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Abstract

Large multimodal models demonstrate remarkable gen-
eralist ability to perform diverse multimodal tasks in a zero-
shot manner. Large-scale web-based image-text pairs con-
tribute fundamentally to this success, but suffer from ex-
cessive noise. Recent studies use alternative captions syn-
thesized by captioning models and have achieved notable
benchmark performance. However, our experiments re-
veal significant Scalability Deficiency and World Knowl-
edge Loss issues in models trained with synthetic captions,
which have been largely obscured by their initial bench-
mark success. Upon closer examination, we identify the
root cause as the overly-simplified language structure and
lack of knowledge details in existing synthetic captions.
To provide higher-quality and more scalable multimodal
pretraining data, we propose CAPSFUSION, an advanced
framework that leverages large language models to consoli-
date and refine information from both web-based image-text
pairs and synthetic captions. Extensive experiments show
that CAPSFUSION captions exhibit remarkable all-round
superiority over existing captions in terms of model perfor-
mance (e.g., 18.8 and 18.3 improvements in CIDEr score
on COCO and NoCaps), sample efficiency (requiring 11-16
times less computation than baselines), world knowledge
depth, and scalability. These effectiveness, efficiency and
scalability advantages position CAPSFUSION as a promis-
ing candidate for future scaling of LMM training.

1. Introduction
Large Multimodal Models [3, 36, 51] (LMMs), which as
versatile multimodal generalists bridge powerful pretrained
large language models [52, 53] and vision encoders [43,
50], have garnered significant success in zero-shot multi-
modal tasks. Although image-text pairs harvested directly
from the web [45] contribute instrumentally to the success
of current LMMs, such web-scale data tend to be noisy
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Figure 1. Training process of models trained on different captions.

Raw Caption:

Justin Timberlake performs at the 2017 
Pilgrimage Music Festival on September 
23, 2017 in Franklin, Tennessee.

Conceptual Caption: 

pop artist performs at the festival in 
a city

(a) Raw caption and synthetic caption (from caption model)

Raw Caption:

A male Northern Cardinal is feeding a 
fledgling on the top of a tree branch. 

Synthetic Caption: 

Two birds sitting on a tree branch.

(b) Data Collection Process of Conceptual Captions

Figure 2. (a) Comparison of raw and synthetic captions for train-
ing. (b) Data processing of Conceptual Captions [47], where
real-world information is substituted with generic concepts .

and sub-optimal for model training [27, 34]. Thus, strate-
gies have been devised to harness synthetic captions gener-
ated by image captioning model [34], which has augmented
model performance notably [5, 14, 15, 22, 35, 51] by adopt-
ing large-scale synthetic caption datasets such as LAION-
COCO [1] and BLIP-LAION [34].

Although achieving promising performance on classic
benchmarks such as COCO Caption [12], our further evalu-
ations on recent benchmarks such as SEED-Bench [32] re-
veal that training LMMs with large-scale synthetic captions
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M1:
(trained on Raw)

President Bill Clinton and First Lady Hillary 
Rodham Clinton cutting the ribbon…..

Describe the image in detail. The image shows

two men and one woman cutting 
a red ribbon.

President Bill Clinton and First Lady Hillary 
Rodham Clinton cutting the ribbon…..

Introduce some books by him. answer:

George Orwell's 1984, Animal Farm, 
Down and Out in Paris and London

I'm not going to tell you what I'm doing

George Orwell's 1984, Animal Farm, and 
the collected essays

where is this photo taken? short answer:
Input

Prompt:

Melbourne, Australia, long answer: 
melbourne, australia, novak Djokovic 

australian open trophy

The tennis player is kissing his trophy

Melbourne, Australia, long answer: 
melbourne, australia, where novak djokovic

kisses the australian open trophy

M2:
(trained on 
Synthetic)

M3:
(trained on 
CapsFusion)

where is it?

the 12 apostles, victoria, australia

I don't know.

The Twelve Apostles are a group of cliffs 
located along the Great Ocean Road in 

Victoria, Australia.

