
CoGS Ô: Controllable Gaussian Splatting

Heng Yu1 Joel Julin1 Zoltán Á. Milacski1 Koichiro Niinuma2 László A. Jeni1
1Robotics Institute, Carnegie Mellon University 2Fujitsu Research of America

{hengyu, jjulin, zmilacsk}@andrew.cmu.edu kniinuma@fujitsu.com laszlojeni@cmu.edu

https://cogs2024.github.io

(a) Dynamic 3D Gaussians (b) 2D-to-3D Mask Projection (c) Attribute Control

Figure 1. From a set of monocular images capturing a moving scene, a dynamic 3D representation is learned using time-varying Gaussians
(a). Then the articulated parts (depicted with the trajectories of the motion) are identified using masking (b). This allows for learning
a fine-scale, per-Gaussian level of control (c). The approach is capable of synthesizing novel configurations not present in the original
sequence, for example, independently opening the hood, trunk, and doors of the toy car.

Abstract

Capturing and re-animating the 3D structure of artic-
ulated objects present significant barriers. On one hand,
methods requiring extensively calibrated multi-view setups
are prohibitively complex and resource-intensive, limiting
their practical applicability. On the other hand, while
single-camera Neural Radiance Fields (NeRFs) offer a
more streamlined approach, they have excessive training
and rendering costs. 3D Gaussian Splatting would be a
suitable alternative but for two reasons. Firstly, existing
methods for 3D dynamic Gaussians require synchronized
multi-view cameras, and secondly, the lack of controllability
in dynamic scenarios. We present CoGS, a method for Con-
trollable Gaussian Splatting, that enables the direct ma-
nipulation of scene elements, offering real-time control of
dynamic scenes without the prerequisite of pre-computing
control signals. We evaluated CoGS using both synthetic
and real-world datasets that include dynamic objects that
differ in degree of difficulty. In our evaluations, CoGS con-
sistently outperformed existing dynamic and controllable
neural representations in terms of visual fidelity.

1. Introduction

Recent advancements in machine vision have significantly
enhanced our ability to interpret and reconstruct 3D struc-
tures from 2D observations. This progress is largely due

to the development of coordinate networks, such as Neural
Radiance Fields (NeRF) [24] and its variants [2, 23, 25, 39],
which have revolutionized high-fidelity novel-view synthe-
sis and scene representation. NeRFs, however, primarily fo-
cus on static scenes and their implicit representation poses
challenges in direct scene manipulation. Addressing dy-
namic scenes involves additional complexities, as seen in
various extensions [9, 29, 32, 35], which often require intri-
cate mechanisms to adapt to scene deformations.

In contrast to the implicit nature of NeRFs, our work cen-
ters on Gaussian Splatting (GS), a method characterized by
its explicit representation. Building on this concept of 3D
GS, which employs 3D Gaussians for scene modeling, we
extend this approach to dynamic and controllable scenarios.
The explicit nature of GS [14] not only facilitates more ef-
ficient rendering compared to the computationally intensive
ray-casting and numerical integration of NeRFs but also sig-
nificantly simplifies the manipulation of scene elements, of-
fering direct control over the Gaussians.

We propose a novel framework that adapts GS for dy-
namic environments captured by a monocular camera, in-
tegrating control mechanisms that allow for intuitive and
straightforward manipulation of scene elements. This de-
velopment addresses the limitations of NeRFs in terms of
computational complexity and challenges in scene manipu-
lation due to their implicit representation. By leveraging the
explicit 3D Gaussian representations and combining them
with advanced control techniques, our method opens new
avenues for real-time, high-fidelity scene rendering and ma-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21624

nipulation, particularly relevant in fields such as virtual re-
ality, augmented reality, and interactive media.

2. Related Works
2.1. Dynamic NeRFs

NeRFs have shown remarkable capabilities in synthesizing
novel views of static scenes. The extension of these tech-
niques to dynamic deformable domains has been a focal
point of recent research [9, 29, 30, 32, 35]. A critical aspect
in these advancements is the effective modeling of defor-
mation. Approaches vary: some employ translational de-
formation fields with temporal positional encoding, as seen
in D-NeRF [32] and NR-NeRF [35], while others utilize
rigid body motion fields, exemplified by Nerfies [29] and
HyperNeRF [30]. Notably, HyperNeRF [30] introduces a
hyperspace representation to capture topological variations.
Additionally, optical flow has been explored as a method
for deformation regularization [6, 10, 19, 36]. Research
on dynamic scenes often also addresses the use of multi-
ple synchronized cameras [17, 18, 37, 38] and focuses on
accelerating both training [4, 5, 8, 27, 34, 44] and inference
processes [3, 20, 26, 45].

