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Abstract

Test-time adaptation (TTA) aims to adapt a pre-trained
model to a new test domain without access to source data
after deployment. Existing approaches typically rely on
self-training with pseudo-labels since ground-truth cannot
be obtained from test data. Although the quality of pseudo
labels is important for stable and accurate long-term adap-
tation, it has not been previously addressed. In this work,
we propose DPLOT, a simple yet effective TTA framework
that consists of two components: (1) domain-specific block
selection and (2) pseudo-label generation using paired-
view images. Specifically, we select blocks that involve
domain-specific feature extraction and train these blocks by
entropy minimization. After blocks are adjusted for current
test domain, we generate pseudo-labels by averaging given
test images and corresponding flipped counterparts. By
simply using flip augmentation, we prevent a decrease in
the quality of the pseudo-labels, which can be caused by
the domain gap resulting from strong augmentation. Our
experimental results demonstrate that DPLOT outperforms
previous TTA methods in CIFAR10-C, CIFAR100-C, and
ImageNet-C benchmarks, reducing error by up to 5.4%,
9.1%, and 2.9%, respectively. Also, we provide an extensive
analysis to demonstrate effectiveness of our framework.
Code is available at https://github.com/gist-ailab/domain-
specific-block-selection-and-paired-view-pseudo-labeling-
for-online-TTA.

1. Introduction

Deep neural networks achieve remarkable performance
when the training and target data originate from the same
domain [36, 39]. In contrast, deployed models perform
poorly if domain shifts exists between source training data
and target test data [12, 35]. For example, a pre-trained im-
age classification model may suffer this phenomenon for the
given corrupted images due to sensor degradation, weather
change, and other reasons [15, 37]. Various studies have ad-

Figure 1. Results of the proposed framework for online test-
time adaptation (Orange). We evaluate average error rates of the
WideResNet40 and ResNext-29 architectures for the CIFAR100-C
gradual setting benchmark using competitive test-time adaptation
methods. In the gradual setting, the networks should adapt to con-
tinually changing corruption domains (135 changes in total).

dressed the domain shift issue [19, 29, 55]. Recently, test-
time adaptation (TTA), which aims to improve the model
performance on target domain without access to the source
data during the inference stage, has received attention be-
cause of its practicality and applicability [32, 43, 44].

In online TTA, the objective is to simultaneously make
prediction and adaptation using a source pre-trained model
for the given test data. Existing TTA methods typi-
cally rely on self-training with pseudo labels, such as en-
tropy minimization [13, 42] and consistency regulariza-
tion [40, 41]. Entropy minimization trains the model by
self-generated pseudo-labels, whereas consistency regular-
ization uses pseudo-labels generated by a teacher model.
These methods have demonstrated excellent performance
with short-term test sequence in the stationary environ-
ment [43].

Under the continually changing domain in non-
stationary environments [30, 44], self-training with pseudo-
labels can lead to error accumulation, gradually degrading
the quality of pseudo-labels [44]. To alleviate the issue,
stochastic restoration (i.e., reset the model to the source pre-
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trained weight) and augmentation-averaged pseudo-label
(i.e., various hard augmentations including color jitter) was
proposed by [44]. In addition, Döbler et al. [8] combined
symmetric cross-entropy [46] and contrastive loss for sta-
bilizing the pseudo-labeling without restoration. However,
previous methods lacks an accurate approach to generate
pseudo-labels from the teacher, a critical aspect for stable
long-term test-time adaptation.

In this study, we address accurate pseudo-label genera-
tion in underlying assumption that images from source do-
main and target domain share domain-invariant features
for a task, regardless of shifted domain-specific features
caused by corruptions. We consider the domain-invariant
feature to be a high-level feature useful for the task and the
domain-specific feature to be a low-level feature with no
concern for the task as termed in [47–49]. To achieve pre-
cise adaptation under this assumption, we propose Domain-
specific block selection and paired-view Pseudo-Labeling
for Online Test-Time adaptation (DPLOT), which is com-
posed of two core components: (1) domain-specific block
selection and (2) pseudo-label generation using paired-view
images. The block selection method identifies blocks in-
volve in domain-specific feature extraction (termed domain-
specific block) using augmented source training data. These
domain-specific blocks are then fine-tuned through entropy
minimization during the test-time phase. Then, we gener-
ate the pseudo-label from the teacher by averaging predic-
tions for the given test image and its horizontally flipped
counterpart to update all model parameters. This is moti-
vated by the fact that the teacher model’s domain-specific
blocks are adjusted for the current domain, and hard aug-
mentation may generate another domain gap, which may
lead to degraded pseudo-labels. Consequently, our frame-
work provides strong adaptation performance for the model
as shown in Figure 1.

