanisms in the SD model.
The data distributions across different modalities exhibit sig-
nificant domain gaps. To bridge these gaps, the original SD
model employs multiple cross-attention layers, aiming to cre-
ate a unified and flexible feature space for text-guided image
generation. However, when dealing with a novel condition
characterized by sparse training data, the model struggles
to reconfigure the feature space to align coherently with the
new condition and associated text. Consequently, the pro-
nounced bias from text prompts leads to inadequate learning
from the novel condition, potentially resulting in generation
outcomes that are structurally misaligned with the intended
condition, as compared in Fig. 2a and Fig. 2b.

Motivated by our earlier analysis, our objective is to re-
duce the biased impact of text prompts in the learning of
structural conditions within a few-shot learning context. To
this end, we introduce a two-stage optimization framework
comprising prompt-free conditional learning and condition-
specific negative rectification. The first stage involves a
prompt-free encoder, initially adapted from a pre-trained SD
model, to utilize the established text-image feature space.
This step involves progressively diminishing the influence of
text descriptions by deactivating the text connection within
the prompt-free encoder. This approach, combined with a
null-text fine-tuning strategy, enables the prompt-free en-
coder to learn novel conditions with minimal textual influ-
ence, thereby achieving improved structural alignment be-
tween generated content and the given condition. The second
stage of our approach is driven by the observation that uti-
lizing Classifier-Free Guidance [13] (CFG) in the diffusion
process can occasionally result in inconsistent content during
few-shot training (see Fig. 3). This inconsistency primarily
stems from the application of a universal negative prompt
across all training samples. While this prompt offers direc-
tional guidance, it is tailored for full-scale data and proves to
be less effective, or even counterproductive, in the context of
few-shot training. The universal negative prompt, designed
for larger datasets, inadequately guides the learning process
when only a limited number of examples are available. To
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address this, we propose a condition-specific negative recti-
fication method. This involves using a lightweight encoder
to adjust the negative prompt based on the structurally con-
ditional embedding of the exemplar image. Consequently,
the CFG process can offer more precise structural guidance,
enhancing the overall quality of generated content. Owing
to the efficiency of our few-shot learning framework, it is
possible to adapt to new conditions using an order of mag-
nitude fewer data points compared to ControlNet [44] and
T2IAdapter [26], while still achieving comparable results
(see Fig. 1e).

Our contributions can be summarized as follows:

• We present the first few-shot novel diffusion condition
learning framework, capable of adjusting to new condi-
tions with significantly fewer training samples.

• We propose the prompt-free conditional learning to
eliminate the text constraints during the learning of
novel conditions, and further improve the generation
quality by a condition-specific negative rectification.

• We conduct extensive generative experiments on five
modalities of conditions, demonstrating the effective-
ness and efficiency of the proposed framework.

2. Related Work
Diffusion Models for Image Generation. Diffusion
model [38] has swiftly demonstrated successful applications
in the realm of image generation [3, 7, 12, 15, 23, 29, 33, 39,
45, 47, 48]. The remarkable text encoding capabilities of pre-
trained language models, such as CLIP [31] and BERT [20],
have facilitated the diffusion model’s widespread adoption
in text-to-image generation tasks, yielding exceptional per-
formance. VQ Diffusion [10] executes text-to-image genera-
tion through a Mask-and-Replace diffusion strategy in latent
image space [9], utilizing text input encoded with CLIP.
GLIDE [28] conducts text-to-image generation by replac-
ing the original class label in CFG with textual information.
Imagen [35] follows a similar approach to GLIDE [28] but
leverages a pretrained language model with enhanced text
encoding capabilities. Stable Diffusion [33] revolutionary ad-
vances the realm of text-to-image generation by training on
extensive datasets LAION [36]. While these text-to-image
methods can achieve high-quality generation, it is crucial to
note that the text descriptions may not offer an intuitively
clear structural indication. In this context, PITI [41] em-
ploys structural conditions by reducing the feature distance
between structural conditions and text descriptions. Voynov
et al. [40] introduce a latent edge predictor to align the in-
termediate features with the given sketch. However, these
methods are focused on single condition generation, without
incorporating the conditions of different modalities, thereby
limiting their fine-grained control ability.