2.2. Controllable NeRFs

In addition to dynamic NeRFs, another area of research is
re-animation of dynamic scenes [1, 11, 13, 16]. CoNeRF
[13], which is closely related to our work, introduces man-
ually labeled control signals and control area masks into
the hyperspace framework proposed by HyperNeRF [30].
Building on this, CoNFies [46] advances the concept to a
fully automatic system, also achieving accelerated render-
ing speeds by distilling knowledge to a student Light Field
Network (LFN) [45]. However, a limitation of these ap-
proaches is the necessity for pre-computed or labeled con-
trol signals and masks. This requirement, stemming from
the implicit representation of hyperspace or neural radiance
fields, significantly restricts their applicability in broader
contexts.

2.3. Gaussian Splatting

Recently, 3D GS has emerged as a promising technique
[14]. This method explicitly models scenes using 3D Gaus-
sians, characterized by parameters such as mean, variance,
color, and density. Unlike NeRF’s ray-based rendering, it
employs rasterization, leading to faster training and ren-
dering while enhancing image quality. Initially focused on
static scenes, 3D GS has been extended to dynamic sce-
narios by concurrent research [41–43], aligning with our
work’s core ideas. These extensions often adopt additional
networks to model dynamic behavior, reminiscent of ap-
proaches in dynamic NeRFs. However, they do not fully
leverage the explicit nature of the Gaussians. Our work dis-

tinguishes itself by introducing controllability into dynamic
GS, taking full advantage of the explicit Gaussian represen-
tations for manipulation.

3. Methods
In order to realize controllable GS, it is essential to first
establish a GS framework capable of modeling dynamic
scenes. This chapter is dedicated to unfolding this process
in two distinct phases: initially, we introduce the concept
and methodology of dynamic GS. Subsequently, we build
upon this foundation to evolve these methods into a control-
lable framework, thereby enhancing their adaptability and
applicability in dynamic scene modeling.

3.1. Dynamic Gaussian Splatting

To represent dynamic scenes and ultimately introduce fine-
scale attribute control with 3D Gaussians, we utilize the
differentiable Gaussian rasterization pipeline proposed by
[14]. Specifically, we directly follow the method therein and
then augment its static properties with deformation fields to
model scene dynamics.

3.1.1 Differentiable Rasterization of 3D Gaussians

Each 3D Gaussian is defined by a full 3D covariance matrix
Σ, position (mean) µ, opacity α, and color represented via
spherical harmonics (SH). To render these 3D Gaussians,
projecting them from 3D to 2D Gaussians, we follow the
procedure outlined in [48] to obtain the view space covari-
ance matrix Σ′:

Σ′ = JWΣWTJT , (1)

where W is the view transform and J is the Jacobian of the
affine approximation of the projective transformation.

Since the physical meaning of a covariance matrix is
only valid if it is positive semi-definite, it cannot be eas-
ily optimized to best represent a scene’s radiance field [14].
However, we can obscure this complexity by employing
a parameterization that inherently maintains the positive
semi-definiteness of the matrix. The covariance matrix Σ
can be decomposed into intuitive and optimizable compo-
nents that correspond to an ellipsoid’s scaling and orienta-
tion with rotation matrix R and scaling matrix S:

Σ = RSSTRT . (2)

and optimize R, S instead of Σ. After projection, the Gaus-
sians are sorted from front-to-back where the color C is
given by NeRF-like volumetric rendering along a ray:

C =

N∑
i=1

Ti(1− exp(−σiδi))ci, (3)

21625

Figure 2. CoGS Overview. CoGS consists of two parts: Dynamic GS and Controllable GS. For Dynamic GS, an offset is learned for
(µ,C,R, S) by separate MLPs (only one shown in figure). To extend to controllable scenarios, signals extracted from the dynamic model
are used to obtain attribute offsets, which are then masked to affect the desired control region.

with:

Ti = exp(−
i−1∑
j=1

σjδj). (4)

During optimization, we adaptively control the density
of the 3D Gaussians to best represent the scene. Throughout
this process, the total number of Gaussians will change. For
a more comprehensive outline of this procedure, we kindly
ask the readers to refer to [14].

3.1.2 Optimization for Dynamic Scene Representation

The defining parameters of each 3D Gaussian presuppose a
static scene. Our approach bridges this gap to dynamic sce-
narios by learning independent deformation networks for
each parameter. Additionally, we introduce multiple losses
to maintain geometric consistency across time. The pipeline
overview is presented in Fig. 2, with the dynamic compo-
nent highlighted in red.

