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Abstract

As manipulating images may lead to misinterpretation
of the visual content, addressing the image forgery detec-
tion and localization (IFDL) problem has drawn serious
public concerns. In this work, we propose a simple as-
sumption that the effective forensic method should focus on
the mesoscopic properties of images. Base on the assump-
tion, a novel two-stage self-supervised framework leverag-
ing the diffusion model for IFDL task, i.e., DiffForensics, is
proposed in this paper. The DiffForensics begins with self-
supervised denoising diffusion paradigm equipped with the
module of encoder-decoder structure, by freezing the pre-
trained encoder (e.g., in ADE-20K) to inherit macroscopic
features for general image characteristics, while encour-
aging the decoder to learn microscopic feature represen-
tation of images, enforcing the whole model to focus the
mesoscopic representations. The pre-trained model as a
prior, is then further fine-tuned for IFDL task with the cus-
tomized Edge Cue Enhancement Module (ECEM), which
progressively highlights the boundary features within the
manipulated regions, thereby refining tampered area local-
ization with better precision. Extensive experiments on sev-
eral public challenging datasets demonstrate the effective-
ness of the proposed method compared with other state-of-
the-art methods. The proposed DiffForensics could signif-
icantly improve the model’s capabilities for both accurate
tamper detection and precise tamper localization while con-
currently elevating its generalization and robustness.

1. Introduction
Manipulating images has become increasingly effortless as
rapid advances in image editing tools, such as GAN [24, 25]
and diffusion models [2, 36]. Users can easily forge on-the-
fly images that do not exist or realize. The risks posed by
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Figure 1. Comparison of the proposed pipeline (lower) with the
conventional one (upper). Our approach could effectively inte-
grate the macroscopic features with the microscopic features so
that the model concentrates on the mesoscopic properties of tam-
pered images and achieves better IFDL performance in both Arti-
ficial Editing and Deep Generative Model (DGM) images.

such forged images in the wrong hands are obvious in terms
of politics, economics, and personal privacy. Accordingly,
the countermeasures being desired to identify image forgery
have become an urgent topic in social security.

To push the frontier of image forensics, in this work, we
study the image forgery detection and localization (IFDL)
task, particularly partial modifications that change the im-
age semantics. In general, the IFDL task involves binary
classification (authentic versus forgery) at both the image
level (detection) and the pixel level (localization). Until
now, the state-of-the-arts [8, 16, 17, 22, 30, 31, 42, 45, 46]
are commonly built upon the deep learning-based seman-
tic segmentation meta-framework, consisting of two com-
ponents, i.e., the encoder and decoder. The encoder extracts
the image features, subsequently processed by the decoder
to predict classification results and forgery masks. Despite
considerable advances in the area, current SOTA detectors
are not yet performant enough for in-the-wild deployment,
mainly due to their shortfall in generalization, robustness,
and detection performance.
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Inspired by MesoNet [1], we propose to address the
IFDL problem by focusing on the mesoscopic properties
of images. Indeed, microscopic analyses based on artifacts
(e.g., image noise) cannot be applied in a social media laun-
dering context because the post-processing will inevitably
weaken forensic traces. Similarly, at a higher semantic level
(i.e., macroscopic), the human eye struggles to distinguish
forged images. That is why we propose to adopt an inter-
mediate approach.

To achieve this goal, we propose DiffForensics, a novel
two-stage self-supervised method for the IFDL task. The
training process begins with self-supervised denoising dif-
fusion pretraining stage followed by a multi-task fine-
tuning stage for IFDL. In the first stage, we freeze the
encoder which is pre-trained with segmentation task (e.g.,
ADE20K) [44] to retain the ability to extract macroscopic
semantic features, while encouraging the decoder to learn
the microscopic features relevant to forgery images with the
self-supervised denoising diffusion paradigm. By integrat-
ing above schemes for training the encoder and decoder,
which are respectively concentrating on macroscopic and
microscopic features, we obtain the model that can learn
the representation with mesoscopic features. In the second
stage, we then fine-tune the pre-trained model (both the en-
coder and decoder) with the supervision of forgery images
in the second stage. We propose a edge cue enhancement
module (ECEM) and integrate it into the decoder across
multiple scales, which aims to highlight the traces of tam-
pered regions from coarse to fine. Extensive experiments
demonstrate that our method outperforms several state-of-
the-art competitors on several public datasets in terms of
generalization and robustness performances.