Input
Image:

Figure 3. Outputs of models trained with different caption datasets. Models trained on raw and CAPSFUSION captions (M1 and 3) possess
strong world knowledge (in blue ), while the model trained on synthetic captions (M2) can only generate generic concepts (in red ).

alone is problematic. We conduct a closer examination of
the large-scale training process of LMMs and observe that
model training on synthetic captions rapidly reaches a sat-
uration point, beyond which the model performance may
even degrade (as illustrated by the green lines in Fig. 1).
While this severe Scalability Deficiency may not be readily
apparent on traditional benchmarks such as COCO caption
(Fig. 1-a), it becomes notably pronounced (Fig. 1-b) on the
new benchmark SEED-Bench, which supports a much more
comprehensive assessment of LMMs than COCO. We con-
duct further analysis on the generated outputs from differ-
ent models trained with captions of varying quality. Fig. 3
illustrates system responses trained on Raw captions (M1),
Synthetic captions (M2), and our captions (M3). These ex-
amples demonstrate that the outputs from M2, in particu-
lar, suffer from severe World Knowledge Loss, constituting
only high-level concepts while missing all the details about
well-known people, locations, events, etc. The generated
sentences by M3 (trained on our captions) are more natural
and semantically richer than those from M1 and M2.

Through examining the differences between raw caption
data and synthetic data used in training, we observe that
the simplistic syntactic and semantic structures in synthetic
captions (Fig. 2-a) may have potentially attributed to the
Scalability Deficiency and World Knowledge Loss issues,
which so far have been obscured by their initial benchmark
success. The root cause is that currently used captioning
models (e.g. BLIP [34] used in LAION-COCO [1]) for gen-
erating synthetic captions heavily rely on academic datasets
such as COCO and Conceptual Captions [47] for training.
These datasets replace specific details (e.g. people’s names,
locations, landmarks) with more generic conceptual place-
holders (e.g. ‘person’, ‘city’) in the data collection process
(Fig. 2-b). Although this eases the training of captioning
models, it inevitably results in the loss of a substantial reser-

voir of valuable real-world information in the trained model,
which learns an overly-simplified language structure with
basic semantics. Consequently, LMMs trained on the syn-
thetically simplified datasets generated by these captioning
models suffer from a deficiency in language complexity and
knowledge depth.

Therefore, to train a scalable LMM with abundant real-
world knowledge, it is crucial to develop an effective
strategy to better synthesize caption data while distilling
real-world knowledge from web-based image-text pairs.
There have been some recent attempts to leverage both raw
and synthetic captions straightforwardly, by simply mix-
ing them with a fixed hand-tuned ratio [16, 19, 39]. In
this work, we propose CAPSFUSION, a more advanced
pipeline that leverages large language models (LLMs) to en-
hance the quality of large-scale image-text data. CAPSFU-
SION first uses a captioning model [34] (following [1, 34])
to generate synthetic captions for images. Then, it uti-
lizes ChatGPT [46] to organically integrate raw and syn-
thetic captions, by extracting real-world knowledge from
the structure-flawed raw captions while merging with struc-
tured but syntactically simplified synthetic captions. Our
evaluations show that ChatGPT excels in this task, but is
non-scalable due to its restrictive access. To overcome
this limitation, we use the outputs generated by ChatGPT
as training data to finetune a LLaMA [53]. Evaluation of
this finetuned, task-specific LLM demonstrates that it per-
forms on par with ChatGPT and consistently produces high-
quality captions, while easy to scale up. The trained model
is then employed for large-scale caption fusion (examples
are presented in Fig. 4, which clearly demonstrate the ad-
vantages of CAPSFUSION).

Extensive experiments show that CAPSFUSION captions
demonstrate remarkable all-around superiority, as a better
substitute for both synthetic and raw captions in the train-
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① Sentry Gaming Headset, HPX-GX250B

② The gaming headset is black and blue.

③ The Sentry Gaming Headset, model HPX-
GX250B, is a stylish headset that features a 
black and blue color scheme.

① Angry Birds 2 Level 107 Pig City Shangham 3-Star 
Walkthrough

② Angry Birds 2 Pig City, Shanghai Level 101.

③ In Angry Birds 2, Level 107 takes place in Pig City, 
also known as Shangham, and can be completed with a 
3-star walkthrough.

① How the North Won: A Military History of the Civil 
War 9780252062100 Region & Countries at amazon

② the cover for how the North won.

③ The book titled "How the North Won: A Military 
History of the Civil War" with the ISBN 9780252062100
is available for purchase on Amazon.

① John Keats. Image from The Guardian. Click 
image for contest details

② A painting of a man with his hand on the chin.

③ John Keats, as depicted in an image from The 
Guardian, is shown in a painting with his hand 
resting on his chin.