We initialize a set of 3D Gaussians from a Structure from
Motion (SfM) [33] point-cloud (or randomly selecting N
points within the scene box), each defined by the same pa-
rameters as in 3.1.1. For the first 3000 iterations, our fo-
cus is exclusively on learning the static elements within the
scene. This deliberate emphasis on stabilizing the static por-
tions proves to be crucial for achieving high performance
on the dynamic reconstruction. Establishing a robust static
foundation lays the groundwork for a more accurate recon-
struction of dynamic elements. During this phase, the defor-
mation network (green MLP) does not update any parame-
ters. Instead, these 3D Gaussians adhere to the same differ-
entiable rasterization pipeline as covered in Section 3.1.1.

In the subsequent phases, the deformation network is
employed to update each parameter, tailoring them to the
dynamic scene. Although not explicitly depicted in Fig. 2,
we learn j separate networks, one for each parameter. For

(µi, Ci, Ri, Si), we have a network Nj such that:

Nj(µi, t) = (∆µi,∆Ci,∆Ri,∆Si), (5)

where t is the current time step. Different from [42], we
also learn an offset for color to account for any changes
that may occur over time (e.g. shadows and reflections).
The outputs from these networks are then added to the cor-
responding parameters, and the differentiable rasterization
pipeline proceeds.

Learning offsets alone results in a method that is unaware
of consistent trajectories and accurate movement. Thus, we
employ our multiple regularization losses to further con-
strain this difficult problem.

For each time step, the mean of the normalized predicted
position offsets (∆µ) is computed to ensure their consis-
tency with one another. Specifically, we use this to localize
position offsets.

Lnorm =
1

N

N∑
i=1

∥∆µi∥. (6)

As shown in Fig. 3, the trajectories of static portions of the
scene tend to stabilize with the addition of this loss.

After 15000 iterations, we enforce the remainder of our
losses. Specifically, a local difference loss, denoted as Ldiff,
is used to ensure the movement, or trajectory, for each Gaus-
sian is consistent with its neighbors over time. This loss is
formulated as follows:

Ldiff
i,j = |∥µi,j,t − µi,t∥ − ∥µi,j,t−1 − µi,t−1∥| . (7)

Here, µi,j,t represents the position of a nearest neighbor
Gaussian j to Gaussian i at time t. Similarly, µi,t is the
position of Gaussian i at time t, and analogous notation is
used for the time step t− 1.

21626

(a) (b)

Figure 3. Lego synthetic scene visualized as a pointcloud of col-
ored Gaussian centers. The smaller and fewer colored lines indi-
cate less change in position over time. Adding Lnorm stabilizes the
static Gaussian’s positions. (a) Without Lnorm. (b) With Lnorm.

The overall local difference loss is then defined as the
average over all Gaussians i and their k-nearest neighbours:

Ldiff =
1

k|G|
∑
i∈G

∑
j∈knni;k

Ldiff
i,j . (8)

Demonstrated in Fig. 4a, this loss yields a much more con-
sistent dynamic representation when compared to without it
as shown in 4b.

(a) (b)

Figure 4. Jumping Jack synthetic scene visualized as a pointcloud
of colored Gaussian centers. The smaller and fewer colored lines
indicate less change in position over time. Adding Ldiff stabilizes
the 3D Gaussian’s trajectories. (a) Without Ldiff. (b) With Ldiff.

The next two loss functions are directly taken from [22],
for more in depth details, please refer to their paper. Each of
these losses are assigned a weight through an unnormalized
Gaussian weighting factor:

wi,j = exp (−λw∥µj,0 − µi,0∥22) (9)

The distance between each Gaussian’s position is computed
at the first time step, and then it is fixed for the remaining
part of the sequence. In doing this, each of the following
losses are explicitly locally enforced.

Using this weighting scheme, a local-rigidity loss is em-
ployed, denoted as Lrigid, defined as follows:

Lrigid
i,j = wi,j ||(µj,t−1−µi,t−1)−Ri,t−1R

−1
i,t (µj,t−µi,t||2,

(10)

Lrigid =
1

k|G|
∑
i∈G

∑
j∈knni;k

Lrigid
i,j . (11)

This loss ensures that for each Gaussian i, neighboring
Gaussians j should move in a manner consistent with the
rigid body transform of the coordinate system over time.

Additionally, we incorporate a rotational loss Lrot to
maintain consistency in rotations among nearby Gaussians
across different time steps. This is expressed as:

Lrot =
1

k|G|
∑
i∈G

∑
j∈knni;k

wi,j∥q̂j,tq̂−1
j,t−1 − q̂i,tq̂

−1
i,t−1∥2,

(12)
where q̂ is the normalized quaternion rotation of each Gaus-
sian. The same k-nearest neighbors are used, as in the pre-
ceding losses.

Each of the described losses is critical to success at dy-
namic scene reconstruction, as there exist multiple facets
that require precise constraints.

