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Abstract

Precipitation nowcasting is an important spatio-
temporal prediction task to predict the radar echoes se-
quences based on current observations, which can serve
both meteorological science and smart city applications.
Due to the chaotic evolution nature of the precipitation sys-
tems, it is a very challenging problem. Previous studies ad-
dress the problem either from the perspectives of determin-
istic modeling or probabilistic modeling. However, their
predictions suffer from the blurry, high-value echoes fad-
ing away and position inaccurate issues. The root reason
of these issues is that the chaotic evolutionary precipitation
systems are not appropriately modeled. Inspired by the na-
ture of the systems, we propose to decompose and model
them from the perspective of global deterministic motion
and local stochastic variations with residual mechanism. A
unified and flexible framework that can equip any type of
spatio-temporal models is proposed based on residual dif-
fusion, which effectively tackles the shortcomings of previ-
ous methods. Extensive experimental results on four pub-
licly available radar datasets demonstrate the effectiveness
and superiority of the proposed framework, compared to
state-of-the-art techniques. Our code is publicly available
at https://github.com/DeminYu98/DiffCast.

1. Introduction
Precipitation nowcasting, aiming at providing a high spatio-
temporal resolution rainfall prediction of very short-range
(e.g., 0∼6 hours), is a crucial task in meteorological science
and smart city applications [26, 32]. The core of the task is
to predict the future radar echoes sequence based on current
observations. In essence, it is a spatio-temporal prediction
problem, but with some quite distinguishing traits.

Unlike conventional video or spatio-temporal prediction
tasks [9, 18], which aim to forecast a deterministic trajec-
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Figure 1. We evaluate different models’ performances in precipi-
tation nowcasting. The deterministic model (b) can nicely capture
the moving trends but tends to get blurry appearance and under-
estimate the high-value echoes. The probabilistic model (c) can
capture the appearance details well, but the predicted rainfall po-
sitions are inaccurate. Our method (d) is able to generate accurate
prediction with nice appearance details.

tory of moving objects, precipitation particles constitute a
chaotic evolutionary system, governed not only by the de-
terministic moving trends of global system, but also by the
stochastic variations (growth or decay) of local particles.
More importantly, the global moving trends and local vari-
ations are inherently coupled. For example, when cold and
warm air masses cross in a region, continuous rainfall is
caused by an evolutionary convection with lasting growth
and decay of precipitation particles, rather than a simple
movement of seen rainfall belt.

However, most of previous spatio-temporal methods [3,
8–11, 26, 33] are developed for conventional tasks, which
fail to analyze and model this nature. As a result, their per-
formance is unsatisfactory for precipitation nowcasting. In
terms of methodology, we categorize these methods into
deterministic and probabilistic models. Each type has its
own disadvatanges. Deterministic models [8, 9, 27] lever-
age convolution recurrent neural network, transformer or
their variants to forecast the future echoes sequence by di-
rectly optimizing the distance or similarity to ground-truth.
This line of methods can nicely capture the moving trends,
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but the forecast is getting more and more blurry as the lead
time increases, shown as in Figure 1(b). Moreover, the high-
value echoes, which signify heavy storms, tend to be badly
underestimated. The reason is that these methods overlook
modelling the local stochastics. To address the blurry is-
sue, researchers recently start to turn to probabilistic gener-
ation methods with generative adversarial networks (GANs)
[4, 37] or diffusion models [10, 13]. Although the forecast
images of such methods are with realistic details, the pre-
dicted rainfall positions are often very inaccurate, shown as
in Figure 1(c). This is because these methods model the
whole precipitation system in a stochastic manner, where
the freedom of generation is too high to maintain a good
prediction accuracy.

In this paper, we propose a flexible and unified end-to-
end framework, called Diffcast, which nicely decomposes
and models the global determinism and local stochastics
of precipitation systems. In the framework, we decom-
pose the evolving system as a motion trend and its stochas-
tic residual, and design a motion component and a tem-
poral residual diffusion component to model them, respec-
tively. The motion component serves as a deterministic pre-
dictive backbone for global trajectory of precipitation sys-
tem, and the carefully-designed temporal residual diffusion
component accounts for modeling the residual distribution
which signifies local stochastics. Specially, in the diffusion
component, we design a Global Temporal UNet(GTUnet),
which carefully utilizes multi-scale temporal features, in-
cluding the global motion prior, sequence segment con-
sistency and inter frame dependency, as diffusion condi-
tions to model the temporal evolution of residual distribu-
tion. In the framework, the deterministic predictive compo-
nent and local stochastic diffusion component are simulta-
neously trained in an end-to-end manner. Hence, they in-
terplay with each other natrually. Our framework has three
striking advantages. First, it is a robust and easy-to-train
method without mode collapse compared to adversarial net-
works. Second, any type of deterministic spatio-temporal
prediction models (reccurent-based or recurrent-free) can
be easily equipped into the framework as predictive back-
bones. Third, the prediction performance of backbones, in
terms of both accuracy metrics and appearance details, are
significantly improved with our framework.