In summary, the main contributions are as follows:
• We propose the DPLOT, which consists of domain-

specific block selection and paired-view pseudo labeling
for long-term online test-time adaptation.

• We compare the proposed method with other online TTA
methods in both continual and gradual settings bench-
marks, and our framework outperforms other methods.

• We provide a wide range of analyses that lead to an im-
proved understanding of our framework.

2. Related Work
Unsupervised Domain Adaptation Unsupervised do-
main adaptation (UDA) aims to adapt a model to a target
domain using given labeled source data and unlabeled tar-
get data before model deployment.For example, Ganin and
Lempitsky [11] proposed gradient reversal layer to force the
feature extractor to produce same feature distribution for the
given source data and target data . Also, Hoffman et al. [18]

used image-to-image translation to create labeled target-like
source data to train the network. French et al. [9] used self-
ensembling with the mean teacher to minimize the differ-
ence between the student’s prediction for the augmented test
data and the teacher’s prediction for the test data. Kundu et
al. [25] proposed class-incremental method without using
source training data. Recently, Hoyer et al. [19] proposed
the adaptation framework based on masked image consis-
tency, where the model is forced to produce the same pre-
diction for the given target data and corresponding masked
data. Also, Prasanna et al. [34] proposed the continual
domain adaptation method based on pruning-aided weight
modulation to reduce catastrophic forgetting. Since both
UDA and TTA aim to performance improvement in target
domain, the methods from UDA can be considered. Our
method also uses the mean teacher as in [19] to reduce the
prediction difference for adapting the network to the target
domain but without using source data.

Test-Time Adaptation Test-time adaptation (TTA),
which only requires target data for adaptation unlike UDA,
has gained increasing attention. As in [27], (online) TTA
can be categorized into batch normalization (BN) calibra-
tion [31, 53], entropy minimization [4, 32, 33, 43], and
consistency regularization [8, 44, 45]. Specifically, Mizra et
al. [31] proposed dynamic unsupervised adaptation (DUA),
which adapts the statistics of the BN layers[20] to remove
degradation caused by BN[10, 26]. On the other hand,
updating affine parameters of BN layers has demonstrated
improved adaptation performance [4, 32, 33, 43]. Niu et
al. [33] demonstrated that using batch-independent normal-
ization methods like layer norm [1] and group norm [50]
instead of using batch-dependent BN is helpful for stable
entropy minimization. Also, they proposed sharpness-
aware entropy minimization, which filters out unreliable
samples by their gradients, based on the observation that
large gradient samples lead to model collapse. Similar
to our work, Choi et al. [4] proposed the framework
that updates model parameters by entropy minimization,
differently depending on their sensitivity of distribution
shift. Simultaneously, consistency regularization-based
TTA frameworks have been investigated. Wang et al. [44]
proposed TTA in a continually changing domain by using
augmentation-averaged pseudo-target from the mean
teacher. Also, Chen et al. [3] proposed to use contrastive
learning in TTA for learning better representation in the
target domain. Moreover, robust mean teacher (RMT) is
proposed [8], which showed state-of-the-art performance
by using various techniques such as symmetric cross-
entropy and source replay. Previous entropy minimization
methods [32, 33, 43] update BN layer of the model which
can modify domain-invariant feature extraction. In this
work, we propose block selection method to prevent the
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modification of domain-invariant feature extraction by
updating blocks that involve in domain-specific feature ex-
traction. Also, we propose to generate pseudo-labels from
the teacher only using simple flip augmentation to improve
the quality of labels. Consequently, our DPLOT uses both
entropy minimization and consistency regularization for
reliable long-term adaptation.

3. Method
We introduces DPLOT, a simple yet effective online TTA

framework. First, we describe the overview of our frame-
work in Section 3.1. Second, we describe the block se-
lection method before deployment in Section 3.2. Lastly,
we introduce how our framework adapts the model for the
given unlabeled test data after deployment in Section 3.3.

3.1. Overview of DPLOT’s components

The components within our framework can be catego-
rized based on whether they are used before or after de-
ployment. Domain-specific block selection is conducted
before deployment, while our adaptation method as shown
in Figure 2, involving entropy minimization on the selected
blocks and the use of paired-view pseudo-labels for updat-
ing all model parameters, is performed after deployment.

The domain-specific block selection is proposed under
the assumption that the domain-invariant feature of test im-
age remains consistent with the source domain, while the
domain-specific feature changes. Therefore, the domain-
specific feature extraction of the model should be adjusted
to bridge the gap between the source domain and target
domain caused by different feature statistics [2, 26, 47].
We evaluate each block by measuring cosine similarity be-
tween prototype features before and after the entropy min-
imization using Gaussian noise-added source data. Subse-
quently, we select the blocks that maintain high similarity,
indicating that the blocks do not involve in domain-invariant
feature extraction (i.e., involves in domain-specific feature
extraction). During test-time, the selected blocks are up-
dated by minimizing entropy for the given test data to adjust
the domain-specific feature extraction to the current cor-
ruption. By selecting domain-specific blocks, we can ad-
just domain-specific feature extraction without disrupting
domain-invariant feature extraction unlike previous method
[43], where all batch normalization [20] layers are updated.