① Panorama Of High Cliffs, Tyrrhenian Sea Bay
With Pure Azure Water, Floating Boats And Ships

② The view from above of the town and harbor 
in Italy.

③ From above, one can admire the breathtaking 
panorama of high cliffs surrounding a Tyrrhenian 
Sea bay with its crystal-clear azure water, dotted 
with floating boats and ships.

① Secluded Stone Cottage, Laroles, Andalucia, Sierra 
Nevada Natural Park - Laroles vacation rentals

② An outdoor pool with a cabana and lounge chairs

③ Located in the Sierra Nevada Natural Park in Laroles, 
Andalucia, the Secluded Stone Cottage offers a serene 
vacation rental experience. This charming cottage 
features an outdoor pool complete with a cabana and 
comfortable lounge chairs, providing a perfect spot to 
relax and enjoy the beautiful surroundings.

Figure 4. Examples of ➀ raw captions (from LAION-2B), ➁ synthetic captions (from LAION-COCO, generated by BLIP), and their
corresponding ➂ CAPSFUSION captions. Knowledge from raw captions (in blue ) and information from synthetic captions (in yellow )
are organically fused into integral CAPSFUSION captions. CAPSFUSION captions can also correct false information in synthetic captions
(in red ). More examples can be found in Fig. 8.

ing of LMMs. In terms of model performance, CAPSFU-
SION captions clearly outperform synthetic captions by sub-
stantial margins, with an improvement of 18.8, 18.3, 19.7,
and 15.6 in CIDEr score on COCO, NoCaps, TextCaps,
and Flickr30K datasets, respectively. This compelling ad-
vantage extends to sample efficiency as well. Refined cap-
tions from CAPSFUSION require 11-16 times less compu-
tation to achieve high performance similar to synthetic cap-
tions. Furthermore, our investigation unveils that CAPS-
FUSION captions surpass raw captions by a considerable
margin when evaluated on world knowledge. Also impor-
tantly, CAPSFUSION captions demonstrate greater scalabil-
ity, meaning that model performance continues to improve
with an increased volume of training samples. This scalabil-
ity advantage, critical for the training of large-scale models,
positions CAPSFUSION as a promising candidate for further
scaling efforts in LMM training.

2. Related Work

Image-text Data Enhancement LaCLIP [16] utilizes
LLM to rewrite raw captions, whose performance can be
limited due to severe hallucination, because of limited vi-
sual information and low-quality raw captions. [19, 39] in-

vestigate how to filter and then mix raw and synthetic cap-
tions to induce a better CLIP model [43]. FuseCap [44]
uses visual experts like object detector to improve captions,
while we use large-scale data from the web to enhance.
Our concurrent work VeCLIP [31] proposes to use LLM
to combine information from raw and synthetic captions.
The difference is that they directly use an existing LLM for
inference, while we finetune a state-of-the-art open-source
LLM with training data generated by ChatGPT. In addition,
they have no explicit instructions such as extracting world
knowledge present in raw captions and referring sentence
structure of synthetic captions, which we use to help LLMs
make informed decisions during the caption fusion process.

All recent studies focus on training CLIP models. We
instead investigate LMMs and derive insights from a new
perspective, such as mixing raw and synthetic captions [16,
31, 39] induces no improvement than separate captions.

Large Multimodal Models With the success of large lan-
guage models [8, 53] (LLMs), recent studies explore build-
ing large multimodal models [9–11, 13, 20, 23, 26, 33, 40,
56, 60–62, 65, 67–69] (LMMs) on LLMs with pretrained
vision encoders [43, 50, 55]. Most existing works com-
monly use the prediction of the next text token as the ob-
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1 million ChatGPT training data

CapsFusion-LLaMA

Scalable CapsFusion Pipeline

Large-scale
Refinement

Please merge the information from the 
two given sentences. Sentence 1 provides 
real-world knowledge…. Sentence 2 …. 
Avoid simply concatenating the sentences.

Finetuning
LLaMA

CapsFusion-
120M

Image-text pairs

1. A single Red-billed hornbill was 
observed standing on the grass in 
Gambia.

2. The image in black and red
depicts Michael Jordan, the 
basketball player who played for 
the Chicago Bulls.

3. In Florence, there is a bridge that 
spans over the river, where boats 
can be seen.

Raw: Michael Jordan - Chicago 
Bulls File Photos
Synthetic: an image of the 
basketball player in black and red

Raw: florence guide
Synthetic: The bridge is spanning 
over the river with boats.