In summary, our main contributions are summarized as:
• We firstly propose to model the precipitation evolution

from the perspective of global deterministic motion and
local stochastic variations with residual mechanism.

• We propose a flexible precipitation nowcasting frame-
work that can equip any deterministic backbones (i.e.
recurrent-based and recurrent-free models) to generate
accurate and realistic prediction.

• Inspired by the natural meteorological mechanism, we
propose to simultaneously train the deterministic predic-

tive component and the stochastic diffusion component
in an end-to-end manner and validate the effectiveness
and necessity.

• We equip several notable backbones into our frame-
work and conduct extensive experiments on four pub-
licly available radar echo datasets, and the results show
that our framework significantly improves the perfor-
mance, delivering state-of-the-art results for precipita-
tion nowcasting.

2. Related Work
2.1. Spatio-temporal Predictive Models

Deterministic predictive models are the mainstream of the
existing approaches for spatio-temporal prediction [2, 23,
35]. They can be roughly categorized into two groups:
recurrent-based models and recurrent-free models. The
recurrent-based models learn a hidden state from the his-
torical sequence and generate the future frames recurrently
with the hidden state [3, 26, 27, 30, 34]. For example, Shi
et al. proposed ConvLSTM [26] and ConvGRU [27] by in-
tegrating the convolution operator into the recurrent neural
network. MAU [3] enhanced the video prediction by devel-
oping an attention-based predictive unit with a better tem-
poral receptive field. PhyDnet [11] incorporated partial dif-
ferential equation (PDE) constraints in the recurrent hidden
state. The recurrent-free based models [23, 37] encode the
given input frames into hidden states and decode all the pre-
dictive frames at once, instead of in a recurrent way. For ex-
ample, SimVP [9] designed a scheme to encode and decode
the information via simple convolutions. Earthformer [8]
leveraged transformer to build the encoder-decoder for pre-
diction. However, all the deterministic predictive methods
suffer from the aforementioned blurry issue and high-value
echoes fading away issue for precipitation nowcasting, be-
cause of the neglect of local stochastics.

Probabilistic predictive models are designed to cap-
ture the spatio-temporal uncertainty by estimating the con-
ditional distribution of future state. These models aim to en-
hance the realism of predictions based on adversarial train-
ing [4, 20, 25, 31] or variational autoencoders [1, 7, 31, 37].
However, these methods directly model the whole precipita-
tion system as stochastics and thus introduce uncontrollable
randomness that harms to prediction accuracy. Moreover,
these methods often suffer from mode collapse issue and
are not easy to train.

2.2. Spatio-temporal Diffusion Models

Thanks to the high-fidelity generative capabilities and stable
training merit, diffusion models, garnered growing interest
for spatio-temporal prediction lately [12, 15, 16, 22, 36].
The mainstream of the methods is based on denoising diffu-
sion probabilistic models [6, 14]. For instance, MCVD [33]
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introduced a random mask scheme on frames and utilized
conditional denoising network to learn temporal depen-
dency between frames for prediction. LDCast [19] applied a
channel-based conditional latent diffusion model to predict
the evolution of precipitation with denoising mechanism.
PreDiff [10] incorporated prior knowledge via extra knowl-
edge control network to limit the generative process so as to
align the prediction with domain-specific prior knowledge
based on latent diffusion models. However, all the methods
regard the whole system evolving stochastically and model
it with a diffusion process. In this way, too much freedom
is introduced for diffusion models to precisely control the
generation. As a result, the predictive frames are with real-
istic details, but the positions tend to be mismatched.

3. Task Definition and Preliminaries
3.1. Task Definition

We follow [8, 10, 32] to formulate precipitation nowcast-
ing as a spatio-temporal prediction problem. Given Lin

initial frames x = [xi]
0
i=−Lin

∈ RLin×H×W×C , the pre-
diction aims to model the conditional probabilistic distribu-
tion p(y|x) of the following Lout frames y = [yi]

Lout
i=1 ∈

RLout×H×W×C , where H and W donate the spatial resolu-
tion of frame, and C donates the number of measurements
at each space-time coordinate. In our radar echoes setting,
C = 1 is used. Note that we denote the i-th frame, yi,
with a subscript i, and use a superscript t to indicate the t-th
diffusion step state yt in the following.

3.2. Preliminary:Diffusion

Denoising diffusion probabilistic models (DDPMs) [14, 28]
aim to learn the data distribution p(y) by training a model
to reverse a Markov noising process that progressively cor-
rupts the data.