We provide pseudo-labels generated by the exponential
moving average (EMA) teacher [41] (i.e., θ′t+1 = αθ′t +
(1 − α)θt+1) to the model for further adjusting all param-
eters on the target domain. This is based on insight that
the high-level feature in the test image can be affected by
domain shifts, and all parameters should be adjusted to in-
crease adaptation performance. In contrast to previous ap-
proach [44], where hard augmentations (e.g., color jitter,
Gaussian noise, blur, and random pad-crop) are used for

Figure 2. Illustration of our proposed test-time adaptation using
entropy minimization and paired-view consistency. During test-
time, the current test and corresponding flipped images are given
to the student model and EMA teacher model. Entropy minimiza-
tion is performed to update the parameters of selected blocks (yel-
low arrow), while all parameters are updated to minimize the dif-
ference between student output and the averaged EMA model’s
prediction (blue arrow).

generating pseudo-labels, we only use horizontal flip aug-
mentation. Since the teacher’s domain-specific extraction is
adjusted on the target domain by entropy minimization and
even a small domain gap between the test and augmented
images can reduce the teacher’s accuracy, the horizontal flip
is well suited for generating pseudo-labels from the teacher.

3.2. Block selection before deployment

We consider a pre-trained neural network θ, comprising
a feature extractor and a classifier. We assume that the fea-
ture extractor of the network is composed of multiple L
blocks (e.g., ResNet18 has 8 residual blocks [14]). For a
given a RGB image x ∈ RH×W×3, a feature vector f ∈ Rd

of dimension d is extracted. Then, our objective is to se-
lect blocks that involve in domain-specific feature extrac-
tion. To this end, we first calculate the domain-invariant
feature space using prototype vectors. The prototype vector
pc ∈ Rd is acquired by averaging all source feature vectors
belonging to the class c as follows:

pc =
1

Nc

Nc∑
n=1

f(xc
n ∈ XS ; θ), (1)

where f(·), xc
n, and Nc refer to the feature extraction, n-th

RGB image belonging to the class c, and number of images
for class c, respectively. Consequently, prototypes for all
class, P = {p1, p2, ..., pC}, are obtained.

22725



Algorithm 1: Domain-specific block selection
Init. : An empty list S, an empty list Bs;
Input : Blocks of the model B = {b1, b2, ..., bL},

source data (XS ,YS), threshold γ,
pre-trained model θ;

Calculate P using Eq. 1
Add noise to XS

foreach block bi ∈ B do
Minimize entropy for parameter of bi using XS

Calculate P ′ using Eq. 1
Calculate si using Eq. 2
Append si in S
Reset θ;

end
Min-max scale S
foreach (si, bi) ∈ (S,B) do

if si > γ then
Append bi in Bs;

end
end
Output: Selected block list Bs

To further select the block for adjusting domain-specific
feature extraction during test-time, we measure the simi-
larity s between the original prototypes and modified proto-
types after the block’s parameters have been updated via en-
tropy minimization with Gaussian noise (zero mean and 0.5
variance) added training images. We use Gaussian noise as
it is common corruption and can represent various domain
shifts [6, 28]. This similarity is calculated by averaging co-
sine similarity as follows:

si =
1

C

C∑
c=1

pc · p′c
∥pc∥∥p′c∥

, (2)

where p′c denotes a single modified prototype vector for the
c-th class after the entropy minimization. Also, C refers
to the number of classes. After computing the similarity
for every block, we apply min-max scaling to normalize
the results into the range of [0, 1]. This scaling allows
us to choose threshold more generally across various ar-
chitectures. A high similarity indicates that the block is
adapted on Gaussian noise added images without modify-
ing domain-invariant feature space (i.e., high-level feature
space). Finally, we select blocks that higher than the thresh-
old γ. The pseudo code of the block selection is described
in Algorithm 1. In our experiments, the threshold is set to
0.75, unless otherwise specified.

