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Figure 1. Comparison between previous Downsampling-Enhancement-Upsampling paradigm and our proposed method. (a) Previous

works treat resampling operators and inner models as separate components, while (b) our method integrates them via empowering model-

aware resampling. As shown on the right side, our approach achieves significant performance gains over various resampling scales.

Abstract

Image enhancement algorithms have made remark-

able advancements in recent years, but directly applying

them to Ultra-high-definition (UHD) images presents in-

tractable computational overheads. Therefore, previous

straightforward solutions employ resampling techniques

to reduce the resolution by adopting a ”Downsampling-

Enhancement-Upsampling” processing paradigm. How-

ever, this paradigm disentangles the resampling operators

and inner enhancement algorithms, which results in the

loss of information that is favored by the model, further

leading to sub-optimal outcomes. In this paper, we pro-

pose a novel method of Learning Model-Aware Resampling

(LMAR), which learns to customize resampling by extract-

ing model-aware information from the UHD input image,

under the guidance of model knowledge. Specifically, our

method consists of two core designs, namely compensatory

kernel estimation and steganographic resampling. At the

first stage, we dynamically predict compensatory kernels

tailored to the specific input and resampling scales. At

*Both authors contributed equally to this research.
†Corresponding author.

the second stage, the image-wise compensatory informa-

tion is derived with the compensatory kernels and embed-

ded into the rescaled input images. This promotes the rep-

resentation of the newly derived downscaled inputs to be

more consistent with the full-resolution UHD inputs, as per-

ceived by the model. Our LMAR enables model-aware and

model-favored resampling while maintaining compatibility

with existing resampling operators. Extensive experiments

on multiple UHD image enhancement datasets and different

backbones have shown consistent performance gains after

correlating resizer and enhancer, e.g., up to 1.2dB PSNR

gain for ×1.8 resampling scale on UHD-LOL4K. The code

is available at https://github.com/YPatrickW/LMAR.

1. Introduction

Over time, learning-based image enhancement algorithms

have achieved progressive performance improvements.

However, the majority of existing methods are not com-

patible with UHD images due to the heavy computational

burdens imposed by their megapixel counts.

To address this, previous works have sought to allevi-

ate computation overheads by employing downsampling to

reduce the resolution, as shown in Figure 1. Concretely,

UHD input images are often resampled to smaller sizes for

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. The influence of the front-end resampler. We choose

the cubic resampling operator as the baseline and introduce per-

turbations to its kernel function. Interestingly, manipulating the

resampling function can lead to volatile outcomes, with the im-

age quality either being improved or degraded. We also present

two more comparisons: the resampling residual of the UHD input

image and the feature maps generated by different resizers. It is

indicated that the response of the model is highly sensitive to the

sampling strategies. This highlights the importance of customiz-

ing the resampling process in a model-aware manner.

enhancement, and then subsequently resampled back to the

original resolution[22, 39]. Surprisingly, the majority of re-

search efforts have been paid to developing inner processing

algorithms, with little attention devoted to the foremost and

endmost resampling operators.

Recently, a line of work has proposed the replacement

of the conventional interpolation-based resampling opera-

tors (e.g., nearest, bilinear, bicubic) with learnable resam-

pling operators [12, 20, 28, 30]. Attributing to the superior

modeling capability of deep neural networks, these learn-

able resampling operators have demonstrated remarkable

performance gains. However, the practical application of

these learnable resampling operators is hindered by their

high computational complexity and reduced efficiency, re-

sulting in a continued preference for interpolation-based re-

sampling operators.

Revisiting the above UHD image enhancement pipeline:

Downsampling-Enhancement-Upsampling, with the inter-

nal enhancement algorithm remaining unchanged, a fun-

damental question arises: ’How significant is the impact

of these two resampling operations ?’ The answer to this

question is twofold. On the one hand, the quality of the up-

sampled enhanced results exhibits a decreasing trend as the

degree of downsampling aggravates. On the other hand, ma-

nipulating the interpolation kernel functions yields a diverse

range of outcomes, as illustrated in Figure 2. We attribute

this phenomenon to the isolation between the resampling

operators and the enhancement algorithm, where both com-

ponents are disentangled from each other.

To this end, the focus of this paper lies in correlating the

resampling operators within the internal enhancement algo-

rithms and unleashing the potential of the resampling oper-

ation to make benefits for the aforementioned framework,

without modifying the inner processing methods (e.g., pre-

trained networks). To accomplish this goal, we propose a

novel method termed Learning Model-Aware Resampling

(LMAR). LMAR correlates the resizer and the enhancer

through a compensatory information learning process.

We begin by delving into the impact of resampling from

the viewpoint of the enhancer, where the resampling oper-

ations directly undermine the representation ability of in-

termediate features. Therefore, the intermediate features of

the UHD image offer valuable insights on how to perform

resampling in a model-aware manner. Building upon this

recognition, we formulate our method into two steps: Com-

pensatory Kernel Estimation (CKE) and Steganographic

Resampling (SR). In the CKE step, we generate image-

specific convolution kernels for the input UHD image via

implicit neural representation. These kernels are specifi-

cally customized for each input and resampling scale. Then,

we can obtain compensatory information produced by these

predicted filters. Subsequently, in the SR step, the com-

pensatory information is embedded in the downscaled in-

put image, resulting in a newly learnable downscaled input.