The main contributions of this paper are summarized as
follows:

• We propose a two-stage learning framework for IFDL
tasks combining macro-features and micro-features,
which consists of a self-supervised denoising diffusion
pre-training stage and a multi-task fine-tuning stage. To
the best of our knowledge, it is the first work to explore
the denoising diffusion paradigm for the IFDL task.

• We propose a novel edge cue enhancement module,
which is integrated into the decoder across multiple scales
for enhancing tampered edge traces from coarse to fine.

• Extensive experimental results demonstrate that our pro-
posed method achieves superior performances com-
pared to state-of-the-art competitors on several recently
emerged datasets, including both artificially manipulated
and AI-generated images.

2. Related Work

Denoising Diffusion Probabilistic Models. The denois-
ing diffusion probability model (DDPM) mainly consists

Methods Task Model weight
Loc. Det. Encoder Decoder

H-LSTM [3] ✓ × ImageNet -
Mantra-Net [42] ✓ × Tamper Cls -
HP-FCN [30] ✓ × ImageNet -
SPAN [22] ✓ × Tamper Cls -
GSR-Net [45] ✓ × ImageNet -

CAT-Net [28] ✓ ✓
ImageNet -

Double JPEG Det -
MVSS-Net [8] ✓ ✓ ImageNet -
SATFL-Net [46] ✓ × ImageNet -

CA-IFL [40] ✓ × ImageNet -
Wavelet Transform -

PSCC-Net [31] ✓ ✓ ImageNet -
TruFor [16] ✓ ✓ ImageNet -
HiFi-Net [17] ✓ ✓ ImageNet -
Ours ✓ ✓ ADE20k DDPM

Table 1. Weight allocation methods for different IFDL methods,
”-” indicates random initialization of weights, and bold represents
the micro-weights designed for the IFDL task.

of two stages [19], i.e., the diffusion process that progres-
sively adds random noise to data, and the reverse process
that learn to reconstruct the desired data samples from the
noise. In addition to being widely used in generative mod-
els [11] such as image generation [13, 33, 35, 38], image
inpainting [10, 36], and image editing [2, 9], its potential
representation learning ability has also found applications
in other computer vision tasks, such as image segmenta-
tion [4, 6] and anomaly detection [41, 43]. By executing
the noise estimation and reconstruction process, the denois-
ing diffusion paradigm can effectively learn the microscopic
noise pattern of the image. Meanwhile, noise analysis is one
of the powerful solutions for the IFDL task. Thus, it makes
sense to introduce the denoising diffusion paradigm for the
IFDL task.
Image Forgery Detection and Localization. Most of the
existing methods perform pixel-wise classification to iden-
tify forged regions [8, 16, 17, 30, 31, 45, 46] employ Ima-
geNet pre-trained weights as the foundation for their feature
extraction encoders in tamper detection tasks. These meth-
ods try to improve the detection performance of tampered
images by exploring the macroscopic features. However,
they may suffer from degradation in terms of generality and
robustness when dealing with unseen tampered images or
unknown attacks. Recent methods [5, 7, 18, 21, 22, 28, 40,
42] aim to discover more effective tampering micro-features
through self-supervised learning, with the goal of enhancing
IFDL performance. Mantra-Net [42] and SPAN [22] design
a self-supervised learning task to learn robust image ma-
nipulation traces. CAT-Net [28] performs double compres-
sion detection on JPEG images to obtain an encoder with
microscopic feature weights and a parallel combination of
macroscopic feature weights to form a dual-stream network
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Figure 2. The overall framework of the proposed DiffForensics. The training process consists of two stages, i.e., Stage 1: Self-supervised
denoising diffusion pretraining (left), and Stage 2: Multi-task fine-tuning (right).

to improve the splicing detection performance of JPEG im-
ages. CA-IFL [40] and Bi et al. [5] respectively propose a
wavelet-based representation learning strategy and design a
JPEG compression operation chain tracker for pre-training
to obtain microscopic feature weights with the ability to
learn JPEG compression traces, which are used to improve
the localization performance against JPEG compression.
Chen et al. [7] and Hu et al. [21] reconstruct real or tam-
pered faces through masks, and RealForensics [18] com-
pares the dense connections between different modalities.
These methods [7, 18, 21] seek to learn the micro features
with better representation capabilities and improve gener-
alization performance in the face of cross-dataset testing.
According to Table 1, however, the training strategy by re-
taining either macro-feature or micro-feature weights in the
encoder while randomly initializing the decoder weights,
could by no means take full advantage of these two types
of features in IFDL tasks.