3.3. Test-time adaptation after deployment

Entropy minimization Entropy minimization is per-
formed for the given target data at current time xT

t to update

Algorithm 2: Adaptation process after deployment
Init. : Selected Blocks Bs, a pre-trained model θ,

a teacher model θ′ initialized from θ;
Input : For each time step t, current batch of

data xT
t ;

1: Horizontally flip xT
t and get pseudo-label from θ′t

by Eq. 4 and Eq. 5
2: Update Bs of θt by entropy minimization loss Le

in Eq. 3 using both xT
t and x̃T

t

3: Update θt by paired-view consistency loss Lpc in
Eq. 6 using both xT

t and x̃T
t

4: Update θ′t by moving average of θt
Output: Ensemble prediction, Updated model θt+1,

Updated teacher θ′t+1

the selected blocks Bs of model θ. Following other entropy
minimization-based methods [4, 32, 33, 43], we use Shan-
non Entropy [38] as follows:

Le = −
∑
c

ŷc log ŷc, (3)

where ŷc represents the output probability for the c-th class
using the model θ. By minimizing entropy on test batch
xT
t , the model is trained to push decision boundaries to-

ward low-density region in prediction space [42]. As a re-
sult, the model is forced to acquire discriminative high-level
features from current target domain by adjusting domain-
specific feature extraction.

Paired-view consistency Domain-specific feature extrac-
tion of the model is adjusted to the current corruption using
entropy minimization with selected domain-specific blocks.
To leverage all parameters, the consistency regularization
between the model θ and the moving average teacher θ′,
which makes the training stable [8, 41, 44], is used. Specif-
ically, we use horizontal flip and moving average teacher
[41] to generate pseudo-labels for the given test and corre-
sponding flipped images as follows:

ŷ′ = gθ′(xT
t ), (4)

ỹ′ = gθ′(x̃T
t ), (5)

where gθ′(·) refers to the teacher’s prediction of the given
input. Also, x and x̃ refer to the original input and hori-
zontally flipped input. The pseudo-label ȳ′ is calculated by
averaging ŷ′ and ỹ′. Subsequently, all parameters of the
model θ are updated by the symmetric cross-entropy [8, 46]
between the model and teacher predictions:

Lpc = Lsce(ŷ, ȳ
′) + Lsce(ỹ, ȳ

′), (6)

Lsce(a, b) =
1

2
· (Lce(a, b) + Lce(b, a)), (7)
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where Lsce and ỹ refer to the symmetric cross-entropy and
the model’s prediction for the flipped input, respectively.
Also, Lce refers to the standard cross-entropy loss. We
use the symmetric cross-entropy since it is known to be ro-
bust to noisy labels [8, 46]. After adaptation, we ensemble
the predictions of both models by adding the model’s and
teacher’s logits as [8] for better performance. Our method
during test-time is summarized in Algorithm 2.

4. Experiments
Setup We evaluate our framework on CIFAR10-C,
CIFAR100-C, and ImageNet-C, designed to benchmark the
robustness of classification networks [15]. CIFAR dataset
contains 10,000 and ImageNet dataset contains 50,000 test
images for each of the 15 corruptions with 5 levels of sever-
ity. For the experiments, we use a network pre-trained on
the clean training set of CIFAR [24] and ImageNet [7].
For CIFAR10, we use WRN28-10 [52], WRN40-2A [16],
ResNet-18A [22]. For CIFAR100, we use WRN40-2A [16]
and ResNext-29 [51]. For ImageNet, we use ResNet50 [14]
and ResNet50A [17]. Architectures named with ’A’ refers
to the networks trained to be robust against corruption (e.g.,
AugMix [16]); specific details are described in supplemen-
tary materials.

We evaluate our method in two different settings. First,
we consider the continual setting introduced by [44]. Un-
like the basic TTA setting, where evaluation is conducted
for each corruption individually, the model is adapted to
a sequence of test domains in an online fashion under the
largest corruption severity level 5 (total 15 shifts). Sec-
ond, we consider the gradual setting, as introduced by [30]
where the corruption severity level changes as follows: 1
→ 2 → · · · → 5 → · · · → 2 → 1 (total 135 shifts). This
setting is motivated by the fact that domain shift does not
occur abruptly but changes rather smoothly.

Also, we follow the implementation setting of RMT [8].
Specifically, the batch size during test-time is set to 200 and
64 for CIFAR and ImageNet-C, respectively. We use an
Adam [21] optimizer with a learning rate of 1e-3 and 1e-
4 for entropy minimization to domain-specific blocks and
paired-view consistency to all blocks, respectively. Warm-
up is conducted before deployment, as done in [8], and we
use pre-trained weights provided by RobustBench [5].