By utilizing the compensatory information as a medium, we

establish the correlation between the resampling operators

and the inner enhancer. Finally, the learnable input is passed

to the enhancer and optimized to encourage that the inter-

mediate features align more consistently with those of the

UHD image. Thanks to these designs, our method not only

maintains compatibility with existing interpolation-based

resampling operators but also incorporates them into a part

of enhancement algorithms under the guidance of model

knowledge. Our contributions are summarized as:

• We rethink the disentanglement between the resizer and

enhancement model and propose to perform the resam-

pling in a model-aware manner.

• We introduce LMAR, a novel method that facilitates the

collaboration between resizer and enhancer via customiz-

ing resampling under the guidance of model knowledge,

where the representative capabilities of low-resolution

images are largely improved.

• Our LMAR delivers two core designs: compensatory

kernel estimation and steganographic resampling, which

models the interplay between resizer and enhancer by

learning embeddable information. Our method is com-

patible with any interpolation resamplers.

• Extensive experiments are conducted to verify the supe-

riority of correlating resizer and enhancer. Remarkably,

our algorithm significantly improves the performance at

low resolutions while maintaining equivalent results at

the original resolution, without requiring retraining of the

enhancer.
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Figure 3. The inspiration for our method design. We replace the

compressed bottleneck features of the downsampled input with

features extracted from the UHD image (The green arrow). Large-

margin performance gains can be achieved compared with the

vested paradigm (The gray arrow). This observation highlights

the potential role of feature consistency between UHD input and

any downscaled input, which can play as a bridge for establishing

correlations between resampling operators and enhancers.

2. Related Work

2.1. Image Resampling

Image resampling has emerged as one of the most com-

monly employed techniques for altering the resolution of

an image. The key to image resampling lies in effectively

preserving the quality of image content while maintaining

efficiency.

Interpolation operators, such as bilinear, and bicubic

[1, 8], have been the popular choice for image resampling

for many years. These operators are capable of effectively

resampling images at any scale, yet they disregard the spa-

tial variations of distinct image patches, leading to inade-

quate preservation of the local structure [26].

In recent years, deep neural networks have facilitated ad-

vancements in various tasks [5, 10, 13–19, 31, 32, 36, 42–

48], including image resampling [4, 11, 12, 20, 28, 30, 34,

35]. Task-aware image downsampling (TAD) [20] presents

an encoder-decoder framework that aims to enhance the

quality of both downscaling and upscaling processes in a

collaborative manner. Though these methods achieve excel-

lent results, none of them focus on correlating interpolation

resampler with a pre-trained model.

2.2. UHD Image Processing

A line of studies that specifically focus on high-resolution

image processing has been proposed [2, 6, 23, 33, 40, 41].

These methods share a common paradigm: learning from

downscaled images to alleviate the computational burdens.

In this learning paradigm, the quality of the results is di-

rectly determined by the resampled image representation,

highlighting the crucial role of resampling strategies. How-

ever, they often overlook the impact of resampling ap-

proaches and lack in-depth investigation of various resam-

pling operators. In this work, our objective is to explore the

interplay between enhancer and resampling operators and

establish a collaborative relationship for them to improve

performance.

3. Methodology

In this section, we will present a comprehensive illustra-

tion of our proposed LMAR. We begin by introducing the

motivation behind our approach and describing our set-

tings. Subsequently, we will overview the whole process-

ing pipeline and delve into the design of the Compensatory

Kernel Estimation (CKE) and Steganographic Resampling

(SR). Finally, we will discuss the optimization strategies

employed to enable model-aware resampling.

3.1. Setting and Motivation

Our setting still follows the Downsampling-Enhancement-

Upsampling paradigm, employing the interpolation-based

resampling operators instead of introducing additional bur-

dens with learnable resampling operators. Notably, we will

first train an enhancement model for each dataset in our ex-

perimental setup and keep unchanged. The main difference

lies in the collaboration process between the resizer and en-

hancer.

The main inspiration stems from observing the impact

of resampling on the representative feature extraction pro-

cess of the enhancer. As shown in Figure 3, we inject

the full-resolution bottleneck features into the enhancement

process of the downsampled input images, where the fi-

nal results significantly outperform the vested paradigm. It

proves that front-most resampling degrades the representa-

tive ability of bottleneck features and impacts the following

processes. Based on the insight, we correlate the resizer

and enhancer through a compensatory information-learning

process to achieve consistent feature alignment.