In this paper, we propose a novel training scheme for
the encoder-decoder model. For the encoder, we utilize
pre-trained weights from a semantic segmentation task and
freeze them to extract comprehensive macroscopic features.
For the decoder, we introduce a DDPM-based paradigm to
capture intricate microscopic features. Incorporating the
above process steers the model to focus on the mesoscopic
properties of images. Such a concentration is advantageous
for the subsequent fine-tuning stage, enabling the model
more precisely for the IFDL task.

3. The Proposed Method

In this section, we begin by presenting an overview of Diff-
Forensics, which is illustrated in Fig. 2. As for the architec-
ture, our approach comprises an encoder Eϕ and a decoder
Dθ which are parameterized by two sets of weights ϕ and θ,
respectively. The training progress of our proposed frame-
work contains two stages: self-supervised denoising dif-
fusion pretraining and multi-task fine-tuning. Subsequent

Algorithm 1 Denoising Diffusion Pre-training
1: repeat
2: x0 ∼ q (x0)
3: t ∼ Uniform({1, 2, . . . , T − 1, T})
4: Randomly generate simplex seed
5: ϵ ∼ Simplex(ν = 2−6, N = 6,γ = 0.8)
6: Take gradient descent step on

▽(ϕ∗,θ)

[∥∥ϵ− ϵ(ϕ∗,θ)(x0
√
āt +

√
1− ātϵ, t)

∥∥2]
7: until converged

subsections will provide the details of each stage.

3.1. Self-supervised Denoising Diffusion Pre-
training

Pipeline. In this stage, we aim to make the model focus on
the mesoscopic proprieties of images, which can be further
effectively fine-tuned for the IFDL task.

For the encoder, we utilize the transformer encoder
blocks from SegFormer [44], and apply the pre-trained
weights ϕ∗ from a semantic segmentation task (e.g.,
ADE20K) . We freeze the weights to retain the ability to
extract macroscopic semantic features. For the decoder,
we employ decoder blocks commonly used in Unet [37].
Consider that DDPM [19] consists of two opposite pro-
cesses adding noise and reverse denoising, it can effectively
learn the microscopic noise representations of the image.
Motivated by this, we propose a denoising diffusion-based
paradigm as the self-supervised pretext task to optimize the
θ, without utilizing the forgery supervision. The overall
training process is shown in the left part of Fig. 2 and de-
tailed in Algorithm 1.

Specifically, given an image x0 ∈ R3×h×w, and the
time step t, we corrupt x0 by adding noise ϵ via the dif-
fusion process q(xt|xt−1), and perform the inverse process
p(ϕ∗,θ)(xt−1|xt) to estimate the noise as ϵ(ϕ∗,θ)(xt|x0) =
Dθ(Eϕ(x0), t), and then to denoise. In this manner, we
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Figure 3. Qualitative denoising diffusion results of Simplex noise
and Gaussian noise. From the square error prediction Psq (Psq =
(x0 − x̂0)

2), it can be seen that Simplex noise is more able to
perceive tampered areas, while Gaussian noise simply restores the
overall situation.

train the whole autoencoder model E∗
ϕ ◦ Dθ (i.e., frozen

encoder and the trainable decoder) to minimize the recon-
struction error objective function as follows:

ℓs = Et∈[1,T ],x0∼q(x0),ϵ∼S(ν,N,γ)[||ϵ− ϵ(ϕ∗, θ)||2]. (1)

By combining the above macroscopic and microscopic rep-
resentations, we guide the whole auto-encoder E∗

ϕ ◦ Dθ to
concentrate on mesoscopic features of images.
Simplex noise. Different from the vanilla DDPM [19],
we destroy x0 by adding Simplex noise [43] instead of the
Gaussian noise in the diffusion process. As shown in Fig. 3,
the potential benefit of such noise over the standard Gaus-
sian perturbations is intuitive: the corruption of images is
more structured (e.g., the edge of tampered regions) and the
denoising process will be able to “repair” them, thereby fa-
cilitating the learning of such structured anomalies. For the
hyper-parameters of Simplex noise ϵ ∼ S(ν,N, γ), we set
a starting frequency ν = 2−6, octave N = 6 and a decay
γ = 0.8