Baselines We compare our method with various source-
free TTA baselines. Also, BN-1 refers to method that recal-
culates the BN statistics using the test batch. TENT [43],
EATA [32], and SAR [33] are entropy minimization-based
methods that update batch normalization layer weights to
minimize the entropy of current predictions. AdaCon-
trast [3] relies on contrastive learning principles, com-
bining contrastive learning and pseudo-labeling to enable
discriminative feature learning for TTA. CoTTA[44] uses

Method
CIFAR100-C ImageNet-C

ResNext-29A WRN40-2A ResNet-50 ResNet-50A
Source only 46.4† 45.4 82.0† 67.5
BN-1 35.4† 39.3 68.6† 53.8
TENT-cont. 60.9† 37.5 62.6† 49.6
AdaContrast 33.4† 37.1 65.5† 50.9
CoTTA 32.5† 38.2 62.7† 47.8
EATA 32.3 35.7 58.8 46.3
SAR 31.9 35.3 61.9 49.3
RMT 29.0† 34.3 59.8† 46.9
DPLOT (ours) 27.8 31.8 60.2 44.6

Table 1. Averaged classification error rate (%) for the CIFAR100-
C and ImageNet-C benchmarks with the continual setting. The
error rates are averaged for the given 15 corruption. † indicates
that the result is reported by [8].

a teacher’s augmentation-averaged pseudo-label for train-
ing and stochastic restore to mitigate error accumulation.
RMT [8] uses the symmetric cross-entropy, which reduces
effect of noisy label, for consistency regularization with
pseudo-labels generated by a teacher and contrastive learn-
ing to pull the test feature space closer to the source domain.
Moreover, RMT utilizes source replays during test-time to
keep source knowledge. However, it is worth noting that
we do not use source replays as it is not source-free during
test-time.

4.1. Continual setting benchmark

First we evaluate our TTA framework on continual set-
ting benchmarks. In Table 1, we provide the averaged
classification error rates for CIFAR100-C and ImageNet-C
benchmarks in the continual setting, considering 15 differ-
ent corruptions. Our framework outperforms other meth-
ods for CIFAR100-C and ImageNet-C benchmarks except
when using ResNet-50. In addition, we provide full com-
parison result of our framework with other TTA frameworks
on CIFAR10-C in Table 2. Our framework achieves state-
of-the-art performances, outperforming the best baseline
by 5.5%, 6.4%, and 15.5% in mean error rate when using
WRN28-10, WRN40-2A, and ResNet-18A, respectively.

4.2. Gradual setting benchmark

In Table 3, we report the average error rate across all
severity levels and specfically with respect to level 5 in
gradual setting benchmarks. We have following observa-
tions. First, TENT suffers from the error accumulation as
observed in [23, 32] for gradual setting benchmarks due
to more frequent updates. For example, TENT has an in-
creased mean error rate compared to continual setting (e.g.,
60.9 → 74.8 when using ResNext-29A). Second, entropy
minimization-based methods (TENT, EATA, and SAR) tend
to have degraded performance compared to consistency
regularization-based methods (CoTTA and RMT) because
the self-generated pseudo-label is more susceptible to error
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WRN28-10

Source only† 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
BN-1† 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4
TENT-cont.† 24.8 20.6 28.6 14.4 31.1 16.5 14.1 19.1 18.6 18.6 12.2 20.3 25.7 20.8 24.9 20.7
AdaContrast† 29.1 22.5 30.0 14.0 32.7 14.1 12.0 16.6 14.9 14.4 8.1 10.0 21.9 17.7 20.0 18.5
CoTTA† 24.3 21.3 26.6 11.6 27.6 12.2 10.3 14.8 14.1 12.4 7.5 10.6 18.3 13.4 17.3 16.2
EATA 24.3 19.3 27.6 12.6 28.6 14.4 12.0 15.9 14.6 15.4 9.6 13.3 20.6 16.3 21.8 17.8
SAR 28.3 26.0 35.8 12.7 34.6 13.9 12.0 17.5 17.6 14.9 8.2 13.0 23.5 19.5 27.2 20.3
RMT† 21.9 18.6 24.1 10.8 23.6 12.0 10.4 13.0 12.4 11.4 8.3 10.1 15.2 11.3 14.6 14.5
DPLOT (ours) 19.4 16.5 22.5 10.0 23.7 11.1 9.6 12.3 11.9 10.7 7.7 9.8 15.5 10.8 13.9 13.7