Raw: Red-billed hornbill, single 
bird on grass, Gambia
Synthetic: A bird with a red beak 
standing in the grass.

Figure 5. Illustration of the scalable CAPSFUSION pipeline for generating high-quality large-scale image-text data.

jective [14, 25, 35, 36]. Another type of LMMs learns to
predict both image and text tokens [15, 21, 51, 63], endow-
ing models with more versatile abilities of processing both
text and image generation tasks, while maintaining image-
to-text performance comparable to LMMs trained with only
text token supervision.

3. CAPSFUSION

Large Multimodal Models [3, 28, 35, 49, 57, 66, 71] serve
as a powerful generalist for diverse multimodal tasks. Typ-
ical LMM generalist unifies image-to-text tasks only (e.g.
image captioning and visual question answering). Recent
studies such as Emu [51] further enhance the capabilities
of multimodal generalist by enabling it to perform both
image-to-text and text-to-image tasks in a zero-shot man-
ner [22, 29, 30, 58, 70].

Learning Objective of LMM. The LMM generalist ability
originates from a GPT-style auto-regressive training objec-
tive [42], wherein the model learns to predict the next token
in a sequence. As a result of this training paradigm, dur-
ing inference, the model exhibits a remarkable capability to
generate appropriate completions for a wide range of tasks.

Image-text pairs are the most commonly used multi-
modal pretraining data for learning vision-language align-
ment. Specifically, given a dataset D consisting of image-
text pairs (I, T ), where I represents the image and T rep-
resents the text represented by a sequence of text tokens
T = {t1, t2, . . . , tn}. The typical training objective is max-
imizing the conditional likelihood of text tokens T given I

in an auto-regressive manner:

max
θ

1

|D|
∑

(I,T )∈D

n∑
i=1

logP (ti|t1, . . . , ti−1, I; θ) (1)

Under this training objective, the presence of noisy captions
can lead the model to generate extraneous words. Con-
versely, if the captions are overly simplistic in nature, the
model may learn a simplified output style, resulting in a loss
of language complexity. Therefore, high-quality image-text
pairs are in urgent need to power new-generation LMMs.
Caption Generation. Given raw image-text pairs, CAPS-
FUSION first generates synthetic captions using image cap-
tioning models following [1, 34]. In previsou analysis
(Figs. 1 to 3), we find that raw captions contain a wealth
of real-world knowledge but are noisy, while synthetic cap-
tions have clean structures but lack in-depth real-world
knowledge, which exhibits severe scalability issues. Thus,
our objective is to develop a scalable framework to organi-
cally integrate information from both raw and synthetic cap-
tions, to create a comprehensive refined image-text dataset.
Caption Fusion via ChatGPT. In CAPSFUSION, we use
ChatGPT to fuse raw and synthetic captions given a prompt.
The task instruction is structured in three key elements:
the task description, caption property, and the desired out-
put specifications. Specifically, we first include a task de-
scription that conveys the following objective to ChatGPT:
Please merge the information from two provided sentences.
Furthermore, we provide the distinct properties of the two
captions involved, with the following contextual guidance:

Raw captions offer detailed real-world information, yet it
suffers from flaws in sentence structure and grammar.
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Minecraft Gets an ‘Honest Game 
Trailer’

Raw

Synthetic

CapsFusion

ChatGPT

LaCLIP

an image of a man holding a creeper

An 'Honest Game Trailer' for Minecraft 
has been released, featuring an image 

of a man holding a creeper.

Minecraft receives an 'Honest Game 
Trailer,' featuring an image of a man 

holding a creeper.

It's a wonder Minecraft even has a story, 
seeing as how you spend half your time 

digging endlessly downwards.

Wedding Day Blackboard

A sign that says please leave your 
advice and wishes.

On the wedding day, there is a black-
board where guests are encouraged

to leave their advice and wishes.

On the wedding day, there is a 
blackboard with a sign inviting guests 
to leave their advice and well wishes.

Romantic vintage style photo of two 
people on their wedding day, with a 

chalkboard message in the background

"""2016 Bloomer 4H w/ 19'6"""" Short 
Wall LQ and 6' Hyd. Slide Horse Trailer"""

A large horse trailer parked in the 
parking lot

In the parking lot, there is a 2016 
Bloomer 4H horse trailer with a 19'6" 

Short Wall LQ and a 6' Hyd. Slide.

In the parking lot, there is a 2016 
Bloomer 4H horse trailer with a 19'6" 

short wall living quarters and a 6' 
hydraulic slide.