3.2. Multi-task Fine-Tuning

Pipeline. After pretraining, we fine-tune the pre-trained
autoencoder (both encoder and decoder) on data with the
IFDL supervision (i.e., the forgery label and mask). Ac-
cording to our ablation studies, multi-task learning can help
learn better representative features with good performance.
Therefore, we add multi-task heads (i.e., the detection and
localization heads) in the latter of the decoder, as depicted
in the right part of Fig. 2.
Edge Cue Enhancement Module. To further mine the sub-
tle traces of tampered regions, we introduce an Edge Cue
Enhancement Module to enhance the edge cues on the out-
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Figure 4. Details of Edge Cue Enhancement Module. Enhanced
edge cues are employed in two dimensions to locate the boundaries
of the tampered regions.

put features of three scales decoder blocks in both horizon-
tal and vertical directions, as illustrated in Fig. 4.

Specifically, let {dk}3k=1 be the output feature maps of
each decoder block. Note that dk ∈ Rb×c×h×w is a four-
dimensional feature vector, we only conduct the following
process in last two dimensions (i.e., the height an the width
) of dk. Initially, we compute the difference between adja-
cent rows in dk, and then take the absolute value to main-
tain consistent gradient orientation. This absolute differ-
ence is reassigned to the current row, enhancing the edge
cue feature map in the row direction. Subsequently, we ap-
ply the same process to the columns of the enhanced fea-
tures, where the difference between adjacent columns is cal-
culated and its absolute value is taken to ensure gradient
orientation consistency. In this manner, we obtain the edge-
enhanced features of dk, denoted as gk. The above pipeline
can be formulated as:

gk = |V ∗ |H ∗ dk|| (2)

where ∗ is the convolution operation, and |·| is the abs op-
eration. H = [1,−1] and V = [1,−1]⊤ are the edge en-
hancement operators in the horizontal and vertical direction,
respectively.

After that, we compute the difference between dk and gk

and employ a 3 × 3 convolution to reduce the dimension,
and finally use the sigmoid function to normalize the cue
feature map to 0-1, and finally up-sample to the same size
as the input image to obtain our edge prediction probability
map fe

k , which can be marked as:

fe
k = U (σ (Fcov (dk − gk))) . (3)

where Fcov is a 3 × 3 convolution operation, σ is sigmoid
normalization, U is an up-sampling operation, and the ob-
tained edge prediction probability map fe

k and edge label ye

of each decoder are used for loss iteration. We employ the
above ECEM across all three scales of dk.
Loss function. There are three types of supervision in our
method, i.e., localization segmentation supervision Lseg ,
detection classification supervision Lclf , and edge cue su-
pervision Ledg .
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For pixel-level localization segmentation supervision,
we use a combination of weighted ℓwbce and ℓdice [32].

Lseg (x) = λs
0ℓwbce + (1− λs

0) ℓdice. (4)

where λs
0 is the segmentation balance weight, and the

weighted segmentation ℓwbce and ℓdice are respectively:

ℓwbce =− 1

N

∑
i,j

(
λs
1 · ysi,j · log fs (xi,j)

+ λs
2 · (1− ysi,j) · log (1− fs (xi,j))

)
.

(5)

ℓdice = 1−
2
∑

i,j f
s(xi,j) · ysi,j∑

i,j(f
s(xi,j))2 +

∑
i,j(y

s
i,j)

2
. (6)

where ysi,j ∈ {0, 1} is a pixel-level binary label, represent-
ing whether the {i, j} th pixel has been tampered with. λs

1

and λs
2 are the weights of balancing tampered pixels and

real pixels, respectively, and encourage the network to pay
more attention to those difficult pixel samples.

For edge supervision, we use the same dice loss as the
above segmentation supervision, but here, to standardize
the edge of tampering position step by step from coarse-
grained to fine-grained, the probability map {fe

k}
3
k=1, we

designed multi-scale supervision weights, aiming to give
fine-grained edge supervision greater weight, while stan-
dardizing coarse-grained edge supervision, so that fe

k is bet-
ter refined One-stage fine-grained edge supervision fe

k−1.