3.2. Controllable Gaussian Splatting

Having established the framework for dynamic GS, we can
now extend it to accommodate controllable scenarios as
shown in Fig. 2. This extension is facilitated by its ex-
plicit, Gaussian-based representation. The comprehensive
pipeline of our approach comprises four key steps:
1. Building a Dynamic GS Model: As previously dis-

cussed, this foundational step establishes the ground-
work for subsequent extensions.

2. 3D Mask Generation: This step involves translating
two-dimensional mask data into a three-dimensional
context, bridging the gap between simple representations
and complex spatial models. The 2D mask is either an-
notated manually quite easily or automatically inferred
by existing methods.

3. Control Signal Extraction: A pivotal phase where con-
trol signals are identified and extracted manually or auto-
matically from explict Gaussian sets, serving as the pri-
mary drivers for scene manipulation.

4. Control Signal Re-Alignment: The final phase, which
entails adjusting and aligning the control signals to
ensure their seamless integration and responsiveness
within the dynamic model.
In the following sections, we will explore the details of

the last three steps, elucidating their roles in enhancing the
overall efficacy and controllability of our dynamic GS.

3.2.1 3D Mask Generation

To delineate the controllable set of Gaussians, we introduce
a mask vector mi ∈ RL for each Gaussian, where L denotes
the number of attributes to be controlled. The straightfor-
ward approach of selecting these in 3D introduces two ma-
jor challenges: the complexity of manually labeling Gaus-
sian positions for each attribute and the difficulty in achiev-
ing an exact fine-grained boundary for the 3D point set, po-
tentially leading to control artifacts.

21627

Addressing these challenges, we propose an effective
method to obtain the mask vector m. We start by acquir-
ing K 2D masks for the 2D frames, where K can vary from
all frames (for scenarios with available automatic mask gen-
eration methods like face recognition [45], as illustrated in
Fig. 7d) to a single frame (which can be manually labeled,
as demonstrated in Figs. 7a & 7b & 7c). After the 2D mask
acquisition, we perform a 2D-to-3D mask projection. A
practical method involves associating the 3D point with the
corresponding 2D pixel, utilizing depth maps and camera
poses as in [22]. However, this method falls short of attain-
ing the fine-grained boundary of the controllable part due to
the splatting process 3.1.1.

Therefore, we suggest a learning process to obtain the
mask vector for each Gaussian. We allocate a learnable
mask tensor mi ∈ RL to each Gaussian and implement a
softmax operation to normalize the sum of the tensor to 1,
aiming for a categorical distribution. For rendering the 2D
mask M from the 3D mi, we use the same GS equation,
referred to as Eq. 3, employing the same point µ, rotation
matrix R, and scaling matrix S, except that we set the color
for each Gaussian as a constant (1), and take the mask tensor
as opacity. This rendered 2D mask is supervised using the
ground-truth mask. Importantly, rather than enforcing an
exact match between the rendered and ground-truth masks
for each control area, we focus on ensuring that the ren-
dered mask has no impact (is black) on other control areas
as in Eq. 13, significantly reducing artifacts at the bound-
aries. Mi is the rendering 2D mask for the ith attribute and
Mgt

i is the corresponding ground truth. Here we want the
rendering mask Mi to ideally be black on other controllable
areas so as to make no effect on these parts.

Lmask =

L∑
i=1

∥(1−Mi)−
L∑

j=1,j ̸=i

Mgt
j ∥·

L∑
j=1,j ̸=i

Mgt
j . (13)

In this step, we maintain all other learnable weights and
tensors, except for the mask tensor, as fixed.

3.2.2 Control Signal Extraction

Our method uniquely eliminates the need for pre-computed
control signals, significantly expanding its range of appli-
cations. This is accomplished by unsupervised learning of
the control signal directly from the Gaussians. The first step
involves selecting a set of Gaussians, denoted as G, which
represents movement within the control part, as indicated
by the previously learned mask m. This set G can be either
manually selected in 3D or automatically based on move-
ment trajectories, such as by choosing the set of points p
with the largest movement distance. The size of this Gaus-
sian set G can be as minimal as a single Gaussian.

Utilizing the explicit representation of GS, we calculate
the centroid c of the points in G and trace its movement

trajectory. We employ a simple linear model for trajectory
analysis, although more complex models are feasible. Prin-
cipal Component Analysis (PCA) is applied to determine
the primary movement direction, denoted as d. The posi-
tions of the Gaussian (means) µ are then projected onto this
direction d at each timestep t, as shown in Eq. 14:

projd(µt) =
(µt − c) · d

∥d∥
. (14)

This projection enables us to define the start and end
points, s and e, along the movement direction. Subse-
quently, the distances of all points from the start point s
are normalized to a range between 0 and 1, resulting in our
control signal σ, as expressed in Eq. 15:

σ(µt) =
projd(µt)− projd(s)

projd(e)− projd(s)
. (15)

This process culminates in the control signal σ, enabling
dynamic scene manipulation.