Specifically, the diffusion model consists of two pro-
cesses: a forward nosing process and a reverse denoising
process. The former is a parameter-free process with pro-
gressively noising. We can get the t-th diffusion state from
the observation y0 with a special property:

q(yt|y0) = N (yt;
√
αty

0, (1− αt)I), (1)

where yT ∼ N (0, 1) denotes a sample from a pure Gaus-
sian distribution and y0 is a sample from target distribution.
The coefficients are defined as αt =

∏T
t=1 αt, αt = 1− βt,

where βt ∈ (0, 1) is predefined by an incremental variance
schedule. As for the reverse denoising process, it is defined
by the following Markov chain with parameterized Gaus-
sian transitions:

pθ(y
t−1|yt) = N (yt−1;µθ(y

t, t), σ2
t I), (2)

where µθ donates the posterior mean function. The reverse
function pθ(y

t−1|yt) aims to remove the noise added in the

forward noising process and we follow [14] to set the pa-
rameterization:

µθ(y
t, t) =

1
√
αt

(yt − βt√
1− αt

ϵθ(y
t, t)), (3)

where ϵθ(y
t, t) is a trainable denoising function that esti-

mates the corresponding noise conditioned on the current
step t. The parameters θ can be optimized by the following
loss:

L(θ) = Ey0,t,ϵ∥ϵ− ϵθ(y
t, t)∥2, (4)

where yt =
√
αty

0 +
√
1− αtϵ. After training, we can

recover yt−1 from yt with

yt−1 =
1

√
αt

(yt − βt√
1− αt

ϵθ(y
t, t)) + σtϵ, (5)

where σt is a variance hyperparameter. Finally, by drawing
a sample from the prior distribution p(yT ) and iteratively
applying Equation (5), a sample from the target distribution
p(y0) can be derived.

4. Overall Framework
Our framework, DiffCast, is designed to decompose the
precipitation systems as the global motion trend and lo-
cal stochastic residual, and utilizes a deterministic compo-
nent and stochastic diffusion component to model them, re-
spectively. The overview of our framework is illustrated in
Figure 2 (a). Specifically, we apply a deterministic back-
bone as base predictor Pθ1 to capture the global motion tra-
jectory denoted as µ. Note that any type of deterministic
prediction models, e.g. SimVP [24], Earthformer [8], Con-
vGRU [27] etc., can be equipped into our framework with-
out additional adaptation (Section 4.1). Then, the determin-
istic motion prior µ is leveraged for producing a residual se-
quence r with ground truth y to represent the local stochas-
tics. We propose an auxiliary stochastic diffusion compo-
nent to model the evolution of residual distribution (Sec-
tion 4.2). In the component, a sophisticated Global Tempo-
ral UNet(GTUnet) is designed to exploit the global motion
prior, sequence segment consistency and inter-frame depen-
dency for the evolution modelling (Section 4.3). Finally, the
probabilistic predictive residual r̂ and the deterministic pre-
diction µ are added to form the final prediction ŷ.

4.1. Deterministic Predictive Backbone

As a generic module, the deterministic component allows
any prediction models of recurrent-based and recurrent-
free architectures to be the base predictor Pθ1(·). We de-
note the output of the base predictor as µ = [µi]

Lout
i=1 ∈

RLout×H×W×C . The deterministic predictive backbone
learns to model pθ1(µ|x) by using the given input frames
x with any pixel-wise lose, e.g. mean-squared error (MSE):

LP = E[||µ− y||2], (6)
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Figure 2. The overview of our DiffCast framework for precipitation nowcasting is shown in (a). The DiffCast models the precipitation
process from two perspective: deterministic component and stochastic component. The former accounts for predicting a global motion
trend by a coarse forecast, while the latter aims to incorporate stochasticity with auxiliary-conditioned diffusion into the coarse forecast by
residual. The sub-figure (b) indicates the computing flow of our framework for training and inference, respectively. The green, orange and
blue rectangles represent, respectively, radar echos segment, output of deterministic predictor and residual segment for diffusion model.

or other natively designed loss function for the backbone.
Here θ1 means the parameters of this part. We term the
loss as deterministic loss in our framework. Though the
prediction µ in this way still suffers from the blurry and
high-value echoes fading away issues, it is able to capture
the global motion trend, which will help us to decompose
the local stochastic residual from the precipitation systems
next. Also, µ will provide necessary information for diffu-
sion component to model the evolution of residual later in
Section 4.3.

4.2. Stochastic Residual Prediction

As aforementioned, precipitation systems evolve with a
global motion trend and local stochastics. The predictive
backbone has offered us a global motion trend with µ. Next,
we introduce how to model the local stochastics. Our notion
is to compute the residual r between the ground-truth y and
µ to represent the local stochastics:

r = y − µ. (7)

However, the computation of r here involves the ground-
truth, which thus cannot be directly used in the prediction.
Our idea is using r as supervised information to train a dif-
fusion model to predict the residual evolution. Since r de-
notes a sequence from 1 to Lout, we model its evolution
in an autoregressive manner. In other words, the diffusion
model needs to establish the following distribution:

pθ2(ri|r̂i−1), (8)

where r̂i−1 indicates the predictive residual of the (i − 1)-
th frame, and θ2 denotes the parameters of the diffusion
model. Suppose that we use a T -step denoising diffusion
to model the distribution, following Equation (2) we have:

pθ2(r
0:T
i |r̂i−1) = p(rT )