Ledg (x) =

3∑
k=1

1

2k−1
ℓdice (f

e
k , y

e) . (7)

For image-level detection and classification supervision,
in order to alleviate the imbalance of positive and negative
samples of image-level data, we use weighted ℓwbce.

Lclf (x) = −(λc
0 · yc · log f c(x)

+ λc
1 · (1− yc) · log(1− f c(x))).

(8)

where yc is the image-level binary label, and f c (x) is
the classification prediction result. Since the number of
positive and negative samples at the image level is easy
to measure, we automatically set the tampering weight as
λc
0 =

⌊
10∗NumF

NumF+R

⌋
/10, and set the real weight as λc

1 =⌊
10∗NumR

NumF+R

⌋
/10, NumF and NumR represent the number

of falsified images and real images respectively.
Finally, we define the total loss L as a weighted combi-

nation of above three losses, formulated as:

L = α · (Lseg + Ledg) + β · Lclf . (9)

where α, β ∈ [0, 1].

4. Experiments

4.1. Experimental Setup

Dataset. Considering the availability and generality, we
select some challenging benchmark datasets to evaluate
our method, among which CASIAv2.0 [14], Fantasitic-
Reality [26], CASIAv1+ [8], Columbia [20], NIST16 [15],
IMD2020 [34], DSO-1 [12] and Korus [27] are tampered by
traditional image editing tools, while AutoSplicing [23] and
OpenForensics [29] are tampered by deep generative mod-
els (DGMs). Details of these datasets are provided in the
Appendix, and the configuration details at different stages
are as follows:
(1) Denoising diffusion pretraining: We mixed all data
(both forgery and authentic) of CASIAv2.0 [14] and
Fantasitic-Reality [26] for the self-supervised pretraining,
which do not use the forgery supervision in this stage.
(2) Multi-task fine-tuning: We also utilized the
CASIAv2.0 [14] and Fantasitic-Reality [26] datasets with
their forgery supervision. Note that we only use the forgery
images for the Fantasitic-Realiy [26] dataset for the balance
of the number of the forgery and authentic pixels overall.
(3) Evaluation: To verify the generalization performance,
we evaluated our method on other image editing forgery
datasets, i.e., CASIAv1+ [8], Columbia [20], NIST16 [15],
IMD2020 [34], DSO-1 [12] and Korus [27] datasets. We
also utilized two recent datasets forged by the advanced
DGMs, i.e., AutoSplicing [23] and OpenForensics [29].
Implementation details. We use 4 NVIDIA Tesla A100
GPUs (80 GB memory) to conduct experiments on the Py-
Torch deep learning framework. We perform the following
parameter configurations for the two stages:
(1) Denoising diffusion pretraining: In the pre-training
stage, we resized the input image to 512×512 and ap-
plied the AdamW optimizer. We set the training hyper-
parameters by the learning rate as 10−4, the diffusion steps
T as 1000, the batch size as 16, and the epoch as 100.
(2) Multi-task fine-tuning: In the fine-tuning stage, we
also resized the input image to 512×512 and applied the
AdamW optimizer. We set the training hyper-parameters
by the learning rate as 10−4, the batch size as 32, and the
epoch as 50, the fixed time embedding as t = 5 (Details can
be seen in ablation study). To balance the performance of
forgery detection and localization, we set the weight of tam-
per localization Lseg and edge supervision Ledg to α = 0.8,
where λs

0, λs
1 and λs

2 in Lseg are 0.1, 2 and 0.5, respectively.
The weight β of the supervision Lclf for tamper detection
is set to 0.1, and λc

0 and λc
1 are 0.7 and 0.3, respectively.

Evaluation metrics. For forgery localization, we report
pixel-level F1 and AUC (Area Under Curve of a Receiver-
Operating-Characteristic curve). For forgery detection, in
addition to image-level ACC and AUC, we further report
the EER (Equal Error Rate) to evaluate the false alarm and
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Methods
Editing DGM Average

CASIA1.0+ Columbia NIST16 IMD2020 DSO-1 Korus AutoSplice OpenForensics
F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