"2016 Bloomer 4H w/ 19'6"""" 
Short Wall LQ and 6' Hyd. Slide 

Horse Trailer"""

Figure 6. Comparison among CAPSFUSION-LLaMA, ChatGPT, and LaCLIP. CAPSFUSION-LLaMA performs on par with ChatGPT on
the caption fusion task, while LaCLIP suffers severe hallucination because only raw text is considered (hallucinations are highlighted in
red in image 1 and 2). LaCLIP also fails when the raw caption is too noisy, while CAPSFUSION-LLaMA and ChatGPT can extract useful

information from noise (image 3).

Synthetic captions exhibit impeccable sentence structure
but often lack in-depth real-world details and may contain

false information.

This nuanced description helps ChatGPT make informed
decisions during fusion. Finally, we outline our expecta-
tions for the output captions with the following directive:

Ensure a well-structured sentence while retaining the
detailed real-world information provided in the raw

caption.

This guideline succinctly encapsulates the desired charac-
teristics of the generated captions.

In our experimentation, we observe that in a portion of
samples, ChatGPT resorts to a straightforward concatena-
tion of the raw and synthetic captions for fusion. To address
this, we explicitly instruct ChatGPT to avoid simply con-
catenating two sentences, a directive we have found highly
effective in mitigating this issue. The full instruction tem-
plate is presented in Sec. 7.

During human evaluation, ChatGPT is shown to be ex-
ceptionally effective at this caption fusion task. Examples
are provided in the fourth row of Fig. 6. We acquired 1
million fused captions using the gpt-3.5-turbo API.
Refinement Model with Fused Caption. Although Chat-
GPT is effective, time and computational costs are pro-

hibitive. For scaling, we opt to employ LLaMA-2 [53], a
state-of-the-art open-source LLM. We finetune the 13B ver-
sion of LLaMA-2 specifically for the task of caption fusion,
using triplets obtained from ChatGPT. These triplets consist
of raw and synthetic captions as inputs, with CAPSFUSION
captions as the target outputs. Training hyperparameters
can be found in Sec. 8. The finetuned model, referred to
as CAPSFUS-LLaMA, is rigorously evaluated through hu-
man evaluation on 100 validation cases. The evaluation re-
sults are presented in Tab. 2, revealing that the performance
of the finetuned CAPSFUS-LLaMA performs on par with
ChatGPT, with 80 out of 100 samples performing equally
or better. LaCLIP [16] also leverages LLM for enhancing
image-text captions, but simply asks LLM to rewrite raw
captions. Qualitative comparisons among LaCLIP, CAPS-
FUSION, and ChatGPT are illustrated in Figure 6. Notably,
LaCLIP tends to hallucinate information not present in the
associated image, due to the absence of detailed visual in-
formation represented in the raw captions. On the other
hand, CAPSFUS-LLaMA exhibits outputs similar to Chat-
GPT and delivers exceptional performance.

Large-scale Caption Fusion. The trained CAPSFUS-
LLaMA, being as effective as ChatGPT, now possesses the
ability to organically fuse and harness raw and synthetic
captions in a manner that is both scalable and highly effec-
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Scale Captions COCO NoCaps TextCaps Flickr30K

SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr

10M

Raw [45] 15.5 75.1 9.0 64.0 10.5 46.4 13.6 54.4
Synthetic [1] 19.8 102.5 11.7 84.2 12.7 42.3 15.0 63.9
Language Rewrites [16] 14.6 71.6 8.6 59.0 9.3 38.3 11.6 49.0
Mixing (Raw & Syn.) [16, 39] 17.9 90.5 10.6 76.7 12.4 51.7 15.1 64.0
Mixing (Raw & LR) [16] 15.0 72.6 9.0 61.1 10.3 44.6 12.2 51.7
CAPSFUSION 20.7(+0.9) 107.7(+5.2) 12.6(+0.9) 92.4(+8.2) 13.9(+1.2) 56.3(+4.6) 15.9(+0.8) 68.4(+4.4)

50M

Raw [45] 16.4 81.0 9.7 68.4 11.7 55.2 14.3 60.3
Synthetic [1] 19.2 100.9 11.5 82.5 13.2 46.7 14.3 60.2
Mixing (Raw & Syn.) [16, 39] 18.5 93.3 10.9 79.7 12.7 55.5 15.1 64.6
CAPSFUSION 21.3(+2.1) 112.4(+11.5) 13.6(+2.1) 99.2(+16.7) 14.9(+1.7) 62.7(+7.2) 16.9(+1.8) 74.5(+9.9)