T∏
t=1

pθ2(r
t−1
i |rti , r̂i−1), (9)

where rT ∼ N (0, I) and t is the denoising step; and rti rep-
resents the t-th denoising state for the i-th frame residual.
Similar to Equation (3), in the denoising process, learning
to recover the residual state rt−1

i from state rti is equivalent
to estimating the corresponding noise ϵ added in the t-th
step corruption. Hence, we can use noise estimation as op-
timization objective. Suppose that each step of the diffusion
process shares the same denoiser function ϵθ2(r

t
i , r̂i−1, t),

which takes the previous diffusion state rti and the most re-
cent predictive residual r̂i−1 as input. We thus have the
following objective function:

Lϵ = E(ri,ri−1)∼r,t,ϵ∼N (0,I)||ϵ− ϵθ2(r
t
i , r̂i−1, t)||2, (10)

where the t-th denoising state rti can be computed as:

rti =
√
αt(y − Pθ1(x)︸ ︷︷ ︸

residual

)i +
√
1− αtϵ. (11)

We term the objective in Equation (10) as denoising loss. To
capture the interplay between the deterministic predictive
backbone and the stochastic residual prediction, we train
our framework in an end-to-end manner with the following
combined loss function:

L = α
∑
ri∈r

Lϵ(ri) + (1− α)LP , (12)

where α ∈ [0, 1] is a weight factor to balance two losses.
Once well trained, we can predict the residual ri by the
previous residual r̂i−1 with iteratively denoising from a
Gaussian noise sample by Equation (5). Repeating this
Lout times leads us to an estimated residual sequence r̂ =
[r̂i]

Lout
i=1 . Note that r̂0 = 0 in the setting. Finally, we com-

pute the final prediction result ŷ as:

ŷ = r̂ + µ. (13)
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Figure 3. Illustration of our Global Temporal Unet (i.e., GTUnet).

4.3. Global Temporal UNet (GTUNet)

In this subsection, we introduce the detailed diffusion com-
ponent for the stochastic residual prediction. In the diffu-
sion component we design a Global Temporal UNet, which
effectively exploits multi-scale temporal features, namely
global motion prior, sequence segment consistency, and
inter-frame temporal for the residual evolution prediction.
Figure 3 illustrates the details of the diffusion model blocks.
Next, we elaborate the key blocks, respectively.

Global motion prior refers to the global motion trend
information derived from the base deterministic predic-
tion µ. As shown in green part of Figure 3, we design
a ConvRNN-liked structure, GlobalNet Gθ3 to extract the
global motion information from the deterministic prediction
as:

h = Gθ3(Pθ1(x)). (14)

Here θ3 represents the parameters of the GlobalNet. As
shown in dark blue part of Figure 3, GlobalNet is a multi-
layer architecture with multiple temporal blocks. Each tem-
poral block is composed of a down sample operator, a Con-
vGRU operator and a Resnet operator. By incorporating the
derived hidden state h as an extra condition into diffusion
model, the residual prediction r is re-expressed as:

r = [pθ2(ri|r̂i−1, h)]
Lout
i=1 , (15)

and the denoiser function is changed into:

ϵθ2(r
t
i , r̂i−1,Gθ3(Pθ1(x)), t). (16)

The objective function in Equation (12) is then parameter-
ized by (θ1, θ2, θ3).

Sequence segment consistency. To better maintain the
sequence consistency of residual evolution, we propose to
partition the residual sequence r into multiple segments s
for prediction, because recent studies [23] show that multi-
input multi-output is a better paradigm than single-in single-
out in recurrent spatio-temporal prediction. As shown in
yellow part of Figure 3, we construct the segment and de-
note the j-th segment as:

sj−1 = r[(j−1)K:jK], (17)

where K indicates the length of each segment and j =
0, 1, ..., ⌈Lout

K ⌉. Then we have sj ∈ RK×H×W×C . In this
way, the diffusion is changed to model the segment-level
temporal distribution as:

s = [pθ2(sj |ŝj−1, h)]
⌈Lout

K ⌉
j=1 . (18)

Specifically, we incorporate the segment condition with
channel concatenation between t-th denoising state stj and
previous segment sj−1. Moreover, as the forecast lead time
increases, the residual inevitably becomes larger because of
the increased uncertainty. Hence, it is important to explic-
itly indicate the position of a segment. To this end, we add
an extra position embedding on segment index j, in addition
to the denoising step t. With the above changes, the objec-
tive of diffusion model for residual evolution becomes:

Lϵ = E||ϵ− ϵθ2(s
t
j , ŝj−1,Gθ3(Pθ1(x)), t, j)||2. (19)

Note that when predicting the first residual segment s1, we
use s0=0 following [33].