H-LSTM [3] .121 .532 .257 .558 .109 .573 .118 .570 .187 .559 .089 .536 .306 .598 .123 .622 .164 .569
ManTra-Net∗ [42] .136 .612 .357 .767 .160 .741 .180 .785 .089 .687 .104 .681 .192 .622 .043 .678 .158 .697
HP-FCN [30] .132 .772 .050 .549 .071 .690 .029 .665 .013 .545 .076 .663 .029 .556 .027 .650 .053 .636
GSR-Net [45] .244 .821 .340 .836 .221 .746 .102 .788 .055 .697 .060 .632 .047 .722 .025 .683 .137 .741
SPAN [22] .088 .533 .213 .597 .116 .648 .108 .671 .059 .564 .070 .575 .047 .572 .014 .682 .089 .605
MVSS-Net∗ [8] .451 .845 .665 .818 .292 .791 .264 .817 .271 .732 .095 .641 .333 .839 .056 .702 .303 .773
CAT-Net [28] .394 .788 .854 .826 .336 .780 .295 .823 .135 .713 .149 .672 .185 .796 .003 .552 .294 .744
SATL-Net [46] .064 .545 .677 .872 .175 .655 .142 .671 .084 .575 .039 .577 .103 .590 .019 .544 .163 .629
PSCC-Net [31] .355 .738 .672 .881 .238 .740 .295 .800 .318 .721 .156 .623 .150 .784 .065 .610 .281 .737
HiFi-Net [17] .092 .642 .382 .608 .172 .685 .178 .675 .304 .700 .088 .607 .613 .831 .149 .676 .247 .678
Ours .517 .868 .912 .931 .415 .828 .511 .911 .485 .874 .257 .721 .507 .940 .122 .820 .466 .862

Table 2. Pixel-level F1 and AUC performance of image forgery localization. The best result is highlighted and bold. Except the method
with ∗ uses the pre-training model of the original paper, other methods keep the same training data as our method.

missed detection performances. For both forgery detection
and localization, the default threshold is 0.5 unless other-
wise specified.

4.2. Comparison with the State-of-the-Art Methods

For a fair comparison, we focus on methods with available
codes or pre-trained models as follows.
(1) Pre-trained models available: To avoid biases, we only
included the methods trained on datasets different from the
test datasets. ManTra-Net [42] is pre-trained on a million
private dataset. MVSS-Net [8] is pre-trained on the CA-
SIA2 dataset. For these methods, we directly use their pre-
trained models for evaluation.
(2) Code available: H-LSTM [3], HP-FCN [30], GSR-
Net [45], SPAN [22], SATL-Net [46], CAT-Net [28], PSCC-
Net [31] and HiFi-Net [17]. For these methods, we retrained
them with the same experimental settings as ours, and using
the optimal hyper-parameter configurations.
Localization evaluation. Table 2 shows the forgery local-
ization performance. We observed that our method achieves
superior performances on all datasets. It is worth mention-
ing that HiFi-Net, which is specially designed for DGM
forgery detection and localization, achieved the best F1
score on DGM forgery datasets. In general, our proposed
method achieves the best average performance, which
demonstrates its effectiveness.
Detection evaluation. Following [8, 31], we conducted
the evaluation of image-level classification using datasets
with both authentic and tampered images. Table 3 shows
the forgery detection performance. We observed that our
method also achieves superior performances on all datasets.
In general, our proposed method achieves the best average
AUC, EER and the second-best ACC, which also demon-
strates its effectiveness. It should be noted that, for datasets
with extremely imbalanced positive and negative samples,
e.g., IMD2020 [34] (authentic: 414, tampered: 2010), the
metric relevant to threshold could not evaluate the overall

performance. Although our method does not show a better
ACC score for threshold 0.5, it achieves better overall per-
formance in terms of AUC score, and a superior balanced
error rate in terms of EER.
Robustness. We further evaluated the robustness when fac-
ing common image perturbations in social media launder-
ing, i.e., JPEG compression and Gaussian noising. We re-
ported the average of F1 and AUC scores as the indica-
tor. It can be seen that our method shows better robust
performance in both forgery localization and forgery detec-
tion tasks. Especially in the forgery localization, with the
dual support of macro-features and micro-features, it has
achieved a substantial performance lead.