Controllable Diffusion Models. Recent researches [2, 6,
14, 16, 21, 26, 30, 37, 43, 44, 46] have emerged to enhance the
controllability of text-to-image models. Specifically, Con-
trolNet [44] employs zero-initialized layers [27], while T2I-
Adapter [26] learns a lightweight adapter on the frozen, pre-
trained T2I diffusion model to adapting new conditions. Hu-
manSD [16] employs a novel heatmap-guided denoising loss
for skeleton-guided controllable human picture generation.
Prompt diffusion [43] introduces a visual language prompt
to facilitate contextual learning in diffusion-based generative
models. Besides, DiffBlender [21], Uni-ControlNet [46],
and UniControl [30] are acquiring the ability to learn a
multi-condition controllable diffusion model. Composer [14]
proposed a robust diffusion model to improve the control-
lability over both single and multiple conditions. While
these methods advance the realm of controllable T2I dif-
fusion models, the training process demands a substantial
amount of condition-image data pairs. Multidiffusion [2]
and ZestGuide [6] propose to use segmentation maps for
spatial guidance generation without training, but they cannot
be extended to other spatial conditions. The necessity of con-
siderable time and effort for the collection and processing of
training samples, poses an urgent need for fast and accurate
novel condition learning from limited samples.

3. Methodology
3.1. Preliminaries

Stable Diffusion (SD). Stable Diffusion [33] is a large text-
to-image model which is composed of an autoencoder and
a UNet [34] denoiser. The autoencoder maps an input im-
age x0 to a latent z0 and reconstructs it back to the image.
The UNet [34] denoiser, which is parameterized with θ, is
responsible for denoising a sampled normal noise map to a
meaningful latent conditioned on the text conditions. The
objective for optimizing SD is defined as follows:

Lsd = Ez,ε,t[∥ε− εθ(
√
ᾱtz0 +

√
1− ᾱtε, c, t)∥2], (1)

where t is the current diffusion time-step; εθ is the noise
predicted by the UNet at time-step t; ε is the corresponding
ground truth Gaussian noise; c is the embedding of the tex-
tual condition generated by CLIP [31]; and ᾱt is a value of
a predefined sequence to facilitate the diffusion process.
Classifier-Free Guidance (CFG). To improve the quality
of text-conditioned image generation, Ho et al. [13] intro-
duce the CFG technique, where the noise prediction is also
executed unconditionally. The final noise map used for de-
noising in CFG is obtained by extrapolating between the
conditional and unconditional prediction, which is defined
as follows:

ε̃θ(zt, t, c,∅) = w ·εθ(zt, t, c)+(1−w) ·εθ(zt, t,∅), (2)

where ∅ denotes the embedding of a null text; and ω is the
guidance scale parameter, which is often set to 7.5. Note
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(b) Condition-specific Negative Rectification
Figure 4. Our pipeline involves two stages, prompt-free conditional learning and condition-specific negative rectification. For prompt-free
conditional learning, we design a prompt-free encoder to encode the condition and finetune the encoder by incorporating null text conditions
with encoded conditional features within the frozen SD model. For condition-specific negative rectification, we rectify the negative prompt
with the condition features during the CFG process to achieve more precise diffusion guidance.

that in practical scenarios, SD would rather employ a nega-
tive prompt than a null text to achieve enhanced generation
results.

3.2. Overview

Our aim is to address the problem of adapting the pre-
trained T2I model to novel conditions, which is limited by
textual constraints under the scenario of limited training sam-
ples. In this section, we introduce a two-stage optimization
framework comprising Prompt-free Conditional Learning
(PCL) and Condition-specific Negative Rectification (CNR).
The overall framework is shown in Fig. 4. Through a null-
text fine-tuning strategy, PCL (Sec. 3.3) employs a prompt-
free encoder to explicitly mitigate the biased learning of
textual constraints during the adaptation of novel conditions.
To further reduce the potential inconsistency and improve
the generation quality, we proposed CNR (Sec. 3.4), which
incorporates a negative rectifier to dynamically adjust the
negative prompt based on the structural condition embedding
of the exemplar images.