Inter-frame temporal dependency. To better model
the inter-frame dependency within a segment, our Global
Temporal UNet is carefully designed with temporal atten-
tion blocks, as shown in orange part of Figure 3. It is in-
deed a variant of UNet in DDPM with temporal evolution.
The Temp-Attn Block, as shown in grey blue part of Fig-
ure 3, is constructed by concatenate operator, Resnet op-
erator, normalization operator and temporal attention unit
operator, followed by an up/downsample operator, which
makes the predicted residual in the segment become tem-
poral dependent. With the developed temporal evolution
UNet structure, the inter-frame dependency can be effec-
tively taken into account.

4.4. Training and Inference

For clarity, we summarize the computing flow of training
and inference of our framework in Figure 2 (b). In the train-
ing phase, the deterministic predictor Pθ1 first produces
µ. Then the residual r is computed as Equation (7) and
grouped into segments s by Equation (17). Given a segment
sj−1, we predict the segment sj by our diffusion model pθ2 .
Here the diffusion model is updated conventionally, namely
sampling a step t, adding noise as scheduled, using the de-
noiser to predict noise and calculating loss as Equation (19)
to update parameters (θ1, θ2, θ3). As for inference, the com-
puting flow is similar with the only difference of diffusion
part, where we first sample the T -state segment sTj from
N (0, I) and perform T -step denoising with pθ2 to recover
ŝj given ŝj−1. Once all required residual segments are ob-
tained we can compute the final prediction as Equation (13).
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Table 1. Experiment results on four radar datasets. Relative improvements are shown with brackets.

Method SEVIR MeteoNet
↑CSI ↑CSI-pool4 ↑CSI-pool16 ↑HSS ↓LPIPS ↑SSIM ↑CSI ↑CSI-pool4 ↑CSI-pool16 ↑HSS ↓LPIPS ↑SSIM

SimVP[9] 0.2662 0.2844 0.3452 0.3369 0.3914 0.6304 0.3346 0.3383 0.4143 0.4568 0.3523 0.7557

DiffCast SimVP 0.3077
(+15.59%)

0.4122
(+44.94%)

0.5683
(+64.63%)

0.4033
(+19.71%)

0.1812
(+53.70%)

0.6354
(+0.79%)

0.3511
(+4.93%)

0.5081
(+50.19%)

0.7155
(+72.70%)

0.4846
(+6.09%)

0.1198
(+65.99%)

0.7887
(+4.37%)

Earthformer[8] 0.2513 0.2617 0.2910 0.3073 0.4140 0.6773 0.3296 0.3428 0.4333 0.4604 0.3718 0.7899

DiffCast Earthformer 0.2823
(+12.34%)

0.3868
(+47.80%)

0.5362
(+84.26%)

0.3623
(+17.90%)

0.1818
(+56.09%)

0.6420
(-5.21%)

0.3402
(+3.22%)

0.5020
(+46.44%)

0.7092
(+63.67%)

0.4696
(+2.00%)

0.1236
(+66.76%)

0.7967
(+0.86%)

MAU[3] 0.2463 0.2566 0.2861 0.3004 0.3933 0.6361 0.3232 0.3304 0.4165 0.4451 0.3089 0.7897

DiffCast MAU 0.2716
(+10.27%)

0.3789
(+47.66%)

0.5414
(+89.23%)

0.3506
(+16.71%)

0.1874
(+52.35%)

0.6729
(+5.79%)

0.3490
(+7.98%)

0.5030
(+52.24%)

0.7114
(+70.80%)

0.4822
(+8.34%)

0.1213
(+60.73%)

0.7665
(-2.94%)

ConvGRU[27] 0.2416 0.2554 0.3050 0.2834 0.3766 0.6532 0.3400 0.3578 0.4473 0.4667 0.2950 0.7832

DiffCast ConvGRU 0.2772
(+14.74%)

0.3809
(+49.14%)

0.5463
(+79.11%)

0.3551
(+25.30%)

0.1880
(+50.08%)

0.6188
(-5.27%)

0.3512
(+3.29%)

0.4930
(+37.79%)

0.7001
(+56.52%)

0.4862
(+4.18%)

0.1244
(+57.83%)

0.7761
(-0.91%)

PhyDnet[11] 0.2560 0.2685 0.3005 0.3124 0.3785 0.6764 0.3384 0.3824 0.4986 0.4673 0.2941 0.8022

DiffCast PhyDnet 0.2757
(+7.70%)

0.3797
(+41.42%)

0.5296
(+76.24%)

0.3584
(+14.72%

0.1845
(+51.2%)

0.6320
(-6.56%)

0.3472
(+2.60%)

0.5066
(+32.48%)

0.7200
(+44.40%)

0.4802
(+2.76%)

0.1234
(+58.04%)

0.7788
(-2.92%)

MCVD[33] 0.2148 0.3020 0.4706 0.2743 0.2170 0.5265 0.2336 0.3841 0.6128 0.3393 0.1652 0.5414
PreDiff[10] 0.2304 0.3041 0.4028 0.2986 0.2851 0.5185 0.2657 0.3854 0.5692 0.3782 0.1543 0.7059
STRPM[4] 0.2512 0.3243 0.4959 0.3277 0.2577 0.6513 0.2606 0.4138 0.6882 0.3688 0.2004 0.5996