4.3. Ablation Study

This section analyzes the effectiveness of several key com-
ponents in the proposed two-stage training stages.
Self-supervised denoising diffusion pre-training. In this
part, we analyzed the impacts of diffuse noise and model
weights in the denoising diffusion pre-training. As shown in
Table 4, we verified the performance of the choice of diffuse
noise under different weight combinations. First, the 1st
row does not perform DDPM pre-training baseline, the 2nd
and 3rd rows use Gaussian noise for DDPM pre-training,
and the 4th and 5th rows use Simplex noise for DDPM pre-
training. Comparing the 2nd and 3rd rows, and compar-
ing the 4th and 5th rows, it can be seen that pre-training
using Simplex noise achieves better results on both artifi-
cially tampered and synthetically tampered datasets, which
shows that the Simplex noise has a greater impact on micro
tampering. The perceptual learning of traces is more pro-
nounced. The weight of loading is also the focus of this
article. By comparing rows 1, 3, and 5, we can see that the
combination strategy of encoder macro feature extraction
and decoder micro feature extraction proposed in this paper
can effectively improve the performance of IFDL tasks. By
comparing rows 2 and 4 with the other three rows, it can
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Methods
Editing DGM Average

CASIA1.0+ Columbia IMD2020 AutoSplice
ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓ ACC↑ AUC↑ EER↓

H-LSTM [3] .535 .490 .550 .496 .506 .443 .829 .494 .556 .614 .500 .542 .619 .498 .523
ManTra-Net [42] .535 .546 .446 .496 .869 .219 .830 .698 .372 .614 .378 .586 .619 .623 .406
GSR-Net [45] .595 .657 .401 .540 .721 .333 .671 .511 .493 .568 .540 .469 .594 .607 .424
MVSS-Net [8] .791 .937 .136 .664 .984 .055 .799 .661 .391 .809 .886 .191 .766 .867 .193
CAT-Net [28] .671 .690 .362 .755 .953 .115 .785 .684 .370 .699 .790 .296 .728 .779 .286
SATL-Net [46] .459 .392 .573 .744 .912 .131 .667 .602 .420 .463 .347 .614 .583 .563 .435
PSCC-Net [31] .992 .999 .006 .606 .981 .082 .821 .624 .425 .733 .877 .192 .788 .870 .176
HiFi-Net [17] .632 .717 .320 .532 .741 .317 .826 .523 .483 .618 .527 .457 .652 .627 .394
Ours .741 .991 .043 .895 .982 .055 .749 .740 .333 .696 .951 .092 .770 .916 .131

Table 3. Image-level ACC, AUC and EER performance of image forgery detection. In the average test results on artificial editing data and
deep synthetic data, our method obtains the highest AUC and the lowest EER performance, and the suboptimal ACC.
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Figure 5. Robustness against jpeg compression and Gaussian noise
effects. Tested on CASIA1.0+, Columbia, IMD2020 and Au-
toSplicing. Our method achieves a substantial lead in tamper lo-
calization performance.

be seen that the encoder’s DDPM training may cause catas-
trophic forgetting of the original macroscopic features.

Furthermore, we show the embedding space of learned
features with t-SNE [39] visualization in Fig. 7. We can ob-
serve that the combination of noise selection and encoder-
decoder weight selection in the final scheme can effec-
tively distinguish the feature distribution of real samples
from tampered samples. The comprehensive results show
that the training method proposed in this paper combines
the macroscopic features with supervised weights and the
microscopic features obtained by DDPM pre-training with
Simplex noise to achieve the best IFDL performance.
Multi-task fine-tuning. Herein, we analyzed the impacts
of the loss functions and time embedding tf .
(1) Combination of loss functions: For Lseg and Lclf , ℓs1
and ℓc1 represent weighted ℓbce, ℓs2 and ℓc2 represent un-
weighted ℓbce. For Ledg each parameter of (i) ℓe1: Add
edge supervision with ECEM to the last decoder output,
with a weight of 1. (ii) ℓe2: Add edge supervision with

Image Mask Ours𝒍𝒔𝟏+𝒄𝟏 𝒍𝒔𝟏+𝒄𝟏+𝒆𝟏 𝒍𝒔𝟏+𝒄𝟏+𝒆𝟐

Figure 6. Visualizing the performance impact of ECEM in varied
setups. The test image in the last row is authentic.

ECEM to all decoder outputs, but the weights are all 1.
(iii) ℓe3: The multi-scale weighted edge supervision with
ECEM proposed in this paper sets a smaller weight for the
coarser-grained edge supervision, and sets a larger weight
for the finer-grained edge supervision. By comparing the
1st row and the last row of Table 5, it can be seen that the
multi-weight and multi-scale edge cue enhanced supervi-
sion loss not only greatly improves the tamper localization
task, but also promotes the performance of the tamper de-
tection task. By comparing the 2nd, 3rd, and last rows, it
shows that this paper designs different weighting strategies
for scale edges of different granularities, which can better
enhance the traces of tampered areas of different scales. Fi-
nally, by comparing the 4th row, the 5th row, and the last
row, weighting ℓseg and ℓclf respectively can achieve a cer-
tain performance improvement in IFDL.