100M

Raw [45] 17.1 85.5 10.1 72.8 12.3 59.6 14.6 62.2
Synthetic [1] 18.5 96.9 11.0 81.6 13.1 46.5 13.7 57.4
Mixing (Raw & Syn.) [16, 39] 18.0 95.0 10.5 77.9 12.3 55.1 15.0 66.5
CAPSFUSION 21.7(+3.2) 115.7(+18.8) 13.5(+2.5) 99.9(+18.3) 15.2(+2.1) 66.2(+11.0) 16.8(+1.8) 73.0(+6.4)

Table 1. Zero-shot evaluation of models trained with different caption datasets on a broad range of image captioning benchmarks.

ChatGPT
win

CAPSFUS-LLaMA
win

Similar
quality

(Nearly)
Identical

Number 20 15 46 19

Table 2. Human evaluation on CAPSFUS-LLaMA vs. ChatGPT
over 100 validation samples.

tive. We randomly select a subset containing 127,897,754
image-text pairs from LAION-COCO [1], which contains
both raw captions from the web and synthetic captions
generated by BLIP [34]. Subsequently, we apply CAPS-
FUS-LLaMA to organically integrate the captions of these
image-text pairs. This process costs about 12 days using
128 A100-40G GPUs. After filtering with heuristic rules,
we retain a total of 120,724,312 image-text pairs, which we
term as the CAPSFUS-120M dataset.
CAPSFUS-120M Dataset. Tab. 3 provides a comparison
of CAPSFUS-120M with existing image-text datasets. We
compute the number of unique trigrams and the average
length of these captions (word instead of token as unit) in
each dataset. Notably, CAPSFUS-120M exhibits the highest
count of unique trigrams and the longest average sentence
length, underscoring superb diversity within its captions. In
contrast, synthetic captions (LAION-COCO) exhibit a con-
siderably lower number of trigrams, signifying a notable
lack of language complexity.

4. Experiments

We present a comprehensive analysis of different caption
datasets. Extensive experiments show that CAPSFUSION
exhibits all-around superiority over existing image-text pair
datasets, in terms of effectiveness, efficiency, world knowl-
edge depth, and scalability.

Datasets # Unique Trigrams Avg. Length

LAION-2B 5.51 ×107 10.95
LAION-COCO 1.00 ×107 8.99
La-CLIP 5.46 ×107 14.63
CAPSFUS-120M 7.13 ×107 22.74

Table 3. Statistics of different caption datasets (on a randomly
selected 10 million subset of CAPSFUS-120M images).

4.1. Setup

For a fair comparison, we compare CAPSFUSION with
other caption datasets under the same set of images from
LAION-COCO [1], isolating caption quality as the only
varying factor. Experiments are conducted across three
scales: 10, 50 and 100 million image-text pairs.
Model Architecture. We adopt the most prevalent LMM
architecture, consisting of three components: an LLM, a
vision encoder, and a vision-language bridging module.
We use LLaMA-2-7B [53] and EVA-01-CLIP-g [17, 50]
to initialize the LLM and vision encoder modules, respec-
tively. For the bridging module, we follow Emu [51] to
use a randomly initialized Causal Transformer to bridge
the vision and language modalities. This module trans-
forms bi-directional image representations from the vision
encoder into a causal sequence that aligns better to the na-
ture of LLMs, which excel at modeling causal sequences
in an autoregressive fashion. The LLM and vision encoder
are frozen during training to save computation cost follow-
ing [35], and only the bridging module is tuned.
Training Schedule. The training schedule is set as the same
for all compared captions. For each evaluation scale, we
train the model for 1 epoch. This practice follows Dat-
acomp [19], a benchmark for evaluating image-text pair
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Figure 7. Comparison of scalability and sample efficiency across different datasets.