Method Shanghai Radar CIKM
↑CSI ↑CSI-pool4 ↑CSI-pool16 ↑HSS ↓LPIPS ↑SSIM ↑CSI ↑CSI-pool4 ↑CSI-pool16 ↑HSS ↓LPIPS ↑SSIM

SimVP[9] 0.3841 0.4467 0.5603 0.5183 0.2984 0.7764 0.3021 0.3530 0.4677 0.3948 0.3134 0.6324

DiffCast SimVP 0.3955
(+2.97%)

0.5116
(+14.53%)

0.6576
(+17.37%)

0.5296
(+2.18%)

0.1571
(+47.35%)

0.7902
(+1.78%)

0.2999
(-0.73%)

0.3657
(+3.60%)

0.5260
(+12.47%)

0.3874
(-1.87%)

0.2223
(+29.07%)

0.6391
(+1.06%)

Earthformer[8] 0.3575 0.4008 0.4863 0.4843 0.2564 0.7750 0.3153 0.3547 0.4927 0.3828 0.3857 0.6510

DiffCast Earthformer 0.3751
(+4.92%)

0.4855
(+21.13%)

0.6212
(+27.74%)

0.5069
(+4.67%)

0.1586
(+38.14%)

0.7851
(+1.30%)

0.3099
(-1.71%)

0.3807
(+7.33%)

0.5509
(+11.81%)

0.3947
(+3.11%)

0.2259
(+41.43%)

0.6313
(-3.03%)

MAU[3] 0.3996 0.4695 0.5787 0.5356 0.2735 0.7303 0.2936 0.3152 0.4144 0.3660 0.3999 0.6277

DiffCast MAU 0.4089
(+2.33%)

0.5212
(+11.01%)

0.6658
(+15.05%)

0.5475
(+2.22%)

0.1618
(+40.84%)

0.7879
(+7.89%)

0.3158
(+7.56%)

0.3803
(+20.65%)

0.5443
(+31.35%)

0.4085
(+11.61%)

0.2205
(+44.86%)

0.6498
(+3.52%)

ConvGRU[27] 0.3612 0.4439 0.5596 0.4899 0.2564 0.7795 0.3092 0.3533 0.4686 0.4007 0.3135 0.6601

DiffCast ConvGRU 0.3738
(+3.49%)

0.4923
(+10.90%)

0.6596
(+17.87%)

0.4945
(+0.94%)

0.1563
(+39.04%)

0.7809
(+0.18%)

0.3143
(+1.65%)

0.3681
(+4.19%)

0.5117
(+9.20%)

0.3967
(-1.00%)

0.2201
(+29.79%)

0.6418
(+2.77%)

PhyDnet[11] 0.3653 0.4552 0.5980 0.4957 0.1894 0.7751 0.3037 0.3442 0.4655 0.3931 0.3631 0.6540

DiffCast PhyDnet 0.3671
(+0.49%)

0.4907
(+7.80%)

0.6493
(+8.58%)

0.4986
(+0.59%)

0.1574
(+16.90%)

0.7780
(+0.37%)

0.3131
(+3.10%)

0.3836
(+11.45%)

0.5550
(+19.23%)

0.3990
(+1.50%)

0.2270
(+37.48%)

0.6156
(-5.87%)

MCVD[33] 0.2872 0.3984 0.5675 0.4036 0.2081 0.5119 0.2513 0.3095 0.4955 0.3294 0.2528 0.5358
PreDiff[10] 0.3583 0.4389 0.5448 0.4849 0.1696 0.7557 0.3043 0.3681 0.5117 0.3967 0.2201 0.6418
STRPM[4] 0.3606 0.4944 0.6783 0.4931 0.1681 0.7724 0.2984 0.3590 0.5020 0.3870 0.2397 0.6443

5. Experiments

5.1. Experimental Setting

Dataset. The SEVIR [32], as a widely used dataset for
precipitation nowcasting, contains 20,393 weather events of
radar frame sequence with a length of 4-hour and size of 384
km×384 km, where every pixel stands for 1km×1km and
the temporal resolution is 5 minutes. The MeteoNet [17]
covers a large area of 550 km×550 km in France, and
records over three years observations with temporal resolu-
tion of 6 minutes. The Shanghai Radar [5] is generated by
volume scans in intervals of approximately 6 minutes from
2015 to 2018 in Pudong, Shanghai with a spatial size of 501
km ×501 km. The CIKM1 records precipitation events in
101 km×101 km area of Guangdong, China. Each sequence
settles 15 radar echo maps as a sample and the temporal
resolution is 6 minutes. More details of these datasets are
provided in Appendix.