WRN40-2A

Source only 28.8 22.9 26.2 9.5 20.6 10.6 9.3 14.2 15.3 17.5 7.6 20.9 14.8 41.3 14.7 18.3
BN-1 18.4 16.1 22.3 9.0 22.1 10.6 9.7 13.2 13.2 15.3 7.8 12.1 16.3 14.9 17.2 14.5
TENT-cont. 15.0 12.1 16.8 9.5 18.0 11.7 9.9 11.8 11.4 13.7 9.3 11.4 16.8 13.1 19.8 13.4
AdaContrast 16.2 12.6 16.9 8.3 18.1 10.0 8.4 10.7 9.8 12.0 7.1 8.4 14.2 12.1 13.8 11.9
CoTTA 15.4 13.5 16.3 9.1 17.8 10.2 8.9 11.9 11.3 14.7 7.1 15.0 13.8 10.7 13.3 12.6
EATA 15.3 11.7 16.6 9.0 17.3 10.8 9.1 11.4 10.6 13.5 8.8 10.6 15.5 11.7 16.4 12.5
SAR 18.1 15.9 20.5 9.0 20.9 10.6 9.7 13.2 13.3 15.2 7.8 12.1 16.2 14.9 17.1 14.3
RMT 15.3 12.5 15.4 8.7 15.8 9.6 8.1 9.7 9.6 10.4 7.2 9.9 11.3 8.8 11.4 10.9
DPLOT (ours) 12.4 10.5 13.9 7.8 14.9 9.1 8.0 9.7 9.0 9.9 7.2 8.3 11.6 8.8 11.7 10.2

ResNet-18A

Source only 20.2 17.5 29.3 8.8 21.7 10.5 8.7 13.5 13.5 21.6 7.2 34.9 14.3 17.1 11.8 16.7
BN-1 14.9 13.4 20.1 9.1 22.0 10.6 9.9 13.5 13.7 16.7 8.6 12.8 16.7 12.5 15.1 14.0
TENT-cont. 13.1 11.4 17.7 9.2 19.8 12.3 10.9 13.5 12.8 16.6 10.4 11.4 16.3 12.2 16.2 13.6
AdaContrast 13.2 11.2 16.0 8.5 17.9 9.8 8.5 11.2 9.5 13.5 6.9 8.2 13.6 10.1 10.9 11.3
CoTTA 13.6 11.9 15.7 8.6 17.2 9.3 8.5 11.3 11.2 13.9 7.4 11.0 12.7 9.6 11.1 11.5
EATA 13.0 10.9 16.1 8.5 17.1 10.0 8.7 10.6 10.2 13.9 7.9 9.5 14.5 10.5 13.3 11.6
SAR 14.9 13.4 20.0 9.1 21.3 10.6 9.9 13.5 13.7 16.7 8.6 12.8 16.7 12.5 15.1 13.9
RMT 13.3 10.9 14.9 8.4 15.1 9.5 7.9 9.5 9.6 10.2 7.5 9.0 10.9 8.5 9.7 10.3
DPLOT (ours) 10.3 9.1 13.2 7.2 14.0 7.8 6.7 8.1 7.6 8.9 5.8 6.5 9.7 7.0 8.1 8.7

Table 2. Classification error rate (%) for the continual CIFAR10-C benchmark; the network is trained on clean CIFAR10 and evaluated
on continually given corrupted test data. We evaluate our framework with various models: WRN28-10, WRN40-2A, and ResNet18A. The
results are averaged over five runs. Also, the best result is indicated in bold. † indicates that the result is reported by [8].

CIFAR10-C CIFAR100-C ImageNet-C

Method WRN28-10 WRN40-2A ResNet-18A ResNext-29A WRN40-2A ResNet-50 ResNet-50A

Source only 24.7 / 43.5† 10.4 / 18.3 9.7 / 16.7 33.6 / 46.4† 34.7 / 46.7 58.4 / 82.0† 44.9 / 67.2
BN-1 13.7 / 20.4† 10.5 / 14.5 10.5 / 14.0 29.9 / 35.4† 33.7 / 39.3 48.3 / 68.6† 39.3 / 54.8
TENT-cont. 20.4 / 25.1† 15.0 / 18.2 20.0 / 22.9 74.8 / 75.9† 63.5 / 65.8 46.4 / 58.9† 38.5 / 47.0
AdaContrast 12.1 / 15.8† 8.9 / 10.9 8.2 / 10.0 33.0 / 35.9† 35.9 / 39.1 66.3 / 72.6† 56.7 / 61.5
CoTTA 10.9 / 14.2† 8.6 / 11.3 8.0 / 9.7 26.3 / 28.3† 32.8 / 37.2 38.8 / 43.1† 32.0 / 33.8
EATA 16.0 / 20.6 11.7 / 14.5 11.4 / 13.9 32.0 / 34.4 33.1 / 36.8 40.7 / 49.7 36.0 / 41.2
SAR 13.6 / 20.3 8.7 / 11.4 7.6 / 10.0 28.7 / 31.9 30.7 / 34.5 42.8 / 55.8 36.5 / 45.7
RMT 9.3 / 10.4† 7.7 / 8.5 11.7 / 12.5 26.4 / 26.9† 31.1 / 32.1 39.3 / 41.5† 33.5 / 34.4
DPLOT (ours) 8.8 / 10.4 7.2 / 8.0 6.3 / 7.0 23.9 / 25.0 27.3 / 28.6 37.2 / 40.2 30.8 / 31.6

Table 3. Classification error rate (%) for CIFAR10-C, CIFAR100-C, and ImageNet-C benchmarks with the gradual setting. Error rates
are separately reported by averaging over all severity levels and averaging only over the highest severity level 5 (@level 1-5 / @level 5).
† indicates that the result is reported by [8].

accumulation due to model collapse and forgetting [32, 33].
Lastly, our framework consistently outperforms other com-
petitive methods across different architectures and datasets,
highlighting the benefit of using domain-specific block se-
lection and paired-view consistency for long-time adapta-
tion against corruptions.