3.2.3 Control Signal Re-Alignment

After obtaining the control signal σ, the next crucial step
is its integration into the network to facilitate manipulation
using these signals. This is accomplished by developing a
unique network N c

i for each control signal, designed to out-
put the corresponding offset ∆ for each Gaussian attribute,
as determined in the dynamic modeling stage. Let µi, Ci,
Ri, and Si denote the mean, rotation, and scaling of each
Gaussian, respectively. The control network N c

i modifies
these attributes in response to the control signal:

N c
i (σ) = (∆µi,∆Ci,∆Ri,∆Si) (16)

In this phase, the focus is solely on training these con-
trol signal networks Ni, while keeping all other learnable
parameters Θ fixed.

Upon achieving reliable estimates for the attribute offsets
∆µi,∆Ci,∆Ri,∆Si of each Gaussian, we move towards
the end-to-end fine-tuning of all learnable parameters. This
all-encompassing fine-tuning is crucial for completing our
controllable GS model. The final model (represented by f)
is formulated as:

f(Θ;µi +∆µi,Ci +∆Ci,Ri +∆Ri,Si +∆Si) (17)

This final step guarantees precise and effective control
over dynamic scene renderings.

4. Experiments
In this section, we present the experiments conducted to
demonstrate the effectiveness of our method in dynamic and
controllable scenarios.

21628

Figure 5. Control blue ball and green ball separately.

Figure 6. Opening the hood and the trunk of the toy car.

(a) (b) (c) (d)

Figure 7. 2D mask labeling. (a)-(c) Manually labeling a single
frame. (d) Automatic labeling using facial key-point detection.

4.1. Datasets

To evaluate our dynamic model, experiments were con-
ducted on two categories of dynamic scenes: synthetic and
real. Additionally, the performance of our controllable
model was assessed on a synthetic scene, real face scene,
real dynamic scene, and a self-captured toy car scene.
Synthetic Scenes. We employed the 360◦ dynamic syn-

Table 1. Quantitative results on synthetic dynamic scenes. We
color code each row as best , second best , and third best .

Method PSNR↑ SSIM↑ LPIPS↓ (100x)

NeRF[24] 18.98 0.870 18.25
DirectVoxGo[34] 18.64 0.853 16.88
Plenoxels[8] 20.24 0.868 16.00
T-NeRF[32] 29.50 0.951 7.88
D-NeRF[32] 30.44 0.952 6.63
TiNeuVox-S[7] 30.75 0.955 6.63
TiNeuVox-B[7] 32.67 0.972 4.25
3D GS [14] 23.07 0.928 8.22

Ours 37.90 0.983 1.74
Ours, w/o Lnorm 37.41 0.984 1.70
Ours, w/o Ldiff 37.68 0.982 1.65
Ours, w/o Lrigid 37.75 0.981 1.71

Table 2. Quantitative results on real dynamic scenes. We color
code each row as best , second best , and third best .

Method PSNR↑ SSIM↑ LPIPS↓ (100x)

NeRF[24] 22.3 0.807 43.3
NV[21] 26.3 0.910 20.9
NSFF[19] 25.7 0.881 24.8
Nerfies[29] 29.3 0.948 17.6
HyperNeRF[30] 29.8 0.954 17.2
TiNeuVox-S[7] 23.6 0.690 54.5
TiNeuVox-B[7] 28.0 0.752 45.1
3D GS [14] 22.1 0.724 43.8

Ours 29.6 0.950 17.1
Ours, w/o Lnorm 29.1 0.905 20.1
Ours, w/o Ldiff 29.8 0.912 19.8
Ours, w/o Lrigid 29.4 0.920 21.3

thetic dataset introduced by [32], comprising 8 animated
objects with complex geometries and non-Lambertian ma-
terials. Each scene in this dataset includes 50 to 200 training
images and 20 test images, all at an 800× 800 resolution.
Real Scenes. Four topologically diverse scenes from [30]
(torchocolate, cut-lemon, chickchicken, and hand) were
used. These scenes were captured using a rig consisting of
two Google Pixel 3 phones mounted approximately 16cm
apart on a pole.
Real Face Scene. For controllable model testing, we uti-
lized a real face scene from [13] (involving actions like
closing/opening the eyes/mouth). This scene was captured
with either a Google Pixel 3a or an Apple iPhone 13 Pro.
Unlike CoNeRF, which requires pre-defined control signals
and masks, our method achieves comparable controllability
without such prerequisites.
Toy Car Scene. We also ran experiments on two self-
captured Toy Car scenes. The capture process involved
manually opening the regions of control (doors, hood,
trunk, etc.) and recording one video per transition. Once
the transitions were completed, we stitched the individual
videos together to create a single cohesive dynamic scene.
This scene was captured with an Apple iPhone 13 Pro.