Data preprocess. As for all sequences, we mainly focus
on modeling the precipitation event. Hence, following [5],
we separate the continuous sequence into multiple events
for MeteoNet and Shanghai-Radar corpus. As mentioned
in [37] that the increasing length of initial frames Lin can-
not provide substantial improvements for forecast, we set
the challenging prediction task to predict 20 frames given

1https://tianchi.aliyun.com/dataset/1085

5 initial frames (i.e. 5 → 20) except for the CIKM dataset,
where only 5 → 10 can be used due to its sequence length
limitation. For all the datasets, we keep the original tempo-
ral resolution but downscale the spatial size to 128 × 128,
due to the limitation of our computation resource.

Evaluation. To evaluate the accuracy of nowcasting, we
calculate the average Critical Success Index (CSI) and Hei-
dke Skill Score (HSS) following [10, 21, 32] at different
thresholds (the detailed way to compute CSI and HSS can
be found at appendix). The CSI, similar to IoU, is to mea-
sure the degree of pixel-wise matching between predictions
and ground truth after thresholding them into 0/1 matrices.
Following [8, 10], we also report the CSIs at different pool-
ing scales, which relax the pixel-wise matching to evalu-
ate the accuracy on neighborhood aggregations. Addition-
ally, LPIPS and SSIM are also utilized to measure the visual
quality of prediction.

Training details. We train our DiffCast framework for
200K iterations using Adam optimizer with a learning rate
of 0.0001. As for diffusion setting, we follow the stan-
dard setting of diffusion model in [14] to set the diffusion
steps as 1000 and denoising steps for inference as 250 with
DDIM [29]. We set default loss weight factor α = 0.5 to
balance the deterministic loss and denoisng loss in Equa-
tion (12). As for baseline methods, their configurations are
tuned correspondingly for different datasets. All experi-
ments run on a computer with a single A6000 GPU.
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Figure 4. Performance changes against different lead time in terms of CSI, HSS and LPIPS. For a better vision, we only show the curves
of SimVP, Earthformer and PhyDnet with or without our framework.
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Figure 5. A visual comparison example on a precipitation event
from SEVIR. The results of Earthformer, MAE, ConvGRU are
similar, which is put into Appendix due to the space limitation.

Table 2. Analysis of the necessarity of deterministic loss.
Method CSI CSI-pool4 CSI-pool16 HSS LPIPS SSIM

DiffCast SimVP(α=0) 0.2578 0.2726 0.3049 0.3154 0.3849 0.6570
DiffCast Simvp(α=0.5) 0.3077 0.4122 0.5683 0.4033 0.1812 0.6354
DiffCast Simvp(α=1) 0.2430 0.3065 0.3999 0.2989 0.1831 0.6824

5.2. Experimental Results

As mentioned in Section 4.1 that our DiffCast can flexi-
bly utilize various type of deterministic models as a base
predictor, we select some notable deterministic models as
our comparison baselines. Among them, the SimVP [9]
and Earthformer [8] apply recurrent-free strategy to gener-
ate all frames at once, while the MAU [3], ConvGRU [27]
and PhyDnet [11] are designed with recurrent strategy to
generate frames one by one. Moreover, we also utilize
two diffusion-based approaches [10, 33] and a GAN-based
model [4] for comparison. We evaluate all this determinis-
tic models and stochastic generative models, as well as our
framework equipped with every deterministic model on four
real-world precipitation datasets. The experimental results
are shown in Table 1.

From the results of Table 1, we make the following ob-
servations: (i) Equipped into our DiffCast framework, the
performances of backbones are significantly improved and
the improvements are from 2% to 20%, in terms of CSI and

HSS, and more improvements can be observed for pool-
ing CSI. This verifies the effectiveness of our framework to
boost the prediction accuracy of backbones. (ii) In terms of
LPIPS and SSIM, which measures the visual quality of pre-
dictions, our DiffCast framework also makes a significant
improvement. Especially for LPIPS, the improvements are
16.9% ∼ 66.7%. This suggests that our framework indeed
improves the visual quality of backbone predictors. (iii)
Compared to the state-of-the-art GAN and diffusion base-
lines, namely MCVD, PreDiff and STRPM, the proposed
framework also performs better. The observation validates
that modeling the precipitation system with a global trend
and local stochastics is better than modeling the whole sys-
tem as stochastics.

To investigate how the prediction performance changes
against the lead time, we depict the curves in Figure 4. We
observe that as the lead time increases, the performance of
all method decreases, because the uncertainty for prediction
is enlarged. However, the performance of methods with our
framework is always better than that without it. This again
validates the effectiveness of the proposed framework.

In Figure 5, we show and compare the results of all the
methods for a precipitation event. We observe that the pre-
diction of SimVP is blurry, as it does not model the lo-
cal stochastics. MCVD, Prediff and STRPM deliver better
visual details than SimVP, but the positions of green and
yellow parts are less accurate. This is because these meth-
ods model the intact system in a stochastic generation way,
where the freedom of generation is too high to maintain the
accuracy. When equipped SimVP into the proposed Dif-
fCast framework, not only realistic appearance details are
produced, but also the positions are very accurate. At the
100 minute prediction, we can see that DiffCast SimVP ac-
curately predicts two closing rain belts of yellow, but none
of the comparison methods achieves this. The observations
again validate the superiority of our framework.