3.3. Prompt-free Conditional Learning

To mitigate the biased learning of textual constraints, we
design a prompt-free encoder with a null-text fine-tuning
strategy, enabling the learning of novel control conditions
with a limited number of training samples.
Prompt-Free Encoder. As illustrated in Fig. 4a, the ar-
chitecture of the prompt-free encoder is modified based on
the encoder of SD model, which consists of an input hint
layer and 4 sequentially connected blocks. Each block is
alternately stacked with two residual blocks and two spatial
transformers, followed by a down-sampling layer. Such that
each block can be applied for capturing conditional features
F i
c in different scales. We prune the text-conditional links

hidden in the spatial transformer to remove the effect of text

conditions and initialize the prompt-free encoder with the
rest of the pretrained SD encoder. This modification enables
us to significantly leverage the prior in the SD model during
the novel condition learning, meanwhile diminishing the gap
between the output features of the prompt-free encoder and
the pretrained text-image feature space when dealing with a
limited number of training samples.

Starting from a conditional input c with an original reso-
lution of 512× 512 at timestep t, the prompt-free encoder
first maps the condition into a 64× 64 feature through the
input hint block, and then forward it to obtain the multi-
scaled conditional features Fc,t = {f i

c,t, i ∈ [1, 2, 3, 4]}
with resolutions {64, 32, 16, 8}, respectively. Subsequently,
Fc,t are further characterized by their corresponding zero
convolution layer zci, resulting in the derivation of the trans-
formed conditional feature F̂c,t = {f̂ i

c,t, i ∈ [1, 2, 3, 4]},
where f̂ i

c,t = zci
(
f i
c,t

)
.

In a manner similar to T2I-Adapter [26], We then fuse
the F̂c,t to the diffusion process by adding them with the
corresponding positional features in the UNet encoder of the
SD model.
Null Text Fine-tuning Strategy. To further mitigate the
negative impact of text conditions, we adopted a null text
fine-tuning strategy during the prompt-free conditional learn-
ing. This strategy uniformly replaces the original input text
with null text p∅, thereby progressively diminishing the in-
fluence of text descriptions during the network fine-tuning
process.

The objective function employed for the prompt-free con-
ditional learning shares the same form as Eq. 1, which is
defined as follows:

Lpcl = Ez,ε,t[∥ε− εθ(
√
ᾱtz0 +

√
1− ᾱtε, F̂c,t,∅, t)∥2],

(3)
where ∅ = Etext(p∅) represents the embedding of the null
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text p∅ proceeded by the CLIP text encoder Etext.
By employing the prompt-free encoder and the null text

strategy, we successfully eliminate the textual influence and
inject controllability of novel conditions into the SD model,
thereby elevating image quality under a few-shot setting.

3.4. Condition-specific Negative Rectification

Prompt-free conditional learning could significantly
achieve more structurally aligned generation with the pro-
vided condition, however, there still occasionally exists in-
consistent contents. This is due to the universal negative
prompt designed for large-scale datasets during the CFG pro-
cess, which is inadequate for guiding the diffusion process
when only limited training samples are available. In order
to address this problem, inspired by [8, 25], we propose the
condition-specific negative rectification to rectify the univer-
sal negative prompt in a more exemplar-specific form for
accurate guidance.
Negative Rectifier. To address content inconsistency arising
from CFG with limited training data, we introduce a negative
rectifier. As shown in Fig. 4b, the negative rectifier is a
lightweight encoder that can dynamically adjust the universal
negative prompt based on the embedding of novel structural
conditions. This ensures the acquisition of an exclusive,
more suitable negative prompt embedding of each input
structural condition for generation.

Specifically, the negative rectifier is a fundamental spatial
transformer block, consisting of a self-attention module, a
cross-attention module, a feedforward layer, and multiple
normalization layers. We utilize the image encoder Eimg

of CLIP to handle the new structural condition image c and
derive the structural condition embedding Rcond. Simul-
taneously, The text encoder Etext of CLIP processes the
negative prompt pneg for the negative prompt embedding
Rneg . Subsequently, the Rneg and Rcond are blended in the
negative rectifier through cross-attention operation. Finally,
we could obtain the modified negative prompt embedding
R̂neg, which is employed as the text condition input for the
SD during the CFG inference. The described process can be
formally defined by the following formula:

Rcond = Eimg(c),

Rneg = Etext (pneg) ,

R̂neg = Enr (Rneg, Rcond) ,

(4)

where Enr denotes the negative rectifier. We employ the
CFG reconstruction loss as the objective function to optimize
the negative rectifier. The formulation is outlined below:

Lcfg = ∥z0 − z̃0∥2. (5)

z̃0 can be derived through the subsequent computational
process:

z̃0 =
1√
ᾱt

zt −
√

1

ᾱt
− 1 · ε̃θ, (6)

where

ε̃θ(zt, t, Rpos, R̂neg, F̂c,t) = w · εθ(zt, t, Rpos, F̂c,t)

+ (1− w) · εθ(zt, t, R̂neg, F̂c,t),

(7)

and Rpos = Etext(p) is the embedding of input prompt p.

4. Experiments
In this section, we demonstrate that our method outper-

forms currently state-of-the-art controllable T2I models on
few-shot conditional generation tasks (Sec. 4.2). The exper-
iments are conducted with respect to five novel conditions
(sketch, segmentation, pose, depth, and canny edge) on three
datasets, which will be discussed in Sec. 4.1 together with
evaluation metrics. Sec. 4.3 provides ablation studies on the
proposed prompt-free conditional learning and condition-
specific negative rectification.

4.1. Experiment settings

Datasets and Metrics. We evaluate our method on
COCO [22], Human-Art [17], and instructPix2Pix [4] across
five conditions. Conditional generation with sketch and
segmentation are performed on the COCO dataset. COCO
contains 118K training images and 5K testing images, which
coupling with sketches and segmentation maps in its variants
COCO17 [22] and COCO-stuff [5], respectively. For the
pose-guided generation, we adopt Human-Art, which is an
artistic dataset comprising 33.5K training text-image-pose
pairs and 4.5K testing pairs from 19 scenes, both natural
and artificial. For depth and canny edge, we use the data
provided by instructPix2Pix, which has approximately 310K
image-text pairs. We manually separate the training and test-
ing set of this dataset according to the label of each image,
where the image that has a label starting with “0” is classified
into the training set. The testing set is formed by 4.5K ran-
domly selected image-text pairs from the rest of the data. We
employ Midas [32] to obtain the corresponding depth, while
the corresponding Canny edge is acquired through the Canny
edge detector [1]. To evaluate the performance, we use the
conventional FID [11] to assess the generation quality. For
measuring the degree of alignment between the generated
content and provided conditions, we apply the SSIM [42]
metric between the structure of the generated images with
their ground truth conditions, denoted as cSSIM. In prac-
tice, we employ condition extraction networks to extract the
structure for each generated image. We also use the AP
metric [16] on Human-Art to measure the pose accuracy.
Compared Methods, including ControlNet-1.0 [44] (build
upon SD-1.5) and T2IAdapter [26] (build upon SD-1.4) on
all the five generation scenes. Additionally, we compare
HumanSD [16] for the pose condition, and PromptDiff [43]
for the conditions of segmentation, depth, and canny edge.
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An open refrigerator door on a kitchen floor.

Decorated coffee cup and knife sitting on a patterned surface.

A skillet contains diced meat and mixed vegetables.

Conditions (a) ControlNet [44] (b) ControlNet-100 (c) T2IAdapter [26] (d) T2IAdapter-100 (e) Ours
Figure 5. Comparisons of sketch-guided text-to-image generations on COCO [22].

The Big Ben clock tower towering over the city of London.

A herd of sheep grazing on a lush green field.

A train speeding along the railroad tracks during the day.

Conditions (a) ControlNet [44](b) ControlNet-100(c) T2IAdapter [26](d) T2IAdapter-100(e) PromptDiff [43](f) PromptDiff-100 (g) Ours
Figure 6. Comparisons of segmentation-guided text-to-image generations on COCO [22].

We retrained these models with only 100 training exemplar
pairs under our setting, which are denoted with the suffix
“-100”. Besides, we also provide the original fully trained
version of these models on the five evaluation conditions as a
reference. For more details, please refer to the supplementary
material.