5. Discussion

5.1. Component analysis

To understand the effect of each component of our
framework, we provide the adaptation performance with
various configurations in Table 4. First, we present the per-
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Method CIFAR10-C CIFAR100-C ImageNet-C

DPLOT (A) 8.8 / 10.4 23.9 / 25.0 30.8 / 31.6
− Paired-view consistency (B) 11.3 / 14.2 25.9 / 28.8 37.4 / 42.5
− EMA teacher (C) 12.5 / 15.8 25.8 / 28.5 37.9 / 42.8
− Block selection (D) 19.3 / 24.5 66.9 / 68.7 38.5 / 47.0

Table 4. Classification error rate (@level 5/@level 1-5) for the
gradual benchmarks with various configurations. We use WRN28-
10, ResNext-29A, and ResNet50A for CIFAR10-C, CIFAR100-C,
and ImageNet-C datasets, respectively. Note that, we gradually re-
move each component from DPLOT, and when none of the com-
ponents are used (D), the method is equivalent to TENT.

formance when using all components: the paired-view con-
sistency, EMA teacher, and the block selection (A). If we
remove paired-view consistency using teacher-generated
pseudo-labels, the performance significantly drops (B). Fur-
thermore, the performance slightly drops if we do not use
ensemble prediction as observed in [8] (C). Finally, it is
demonstrated that the performance significantly drops when
we update BN layers rather than domain-specific blocks by
entropy minimization (D). These results show that all com-
ponents are necessary for stable long-term adaptation.

5.2. Parameter sensitivity

In Table 5, we empirically demonstrate the influence of
the hyperparameter γ for block selection. As γ increases,
fewer blocks are selected and vice versa. For instance, only
one block is selected for entropy minimization if we set γ
to 0.999, while all blocks except the lowest one are selected
for γ of 0.0. We find that small γ significantly damages the
adaptation performance, but it tends to have robust perfor-
mance for the range of [0.75, 0.95]. The results demonstrate
that as blocks not involve in domain-specific feature extrac-
tion are selected to be updated by entropy minimization, the
model becomes vulnerable to the model collapse (i.e., pre-
dicts all samples to one class [32, 33]). This vulnerability,
caused by modified domain-invariant feature space, can be
alleviated by our block selection. Also, updating selected
blocks using γ in the range of [0.75, 0.95] improves adap-
tation performance compared to updating the BN weights.

5.3. Effect of block selection

In Figure 3, we present the results of proposed block se-
lection for WRN28-10 and ResNext-29A for CIFAR10 and
CIFAR100, respectively. It is demonstrated that the shal-
lower blocks show high similarity between prototypes be-
fore and after entropy minimization, while deeper blocks
show lower similarity in (a, b). These findings align with
observations in [4, 47, 54] that style knowledge (i.e., do-
main specific feature unrelated to the task) being predom-
inantly captured by shallow blocks. As expected, we find
that updating blocks with high similarity does not mod-
ify the domain-invariant feature space even after the long-

Threshold γ CIFAR10-C CIFAR100-C ImageNet-C

0.999 9.2 / 11.4 24.8 / 26.1 37.8 / 41.2
0.95 8.8 / 10.7 24.4 / 25.6 37.3 / 40.4
0.9 8.8 / 10.7 24.3 / 25.5 37.1 / 40.2
0.75 8.8 / 10.4 23.9 / 25.0 37.2 / 40.2
0.5 11.1 / 12.5 23.8 / 24.5 39.1 / 41.2
0.25 12.8 / 14.5 92.6 / 93.5 99.1 / 99.8
0.0 80.7 / 81.2 92.7 / 93.5 99.6 / 99.9

BatchNorm 9.6 / 12.8 25.4 / 26.9 37.7 / 40.7

Table 5. Classification error rate (@level 5/@level 1-5) for the
gradual benchmarks with various thresholds γ for block selection.
For CIFAR10-C, CIFAR100-C, and ImageNet-C, network archi-
tecture of WRN28-10, ResNext-29A, and ResNet50 is used, re-
spectively. BatchNorm indicates that block selection is not used
and BN weights are updated, as in previous methods [32, 33, 43].