5.3. Analysis and Discussions

Why is the deterministic loss necessary? Our framework
has two loss functions, namely the deterministic loss and
denoising loss. We can see from Equation (19) that the de-
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Figure 6. An illustration example of the prediction ŷ, µ and resid-
ual r with or without deterministic loss for DiffCast SimVP.
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noising loss is related to all the parameters θ1, θ2 and θ3.
Hence, by optimizing the denoising loss, we can also up-
date the backbone predictor. Then, one would like to ask
whether the deterministic loss is really necessary.

To investigate the question, we evaluate DiffCast SimVP
with different weight factor α in Equation (12) and show
the results in Table 2. Note that DiffCast SimVP degen-
erates into SimVP when α = 0. We observe that SimVP
even performs better than DiffCast SimVP without deter-
ministic loss, i.e., α = 1. To further understand the reason,
we use an example to depict the prediction, µ, positive and
negative residuals r with and without deterministic loss Lp

in Figure 6. We find that when both losses are used (i.e.,
α = 0.5), the prediction is accurate and with realistic de-
tails. In this case the µ indeed generates a global trend
without details, and residual parts account for making up
the details. However, if we remove the deterministic loss
(i.e., α = 1), the prediction is with realistic details but not
accurate. Moreover, in this case the µ plays a very minor
role while residual becomes the main component. This is
easy to understand. When the deterministic loss is removed
(i.e., α = 1), our DiffCast cannot nicely decompose the pre-
cipitation system into a global trend and local stochastics,
which can be validated by Figure 7a where the determinis-
tic loss never decreases. Instead, in this case the DiffCase
degenerates into a model that regards the whole system as
stochastics. Hence, its prediction is with realistic details but
not accurate. Moreover, we can see from Figure 7b that the
deterministic loss enhances both the convergence speed and
convergence quality for our DiffCast framework.

Why do we apply end-to-end training rather than a
two-stage training? Our DiffCast framework is trained

Table 3. Analysis of our end-to-end training on SEVIR
Method CSI CSI-pool4 CSI-pool16 HSS LPIPS SSIM

DiffCast SimVP 0.3077 0.4122 0.5683 0.4033 0.1812 0.6354
DiffCast simvp-frozen 0.2739 0.3807 0.5417 0.3563 0.1948 0.6315
DiffCast Earthformer 0.2823 0.3868 0.5362 0.3623 0.1818 0.6420

DiffCast Earthformer-frozen 0.2622 0.3676 0.5183 0.3400 0.1776 0.6341
DiffCast PhyDnet 0.2757 0.3797 0.5296 0.3584 0.1845 0.6320

DiffCast PhyDnet-frozen) 0.2603 0.3715 0.5469 0.3360 0.1939 0.6230

Table 4. The ablation of DiffCast with respect to GlobalNet Gθ3

on the SEVIR dataset.
Method CSI CSI-pool4 CSI-pool16 HSS LPIPS SSIM

DiffCast SimVP 0.3077 0.4122 0.5683 0.4033 0.1812 0.6354
DiffCast SimVP w/o G 0.2719 0.3729 0.5471 0.3522 0.2135 0.6315
DiffCast Earthformer 0.2823 0.3868 0.5362 0.3623 0.1818 0.6420

DiffCast Earthformer w/o G 0.2558 0.3442 0.4811 0.3298 0.1918 0.6018
DiffCast PhyDnet 0.2757 0.3797 0.5296 0.3584 0.1845 0.6320

DiffCast PhyDnet w/o G 0.2648 0.3641 0.5049 0.3411 0.1760 0.6568

in an end-to-end manner with both the deterministic and
stochastic components. One interesting question is whether
it is really better than a two-stage strategy. In two-
stage strategy, we first train a deterministic backbone, then
equip it into our framework and keep it frozen. In this
case, our framework degenerates into a Predictor-Corrector
paradigm, where the diffusion model works as a corrector
to the prediction of backbone.

Table 3 shows the results. We find that the end-to-end
way is absolutely better than the two-stage manner. This is
because when trained in end-to-end manner, the determin-
istic and stochastic component can interplay with other. For
example, the denoising loss of stochastic part will also pro-
duce gradients for the update of deterministic backbone. As
a result, the backbone may become better.

Is our GlobalNet Gθ effective? We show the ablation
study on the designed GlobalNet in Table 4. We can see
that removing GlobalNet degrades the performance, which
indicates its effectiveness.

6. Conclusion
In this paper, we propose an unified and flexible frame-
work for precipitation nowcasting based on residual diffu-
sion model, which nicely decomposes and models the sys-
tem evolution with a global deterministic trend component
and a local stochastic component. Extensive experiments
on four real-world datasets verifies the effectiveness of the
proposed framework.
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