datasets on CLIP training. The peak learning rate is 3e-
4, with the initial 2,000 (100M) / 1,000 (50M) / 500 (10M)
steps as warm-up, after which the learning rate decreases to
3e-5 with a cosine learning rate decay schedule. Batch size
is set to 8192 for all scales. Detailed training hyperparame-
ters can be found in Sec. 8. The 100M scale training costs
40 hours with 16 A800-80G GPUs.
Baselines. We establish two baselines using raw captions
from LAION-2B [45] and synthetic captions from LAION-
COCO [1]. Additionally, two state-of-the-art methods for
improving image-text pairs in CLIP training are evalu-
ated: language rewrites (LaCLIP [16]) and random mix-
ing [16, 39]. For [16], we adopt their in-context strategy and
employ LLaMA-2-7B to rewrite 10M captions for compar-
ison, taking 30 hours with 8 A100-40G GPUs. For random
mixing [16, 39], we set the mixing ratio of two types of
captions as 1:1 [16] and do not tune this ratio as in [39].
Evaluation. We comprehensively assess the performance
of LMMs across a wide range of evaluation benchmarks.
These benchmarks encompass both traditional benchmarks
and recently introduced assessments, including COCO [12],
NoCaps [2], TextCaps [48], Flickr30k [41], and SEED-
Bench [32]. For image captioning tasks, we employ
SPICE [4] and CIDEr [54] metrics. For the comprehensive
SEED-Bench in the form of multiple-choice questions, we
evaluate LMMs using accuracy.

4.2. Model Performance

The performances of models trained with different captions
on COCO, NoCaps, TextCaps, and Flickr30K benchmarks
are presented in Tab. 1. We observe that CAPSFUSION
outperforms all baseline captions in all settings by a large
margin, across all datasets evaluated. For example, on the
100M scale, CAPSFUSION surpasses the best baseline by
a substantial margin, achieving 18.8 and 18.3 CIDEr score
improvements on COCO and NoCaps, respectively.
Rewriting Captions Fails at Image Captioning. On the
10M scale, our examination reveals that Language Rewrites
captions [16], generated through the process of rewriting
raw captions, fail to achieve decent performance. This can
be attributed to the severe hallucination issue we observed
in the rewrites captions (Fig. 6), which introduces extrane-

ous text that is irrelevant to the content depicted in the ac-
companying images. The underlying cause of the hallucina-
tion phenomenon can be traced back to the input data, which
consists solely of noisy raw captions, providing a subopti-
mal starting point for the rewriting process.
Mixing Captions does not Bring Consistent Gains. An-
other notable observation is that mixing captions cannot
yield better performance. For instance, on the 10M-scale
over COCO benchmark, mixing raw and LR captions (72.62
CIDEr and 15.01 SPICE scores) achieves a median perfor-
mance between Raw (75.13 CIDEr and 15.48 SPICE) and
LR (71.61 CIDEr, 14.6 SPICE) captions. This finding is
contrarian to the observation in CLIP training [16, 31, 39],
where mixing raw and generated captions has proven to be a
strong strategy for enhancing CLIP performance, with raw
captions being an indispensable component [16, 31]. In
contrast, our experiments show that in LMMs training, the
exclusive use of a single caption type (CAPSFUSION) can
outperform both raw and synthetic captions.
Synthetic Captions Shout at Small Scale. A note-
worthy observation is that synthetic caption demonstrates
exceptional results on the 10M dataset (102.5 COCO
CIDEr), while exhibiting inferior performance (96.93
COCO CIDEr) on the larger-scale 100M dataset. This
aligns with our earlier observation of the Scalability Defi-
ciency issue in synthetic captions, a potential threat to the
effective training of LMMs. But even at small scales, the
effectiveness of synthetic captions consistently falls behind
that of CAPSFUSION across all datasets.

4.3. Sample Efficiency

In addition to comparing performance across different
dataset scales, we probe deeper into training sample ef-
ficiency. In Tab. 1, we find that with only 10M image-
text pairs, CAPSFUSION captions outperform other captions
with much larger scale (50M and 100M), demonstrating ex-
ceptional sample efficiency. We visualize the updates of
evaluation metrics on NoCaps, TextCaps, Flickr30K, and
COCO benchmarks when the number of seen training sam-
ples increases from 0 to 100 million image-text pairs, pre-
sented in Fig. 7. The horizontal grey dashed lines approxi-
mately represent the best-saturated performance of baseline
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Captions Scene U Inst Iden Inst Loc Inst Attr Inst Cnt Spatial Rel Inst Inter Vis Reason Text Rec Total

Raw [45] 57.9 51.2 39.8 47.7 44.6 35.3 47.4 48.6 34.1 48.7
Synthetic [1] 52.7 48.9 36.7 42.2 35.7 34.5 48.4 35.0 12.9 43.2
CAPSFUSION 58.8 52.7 41.0 48.0 46.3 35.9 57.7 47.1 20.0 49.8