We also depict some qualitative results in Figure 6. From
left to right, it is observed that the location and contour of
the tampered region are more precisely localized under the
supervision of the multi-scale edge cue enhancement mod-
ule. Meanwhile, our method can also effectively lower the
false alarm risk for authentic images.
(2) Fixed time embedding tf : we use T ∈ [0,1000] for de-
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Noise Model weights Localization Detection Average
IMD2020 AutoSplicing IMD2020 AutoSplicing

Gauss Simplex Encoder Decoder F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC
- - ADE20K - .416 .904 .297 .910 .768 .725 .634 .862 .529 .850
✓ - DDPM DDPM .372 .865 .340 .895 .737 .646 .573 .942 .506 .837
✓ - ADE20K DDPM .470 .904 .346 .918 .738 .712 .604 .910 .540 .861
- ✓ DDPM DDPM .380 .855 .304 .881 .704 .660 .358 .835 .437 .808
- ✓ ADE20K DDPM .511 .911 .507 .940 .841 .740 .679 .951 .635 .886

Table 4. For IFDL tasks, the performance of different weight settings for DDPM pre-training using Simplex noise and Gaussian noise for
encoder and decoder structures.
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Figure 7. Feature space visualization of different diffused noise selection and loaded weights. Tested on AutoSplicing.

L Localization Detection

Lseg Lclf Ledg F1 AUC ACC F1 AUC
ℓs1 ℓc1 - .316 .867 .686 .730 .783
ℓs1 ℓc1 ℓe1 .409 .894 .659 .679 .813
ℓs1 ℓc1 ℓe2 .412 .910 .623 .635 .808
ℓs1 ℓc2 ℓe3 .452 .910 .680 .728 .813
ℓs2 ℓc1 ℓe3 .387 .899 .660 .696 .843
ℓs1 ℓc1 ℓe3 .509 .925 .722 .760 .846

Table 5. The IFDL performance of the combination of three levels
of supervision loss and the ablation performance of the ECEM is
represented in Ledg . Tested on IMD2020 and AutoSplicing.

noising diffusion pre-training and adopt fixed timestep tf
for training and testing during multi-task fine-tuning. To
optimize the tf for better feature representation, we conduct
the grid search at t ∈ [0,1000], and the results are summa-
rized in Table 6. It is observed that the smaller t is beneficial
to learn the tampering traces, as a result, we use tf = 5 for
the time embedding parameter.

5. Conclusion

In this study, we propose a novel two-stage self-supervised
method with an encoder-decoder structure for the image
forgery detection and localization task. At the first denois-
ing diffusion pre-training stage, the encoder pre-trained on
the segmentation task is frozen while the decoder is trained
with a self-supervised denoising diffusion paradigm. It aims
to encourage the model to concentrate on the mesoscopic
proprieties of images. After pre-training, we fine-tune the

tf
Localization Detection Average

F1 AUC F1 AUC F1 AUC
0 .385 .885 .640 .840 .513 .863
1 .427 .920 .783 .847 .605 .884
3 .515 .914 .692 .856 .604 .885
5 .509 .925 .760 .846 .635 .886
10 .366 .894 .686 .801 .526 .848
25 .388 .894 .707 .742 .548 .818

125 .384 .882 .635 .799 .510 .841
250 .437 .901 .695 .812 .566 .857
500 .312 .904 .577 .809 .445 .857
750 .507 .883 .570 .847 .539 .865
1000 .389 .887 .707 .856 .548 .872

Table 6. Ablation of the tf in multi-task fine-tuning stage. Tested
on IMD2020 and AutoSplicing.

pre-trained model with a supervised multi-task framework
and introduce an edge cue enhancement module in the de-
coder to enhance tampering traces from coarse to fine. Ex-
tensive experimental results demonstrate that our proposed
method achieves superior performances compared to state-
of-the-art competitors on several emerging datasets (includ-
ing artificially manipulated and AI-generated images) in
terms of detection and localization performances.
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