21629

Jumping Jacks (a) Ground Truth (b) D-NeRF [32] (c) TiNeuVox [7] (d) 3D-GS [14] (e) Ours

Standup (f) Ground Truth (g) D-NeRF [32] (h) TiNeuVox [7] (i) 3D-GS [14] (j) Ours

Figure 8. Qualitative results on synthetic dynamic scenes. We compare our Dynamic 3D-GS method (Ours) with the ground truth, D-NeRF,
TiNeuVox, and the static 3D-GS method.

Cut Lemon (a) Ground Truth (b) HyperNeRF [30] (c) TiNeuVox [7] (d) 3D-GS [14] (e) Ours

Chick Chicken (f) Ground Truth (g) HyperNeRF [30] (h) TiNeuVox [7] (i) 3D-GS [14] (j) Ours

Figure 9. Qualitative results on real dynamic scenes. We compare our Dynamic 3D-GS method (Ours) with the ground truth, HyperNeRF,
TiNeuVox, and the static 3D-GS method. For Cut Lemon, our method models the knuckles on the hand better than others. As for Chick
Chicken, we reconstruct more fine details (red edges).

4.2. Implementation Details

For the training of the dynamic component, we adopted the
differential Gaussian rasterization technique from 3D GS
[14], and implemented the additional network components
using PyTorch [31]. The Gaussians were initialized either
using SfM results or by randomly selecting N points (where
N = 10k in our experiments) within the scene box. The
initial phase of 3k iterations does not involve learning any
deformation field; this phase is akin to the training process
of 3D GS, aiding in the convergence of the learning process.
Following this, we jointly train the 3D Gaussian attributes
and the deformation network for a total of 50k iterations.
The learning rate for each Gaussian attribute is kept consis-
tent with that used in 3D GS, as detailed in [14], while the
learning rate for the deformation network is set to exponen-
tially decay from 1e− 3 to 1e− 6.

In the controllable part, the learning rate is set to 1 for the
initial 1k iterations during the 3D Mask Generation phase.
During the Control Signal Re-Alignment phase, we apply
an exponential decay of the learning rate from 1e − 2 to
1e − 4 over 5k iterations, specifically for training the con-
trol signal networks. For the final end-to-end finetuning, the
learning rate is set to 1e − 6, and the process is run for an
additional 5k iterations. Optimization throughout these pro-

cesses is performed using the Adam optimizer [15] with a
β value range of (0.9, 0.999). All experiments were con-
ducted using single 80GB NVIDIA A100 GPUs.

4.3. Results

We show the qualitative and quantitative results in this sec-
tion to demonstrate the effectiveness of our method. We
use Peak Signal-to-Noise Ratio (PSNR) [12] in decibels
(dB), the Structural Similarity Index (SSIM) [28, 40] and
the Learned Perceptual Image Patch Similarity (LPIPS) [47]
as evaluation metrics. All detailed results for each scene can
be found in the supplementary material.

We first show our dynamic GS modeling part. We com-
pare our method with existing works using dynamic syn-
thetic scenes from [32] on the novel view synthesis task.
We report the quantitative results in Table 1 and we can see
that our method can achieve much better performance than
existing methods. The qualitative results are shown in Fig. 9
and we can see that our method has better face and hand de-
tails. For the real scenes from [30], we run interpolation
experiments as in [30] instead of the novel view synthe-
sis task because of the rendering pose problem mentioned
in [42]. We show our results in Table 2 and Fig. 9. We can
see that our method can capture better details on complex
real dynamic scenes. We also perform ablation experiments

21630

on the regularizations we utilize as shown in Table 1 & 2.
To better illustrate the role of the regularizations, we also
visualize the trajectories in Fig. 4.

For the controllable GS, we use four datasets (bouncing-
ball, torchocolate, face and car) and first fit a dynamic GS
on them. Then we obtain the labels as shown in Fig. 7.
For the eye scene, we manually select the point set as the
control points, and for other scenes, we get the point sets
automatically from the point movement as mentioned be-
fore. We also visualize the control results to demonstrate
our method’s performance.

Figure 10. Controlling the blowtorch and the melting chocolate
separately.

5. Conclusion
We presented Controllable Gaussian Splatting named
CoGS, a novel method for dynamic scene manipulation.
It overcomes the limitations of NeRFs and similar neural
methods by using an explicit representation that enables
real-time, controllable manipulation of dynamic scenes.
Our approach, validated through extensive experiments,
shows superior performance in visual fidelity and manip-
ulation capabilities compared to existing techniques. The
explicit nature of CoGS not only enhances efficiency in ren-
dering but also simplifies scene element manipulation. It
has the potential to democratize 3D deformable content cre-
ation using commodity hardware, making it more accessible
and feasible for a broader range of users and applications.