Implementation Details. Following ControlNet, we build
our model upon SD-1.5. For each evaluated condition, we
train our model with 100 randomly sampled image-text-
condition pairs from the training set of the three datasets,
and evaluate on their whole testing set. During the training

and testing phase, both the input images and conditions are
resized to 512×512. The ω in Eq. 7 is set to 7.5. We adopt
AdamW [24] as the optimizer in all our experiments. In the
stage of prompt-free conditional learning, the learning rate
is set to 5 · 10−5 for adapting to segmentation and depth
exemplars, while set as 1 · 10−5 for other conditions. During
the phase of condition-specific negative rectification, the
learning rate is maintained at 1 · 10−4 for all conditions. For
each experiment, the training of our framework is finished
within 4 hours on a single RTX 3090, with batch size 1.
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Method

Condition Dataset COCO [5, 22] InstructPix2Pix [4]

Sketch Segmentation Depth Canny edge
FID↓ cSSIM↑ FID↓ cSSIM↑ FID↓ cSSIM↑ FID↓ cSSIM↑

ControlNet [44] 22.046 0.690 27.377 0.820 21.967 0.830 13.539 0.605
T2IAdapter [26] 19.445 0.683 24.254 0.811 15.856 0.792 16.167 0.441
PromptDiff [43] - - 35.837 0.815 20.202 0.823 28.084 0.504

Control Net-100 27.598 0.709 31.109 0.828 28.396 0.764 34.596 0.432
T2I-Adapter-100 21.053 0.65 22.103 0.821 20.379 0.769 19.096 0.429
PromptDiff-100 - - 27.194 0.816 23.896 0.721 20.148 0.472

Ours 21.049 0.692 20.726 0.835 19.137 0.803 16.710 0.475

Table 1. Quantitative comparisons on COCO [22] and InstructPix2Pix [4]. Top 2 records are marked in red and blue respectively.

Conditions T2IAdapter-100 PromptDiff-100 Ours

Figure 7. Comparisons of depth-guided generations on the In-
structPix2Pix [4] dataset. The text prompts from the top row to
the bottom row are “Image result for Henri Martin.”, “Thomas
Kinkade painter of light — Thomas Kinkade - Painter of Light -
The Contrast Magazine.”, and “Sunrise pirates bay, Tasmania by
Robert-Todd.”, respectively.

4.2. Comparisons

Qualitative Experiments. We visualize the generation re-
sults for each new condition and compare them with contrast-
ing methods. Fig. 5 and Fig. 6 present visualization results
conditioned on sketches and segmentation maps. Under a
100-sample setting (see Fig. 5 and Fig. 6), our approach ex-
hibits strong visual coherence and consistency with the input
conditions. The results of ControlNet-100 and T2IAdapter-
100 show tight text-image relevance, but they fail to sustain
structural consistency with the novel conditions as shown in
Fig. 5b and Fig. 6f. Our approach, on the other hand, demon-
strated significant consistency between the images and con-
ditions. We have also provided extensive comparisons with
with the full-trained methods, indicating our ability to pro-
duce high quality and authentic images. Visualizations of
other conditions are presented in Fig. 7, Fig. 8 and Fig. 9.
Kindly refer to the supplementary material for more results.

Conditions T2IAdapter-100 PromptDiff-100 Ours

Figure 8. Comparisons of edge-guided generations on the Instruct-
Pix2Pix [4] dataset. The text prompts from the top row to the
bottom row are “Joan Blondell (1906-1979), American actress,
known for ‘Grease.’ Hollywood’s Golden Age.”, “A fjord in sum-
mer by Adelsteen Normann - reproduction oil painting.”, and “Pink
skunk anemone fish, Amphiprion perideraion, Fiji, natural history
stock photograph.”, respectively.

Quantitative Experiments. Quantitative results for differ-
ent conditions, including sketch, segmentation maps, depth,
Canny edge, and pose, are presented in Table 1 and Table 2.
Under the 100-sample setting, our method exhibits a distinct
advantage in both FID and cSSIM metrics, illustrating our
superiority in terms of image quality and conditional control.
Despite the few-shot comparison, we also evaluate the full
version of comparative methods. As indicated in Table 1,
our approach attains a significant level of performance that
is on par with the full ControlNet, T2I-Adapter, and Prompt-
Diff. In the case of segmentation, our few-sample approach
achieves a 20.762 FID and 0.835 cSSIM, which substantially
exceed the full-trained baselines.