Table 4. Zero-shot evaluation of models trained with different caption datasets on SEED-Bench.

captions when trained with 100 million image-text pairs.
The vertical dashed line reveals the number of samples em-
ployed by CAPSFUSION to achieve a similar level of perfor-
mance as the best-performing baseline captions. It is worth
noting that CAPSFUSION attains the same level of perfor-
mance as the best baseline captions with only 6M, 9M,
6M, and 8M samples for NoCaps, TextCaps, Flickr30K,
and COCO captions, respectively. This achievement under-
scores CAPSFUSION’s ability of 11-16 times speedup and
demonstrates its superior sample efficiency.

4.4. Scalability Analysis

Scalability stands as a crucial attribute in large model
training. Our investigation reveals that synthetic captions,
among all the caption types considered, exhibit the worst
scalability. This can be observed from Fig. 7 (a), (b), and
(d), wherein the blue lines exhibit early saturation with a
mere 30 million image-text pairs. Subsequently, their per-
formance gradually deteriorates. In contrast, raw caption
(orange lines) displays commendable scalability, with its
performance showing a consistent upward trajectory. How-
ever, the inherent high noise level in raw caption hampers
its ability to achieve strong performance. CAPSFUSION
caption (red lines) exhibits remarkable scalability on all
datasets, outperforming both synthetic and raw captions by
a substantial margin throughout the entire scale.
Note: Our investigation reveals that synthetic captions have
severe scalability limitations and typically saturate with
only 30 million pairs, after which more computation im-
poses an adverse impact on model performance. However,
current synthetic caption datasets used are typically much
larger in scale (e.g. 600M in LAION-COCO). We hope our
findings raise concerns about the efficiency issue in training
LMMs with such massive synthetic caption datasets.

4.5. Further Evaluation on SEED-Bench

Recently, new comprehensive benchmarks are proposed for
thorough evaluations of LMMs on granular functionali-
ties [6, 7, 18, 37, 59, 64]. We evaluate our proposed model
on a representative benchmark, SEED-Bench [32], over its
9 image-text tasks (dataset details can be found in Sec. 9.).
Results are presented in Tab. 4. We find CAPSFUSION out-
performs raw and synthetic captions in 7 out of 9 evalu-
ated tasks, which underscores the remarkable capabilities
of CAPSFUSION in instance counting, instance interaction,
scene understanding and other multimodal functionalities.

Method COCO [12] SEED-Bench [32] MMLU [24]

LLaMA-2-7B - - 45.78

Raw 74.9 48.5 43.7
Synthetic 55.5 40.2 42.9
CAPSFUSION 111.3 51.5 44.1

Table 5. Model performance with LLM tuned over different cap-
tion datasets.

4.6. Qualitative Evaluation on World Knowledge

In Fig. 3 and Fig. 9 (Appendix), we provide a qualitative
evaluation on the outputs generated by models trained with
different datasets. The first row is the input image with text
prompt, the lower three rows show the outputs from models
trained on raw, synthetic, and CAPSFUSION captions.

We observe that models trained on raw and CAPSFU-
SION captions exhibit rich real-world knowledge, able to
identify celebrities (Fig. 3 image 1), recognize famous art-
works (Fig. 9 image 2), attribute literature works to their
authors (Fig. 3 image 2), and pinpoint the location where
the specific event occurred (Fig. 3 image 3). Models trained
on synthetic captions totally lost such capabilities.

4.7. Effects when Firing LLM

We investigate the impact of different training captions
when firing the LLM. We conduct experiments at the 10M
scale on COCO [12], SEED [32], MMLU [24]. Results are
summarized in Tab. 5. Notably, we observe a significant
decline in the performance of synthetic captions. This in-
dicates a deterioration in the LLM’s capabilities when it is
trained on the simplified language of synthetic captions.

5. Conclusion

In this work, we identify severe Scalability Deficiency and
World Knowledge Loss issues in LMMs trained with syn-
thetic captions. On the other hand, web-based image-
text pairs possess rich world knowledge but are too noisy
to achieve decent performance. We thus propose CAPS-
FUSION, an advanced framework to generate high-quality
captions in a scalable and effective manner. The result-
ing CAPSFUS-120M dataset exhibits all-around superior-
ity over existing image-text datasets, which poses CAPS-
FUSION as a promising framework to generate large-scale
high-quality image-text data for scalable LMM training.
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