Our method is not without limitations. CoGS faces
challenges with shiny or intricately lit objects, common in
GS pipelines. Dynamic modeling may struggle with non-
rigid deformation and large-scale movements in monocu-

Figure 11. Controlling the eyes and the mouth separately.

Figure 12. Controlling the left eye and right eye separately.

lar settings. Limitations may also arise from controllable
signal extraction and re-alignment, with the current PCA
method potentially struggling with highly complex move-
ments. Addressing these limitations will be the focus of
future work.

Acknowledgements

This research was supported partially by Fujitsu.

21631

References
[1] ShahRukh Athar, Zexiang Xu, Kalyan Sunkavalli, Eli

Shechtman, and Zhixin Shu. Rignerf: Fully controllable neu-
ral 3d portraits. In Proceedings of the IEEE/CVF conference
on Computer Vision and Pattern Recognition, pages 20364–
20373, 2022. 2

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Pe-
ter Hedman, Ricardo Martin-Brualla, et al. Mip-NeRF: A
Multiscale Representation for Anti-Aliasing Neural Radi-
ance Fields. In Proc. IEEE/CVF ICCV, pages 5855–5864,
2021. 1

[3] Junli Cao, Huan Wang, Pavlo Chemerys, Vladislav Shakhrai,
Ju Hu, Yun Fu, Denys Makoviichuk, Sergey Tulyakov, and
Jian Ren. Real-time neural light field on mobile devices.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8328–8337, 2023. 2

[4] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision, pages 333–350. Springer,
2022. 2

[5] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised NeRF: Fewer Views and Faster
Training for Free. In Proc. IEEE/CVF CVPR, pages 12882–
12891, 2022. 2

[6] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenen-
baum, and Jiajun Wu. Neural radiance flow for 4d view
synthesis and video processing. In 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
14304–14314. IEEE Computer Society, 2021. 2

[7] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xi-
aopeng Zhang, et al. Fast Dynamic Radiance Fields with
Time-Aware Neural Voxels. arXiv:2205.15285, 2022. 6, 7

[8] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, et al. Plenoxels: Radiance Fields
Without Neural Networks. In Proc. IEEE/CVF CVPR, pages
5501–5510, 2022. 2, 6

[9] Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias
Nießner. Dynamic Neural Radiance Fields for Monocular
4D Facial Avatar Reconstruction. In Proc. IEEE/CVF CVPR,
pages 8649–8658, 2021. 1, 2

[10] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang.
Dynamic view synthesis from dynamic monocular video. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5712–5721, 2021. 2

[11] Stephan J Garbin, Marek Kowalski, Virginia Estellers,
Stanislaw Szymanowicz, Shideh Rezaeifar, Jingjing Shen,
Matthew Johnson, and Julien Valentin. Voltemorph: Real-
time, controllable and generalisable animation of volumetric
representations. arXiv preprint arXiv:2208.00949, 2022. 2

[12] Alain Hore and Djemel Ziou. Image quality metrics: PSNR
vs. SSIM. In 20th ICPR, pages 2366–2369. IEEE, 2010. 7

[13] Kacper Kania, Kwang Moo Yi, Marek Kowalski, Tomasz
Trzciński, and Andrea Tagliasacchi. CoNeRF: Controllable
Neural Radiance Fields. In Proc. IEEE/CVF CVPR, pages
18623–18632, 2022. 2, 6

[14] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time

radiance field rendering. ACM Transactions on Graphics
(ToG), 42(4):1–14, 2023. 1, 2, 3, 6, 7

[15] Diederik P Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980, 2014. 7

[16] Verica Lazova, Vladimir Guzov, Kyle Olszewski, Sergey
Tulyakov, and Gerard Pons-Moll. Control-nerf: Editable
feature volumes for scene rendering and manipulation. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 4340–4350, 2023. 2

[17] Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and
Ping Tan. Streaming radiance fields for 3d video synthe-
sis. Advances in Neural Information Processing Systems, 35:
13485–13498, 2022. 2

[18] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
et al. Neural 3d video synthesis from multi-view video. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5521–5531, 2022. 2

[19] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6498–
6508, 2021. 2, 6

[20] Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai,
Hujun Bao, and Xiaowei Zhou. Efficient neural radiance
fields for interactive free-viewpoint video. In SIGGRAPH
Asia 2022 Conference Papers, pages 1–9, 2022. 2