Figure 3. Illustrations of our proposed block selection results (a,
b) and classification error rate (@level 1-5) for the gradual setting
benchmark using other entropy minimization-based methods with
or without block selection (c, d). Additionally, in (a) and (b), the
source accuracy after the long-time adaptation (i.e., gradual setting
benchmark) with selected blocks is shown in a bar graph.

time adaptation (i.e., not forgetting source knowledge (a,
b)). Moreover, when applying domain-specific block se-
lection to other methods instead of updating all BN layers
(c, d), we find that our block selection methods improves
other methods as well. In particular, it reduces the error rate
of TENT and EATA by 46.6% and 32.5% in CIFAR10-C,
respectively. This can be interpreted as updating domain-
specific blocks can alleviate error accumulation caused by
model collapse, as addressed by [32, 33]. However, there
is no significant improvement in the SAR method. This is
because SAR uses a model reset approach, which restores
model parameters to their original values; thus, the adapta-
tion performance does not differ significantly.
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Figure 4. Performance of our framework with various pseudo-
label generation setting including our paired-view (orange) and
others. We use ResNext-29A for CIFAR100-C.

5.4. Effect of paired-view consistency

In CoTTA [44], pseudo-labels are generated by averag-
ing the teacher’s predictions for the given 32 augmented im-
ages transformed by random augmentation including ran-
dom pad-crop, color jitter, random affine transform, Gaus-
sian blur, random horizontal flip, and Gaussian noise. In
our framework, we generate pseudo-labels by simply aver-
aging the teacher’s predictions for two images: original test
and horizontally flipped images. This is based on the insight
that the simple flip operation does not create domain gap be-
tween the augmented image and the test image, which can
reduces the quality of pseudo label.

In Figure 4, we compare the adaptation performance of
our framework for the gradual setting with different pseudo-
label generation methods. Specifically, while entropy min-
imization on the domain-specific blocks is conducted, the
pseudo label is generated by averaging teacher predictions
from (i) 2 images with paired-view (orange; ours), (ii) 32
images with Gaussian noise and Gaussian blur (blue), (iii)
32 images with color jitter (green), (iv) 32 images with
noise, blur, and color jitter (grey), and (v) 32 images with
random pad-crop, affine transform, noise, blur, and color jit-
ter (black; CoTTA). Note that, random horizontal flip with
0.5 probability is included in (ii-v). As expected, the adap-
tation with our pseudo-label generation outperforms others.
It is worth noting that using random pad-crop, which adds a
16-pixel border to the CIFAR image and subsequently per-
forms random cropping to a 32x32 size, significantly de-
creases the pseudo-label quality due to the potential for ob-
jects to be partially cropped.

5.5. Single sample test-time adaptation

Since the single prediction for a single input is crucial
for some real-time systems, we consider single-sample TTA
as investigated in [8]. In the single-sample TTA setting,

Method Window size Mean
8 16 32 64

Source only 43.5 43.5
BN-1 26.2 23.1 21.5 20.8 22.9
TENT 23.6 20.2 18.6 18.9 20.3
CoTTA 27.4 37.5 17.1 15.0 24.3
EATA 22.9 19.2 17.6 17.9 19.4
RMT 32.3 21.8 15.8 12.4 20.6
DPLOT (ours) 16.4 13.1 11.6 11.3 13.1

Table 6. Classification rate (@level 1-5) in the gradual setting of
the CIFAR10-C benchmark with WRN28-10, using single-sample
TTA, while considering different buffer sizes b.

the last b test samples are stored in a memory buffer. Af-
ter every b steps, the model parameters are updated by
test-time adaptation methods with a b-size batch from the
memory. Following [8], we decrease the learning rate by
original batch size/b due to the more frequent updates. In
this setting, the challenge of the TTA is that error accumula-
tion also increases due to the frequent updates. Table 6 pro-
vides the results for single-sample TTA with various buffer
sizes b. We observed that previous methods suffer from a
small batch-size, but our method is relatively strong across
various buffer sizes. This demonstrates that our method
alleviates error accumulation caused by frequent updates
through proper pseudo-label generation.

6. Conclusion
In this work, we propose DPLOT to address proper

pseudo-label generation. The proposed framework is based
on two components: domain-specific block selection before
deployment and paired-view pseudo-labeling. After de-
ployment, we use entropy minimization to update blocks in-
volved in domain-specific feature extraction. Subsequently,
we employ paired-view consistency loss, which forces the
model to produce the exact prediction of the pseudo-label
generated by averaging the teacher’s predictions for the
test and its corresponding flipped inputs. Extensive experi-
ments demonstrated that our framework outperforms previ-
ous competitive methods by a large margin in TTA bench-
marks. Also, DPLOT does not modify the network during
the training stage, making it easily applicable.
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