4.3. Ablation Study

In this section, we perform ablation experiments for
our proposed prompt-free conditional learning (PCL) and
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Conditions ControlNet-100 HumanSD-100 Ours
Figure 9. Comparisons of pose-guided text-to-image image genera-
tions on the Human-Art [17] dataset. The text prompts from the top
row to the bottom row are “Kids drawing, a painting of a rainbow
and children walking in the grass.”, “Watercolor, a painting of a
man in uniform standing on a boat.”, and “Relief, a stone carving
of a man holding a cross.”, respectively.

Conditions (a) PCL (b) PCL+CNR
Figure 10. Visualizations of ablation for our proposed PCL and
CNR. The text prompts of the three generation task from the top
to the bottom are “Dunstanburgh Mono by colin63.”, “relief, two
statues of men with their hands on their heads.”, and “A blue and
white train is moving on the rails.”, respectively.

condition-specific negative rectification (CNR). We evalu-
ate the outcomes of the two stages across three conditions:
sketch, pose, and depth. Table 3 illustrates that the CNR
could enhance the performance on both FID and cSSIM, in-
dicating better image quality and conditional controllability.
Visual enhancement can be observed clearly in Fig. 10. For
the first case, CNR managed to amend the architectural mis-

Method FID↓ AP↑ cSSIM↑
ControlNet [44] 40.768 36.43 0.852
T2IAdapter [26] 40.219 44.62 0.857
HumanSD [16] 36.817 47.51 0.863

ControlNet-100 36.659 19.64 0.854
T2IAdapter-100 42.601 13.80 0.851
HumanSD-100 32.339 15.20 0.851

Ours 32.968 23.10 0.855
Table 2. Quantitative results for pose-guided generation on Human-
Art [17]. Top 2 records are marked in red and blue respectively.

Modules Sketch Pose Depth
PCL CNR FID↓ cSSIM↑ FID↓ AP↑ cSSIM↑ FID↓ cSSIM↑
✓ 21.245 0.684 36.334 23.10 0.853 19.299 0.803
✓ ✓ 21.049 0.692 32.968 23.10 0.855 19.137 0.803

Table 3. Ablation study on the proposed PCL and CNR.

alignment. The second row demonstrates CNR’s capacity to
improve semantic alignment, enhancing the correspondence
between generated semantics and the input pose. In the third
example, CNR alleviates the excessive smoothing on the
train carriage and the blur of overhead wires. Please refer to
the supplementary for more ablation and analysis.

5. Conclusion

We tackle the challenge of adapting the text-to-image
generative model to novel diffusion conditions with limited
training samples, particularly addressing their limitations
in capturing detailed structural features when relying solely
on text prompts. Our focus is on overcoming the issue of
structural misalignment caused by imbalanced learning with
sparse data. We introduce a two-stage optimization frame-
work, comprising the prompt-free conditional learning and
the condition-specific negative rectification, to reduce the
text prompt bias and improve structural alignment. This ap-
proach significantly lowers the data requirements compared
to existing methods, making it more feasible for real-world
applications. Our framework demonstrates its effectiveness
through extensive experimentation, proving its ability to
adapt to new conditions efficiently with limited data.

Acknowledgements. The work is supported by China Na-
tional Key R&D Program (No. 2023YFE0202700); Key-
Area Research and Development Program of Guangzhou
City (No.2023B01J0022); Guangdong International Technol-
ogy Cooperation Project (No.2022A0505050009); National
Natural Science Foundation of China (No.62302170); and
Guangdong Natural Science Funds for Distinguished Young
Scholar (No. 2023B1515020097); Singapore MOE Tier 1
Funds (MSS23C002); and the NRF Singapore under the AI
Singapore Programme (No. AISG3-GV-2023-011).

7116



References
[1] Paul Bao, Lei Zhang, and Xiaolin Wu. Canny edge detec-

tion enhancement by scale multiplication. IEEE TPAMI,
27(9):1485–1490, 2005. 5

[2] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.
Multidiffusion: Fusing diffusion paths for controlled image
generation. 2023. 3

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 3

[4] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-
structpix2pix: Learning to follow image editing instructions.
In CVPR, pages 18392–18402, 2023. 5, 7

[5] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In CVPR, pages
1209–1218, 2018. 5, 7

[6] Guillaume Couairon, Marlène Careil, Matthieu Cord,
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