[21] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: learning dynamic renderable volumes from images.
ACM Transactions on Graphics (TOG), 38(4):1–14, 2019. 6

[22] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking
by persistent dynamic view synthesis. arXiv preprint
arXiv:2308.09713, 2023. 4, 5

[23] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, et al. NeRF in the
Wild: Neural Radiance Fields for Unconstrained Photo Col-
lections. In Proc. IEEE/CVF CVPR, pages 7210–7219, 2021.
1

[24] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, et al. NeRF: Rep-
resenting Scenes as Neural Radiance Fields for View Syn-
thesis. Commun. ACM, 65(1):99–106, 2021. 1, 6

[25] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla,
Pratul P Srinivasan, and Jonathan T Barron. NeRF in the
Dark: High Dynamic Range View Synthesis from Noisy
Raw Images. In Proc. IEEE/CVF CVPR, pages 16190–
16199, 2022. 1

[26] Muhammad Husnain Mubarik, Ramakrishna Kanungo, To-
bias Zirr, and Rakesh Kumar. Hardware acceleration of neu-
ral graphics. In Proceedings of the 50th Annual International
Symposium on Computer Architecture, pages 1–12, 2023. 2

[27] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 41(4):1–15, 2022. 2

21632

[28] Augustus Odena, Christopher Olah, and Jonathon Shlens.
Conditional Image Synthesis with Auxiliary Classifier
GANs. In ICML, pages 2642–2651. PMLR, 2017. 7

[29] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, et al. Nerfies: Deformable Neural
Radiance Fields. In Proc. IEEE/CVF ICCV, pages 5865–
5874, 2021. 1, 2, 6

[30] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T
Barron, Sofien Bouaziz, et al. HyperNeRF: A Higher-
Dimensional Representation for Topologically Varying Neu-
ral Radiance Fields. ACM Trans. Graph., 40(6):1–12, 2021.
2, 6, 7

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
7

[32] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural Radiance Fields
for Dynamic Scenes. In Proc. IEEE/CVF CVPR, pages
10318–10327, 2021. 1, 2, 6, 7

[33] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4104–4113, 2016. 3

[34] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5459–
5469, 2022. 2, 6

[35] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael
Zollhöfer, Christoph Lassner, et al. Non-Rigid Neural Radi-
ance Fields: Reconstruction and Novel View Synthesis of a
Dynamic Scene From Monocular Video. In Proc. IEEE/CVF
ICCV, pages 12959–12970, 2021. 1, 2

[36] Chaoyang Wang, Lachlan Ewen MacDonald, Laszlo A Jeni,
and Simon Lucey. Flow supervision for deformable nerf.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 21128–21137, 2023.
2

[37] Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei
Song, and Huaping Liu. Mixed neural voxels for fast multi-
view video synthesis. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 19706–
19716, 2023. 2

[38] Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yan-
shun Zhang, et al. Fourier PlenOctrees for Dynamic Ra-
diance Field Rendering in Real-time. In Proc. IEEE/CVF
CVPR, pages 13524–13534, 2022. 2

[39] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, et al. NeuS: Learning Neural Implicit Surfaces
by Volume Rendering for Multi-view Reconstruction. Adv.
NeurIPS, 34:27171–27183, 2021. 1

[40] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image Quality Assessment: From Error Visibility
to Structural Similarity. IEEE Trans. Image Process., 13(4):
600–612, 2004. 7

[41] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene rendering.
arXiv preprint arXiv:2310.08528, 2023. 2

[42] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3d gaussians for
high-fidelity monocular dynamic scene reconstruction. arXiv
preprint arXiv:2309.13101, 2023. 3, 7

[43] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li
Zhang. Real-time photorealistic dynamic scene representa-
tion and rendering with 4d gaussian splatting. arXiv preprint
arXiv:2310.10642, 2023. 2

[44] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P Srinivasan, Richard Szeliski, Jonathan T Barron,
and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-
time view synthesis. arXiv preprint arXiv:2302.14859, 2023.
2

[45] Heng Yu, Joel Julin, Zoltan A Milacski, Koichiro Niinuma,
and László A Jeni. Dylin: Making light field networks dy-
namic. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12397–
12406, 2023. 2, 5

[46] Heng Yu, Koichiro Niinuma, and László A Jeni. Confies:
Controllable neural face avatars. In 2023 IEEE 17th Interna-
tional Conference on Automatic Face and Gesture Recogni-
tion (FG), pages 1–8. IEEE, 2023. 2

[47] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The Unreasonable Effectiveness of Deep
Features as a Perceptual Metric. In Proc. IEEE/CVF CVPR,
pages 586–595, 2018. 7

[48] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa vol-
ume splatting. In Proceedings Visualization, 2001. VIS ’01.,
pages 29–538, 2001. 2

21633