3.2. Overview

The Downsampling-Enhancement-Upsampling processing

can be mathematically formulated as:

xd = D(x; [h,w]),

ỹ = F (xd),

y = U(ỹ; [H,W ]),

(1)

where D(·) is the downsampler that resamples the UHD

input image x ∈ R
H×W×3 to lower resolution of xd ∈

R
h×w×3, F (·) is the pre-trained enhancement model, and

U(·) denotes the upsampler which resamples the low-

resolution enhanced result ỹ back to the UHD resolution

of H × W , termed as y. In LMAR, we rebuild the above

paradigm, given as:

ỹ = F (xd,Θ(x;D,U, F )),

y = U(ỹ; [H,W ]).
(2)
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Figure 4. Overview of the proposed LMAR. The sub-graph (a) depicts the training phase of LMAR, which encourages the compensated

low-resolution input to maintain representation consistency with the full-resolution UHD input, as perceived by the enhancer. The sub-

graph (b) demonstrates the inference pipeline of our LMAR, where the compensated low-resolution input is directly fed into the enhancer

and then upsampled to the UHD result. The sub-graph (c) illustrates how LMAR works, where the core lies in estimating compensatory

kernels under the guidance of model knowledge to make up for the resampling process.

Here, we introduce additional compensatory information as

a medium to facilitate model-aware resampling, denoted as

Θ(x;D,U, F ). Our method is presented in Figure 4, where

the model-aware resampling is achieved via two core de-

signs, compensatory kernel estimation, and steganographic

resampling.

3.3. Compensatory Kernel Estimation

Interpolation-based image resampling process can be de-

composed as projected grid calculation and weighted pixel

aggregation [29]. To this end, we estimate the compen-

satory kernel using a representation that is related to the

scale. Inspired by LIFF [4], we employ two scale features,

the relative coordinate grid and the pixel cell. The rela-

tive coordinate grid depicts the pixel location shift in the

resampling processing. We first compute the uniform coor-

dinate of the downsampling scale Cd ∈ R
h×w×2 and the

UHD scale Cu ∈ R
H×W×2, which are normalized between

[−1, 1]. The calculations of the above grids are given as:

Cd(i, j) = (−1 +
(2i+ 1)

h
,−1 +

(2j + 1)

w
),

Cu(i, j) = (−1 +
(2i+ 1)

H
,−1 +

(2j + 1)

W
),

(3)

where i ∈ [0, h−1]([0, H−1], j ∈ [0, w−1]([0,W−1] are

the position indexes for the height and width dimensions.

As the sizes of the two coordinates are different, we first

project them Cd to Cu and obtain the relative grid shift at

the downsampling scale, which is expressed as:

C̃d = grid sample(Cd, Cu),

C̃r = Cu − C̃d,

Cr = (C̃r(i)× h, C̃r(j)× w),

(4)

where the grid sample is a remapping function that remaps

the Cd into C̃d of size H × W , C̃r represents the relative

shift and Cr denotes the relative coordinate grid measured

at downsampling scale. The pixel cell represents the ratio of

pixel area changes between downsampling and upsampling,

denoted as:

Pc(i, j) = (2 ∗
h

H
, 2 ∗

w

W
), (5)

where Pc ∈ R
H×W×2, and all pixel locations share the

same scale ratio.

The aforementioned scale-related representations are

instance-same at a given scale, leading to the generation

of identical kernels without considering the distinctions be-

tween images. Thus, we propose the utilization of back-

projection [9] as a constraint to capture the interrelation
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Figure 5. Comparison of different downscaled input images. (a)

The downscaled input images by the cubic resampling operator,

(b) images derived from the cubic resampling operator in a model-

aware manner, and (c) the residual between (a) and (b), where ob-

vious differences can be witnessed in high-frequency areas.

between each downscaled input and its corresponding UHD

counterpart, formulated as:

x̃ = Conv(x− U(xd; [H,W ]))), (6)

where x̃ ∈ R
H×W×3 is the back-projection of UHD input

image x.

Considering the pixel-wise aggregation nature of the re-

sampling process, we model the generation of compen-

satory information by predicting the convolution kernels for

the UHD input image instead of predicting pixel values for

specific locations. Specifically, we flatten the relative co-

ordinate Cr, pixel cell Pc, and back-projection x̃ then con-

catenate them. Afterward, we feed these concatenated fea-

tures into a multi-layer perception (MLP) to predict com-

pensatory kernels as follows:

K = MLPφ([Cr;Pc; x̃]), (7)

where [; ] denotes the channel-wise concatenation, and K ∈
R

H×W×s represents the predicted compensatory kernels.

The kernel for each pixel location is represented in the chan-

nel dimension s, consisting of the multiplication of the input

channel, out channel, and kernel size, with all being three

in our case.

3.4. Steganographic Resampling

With the estimated compensatory kernel from the above

process, we calculate the compensatory information for the

input UHD image as follows:

x̂ = K ¹ x, (8)

where x̂ ∈ R
H×W×3 is the generated UHD compensatory

embedding, and ¹ denotes the convolution operation.

To further maintain the intrinsic characteristics of the

downscaled input images, we downscale the compensatory

information and perform compensatory steganography in

�þ
�ý

�(�þ)

�(�ý)

Errors

Errors

Figure 6. Feature comparison of different downscaled input im-

ages. The second column represents the bottleneck features of

the downscaled inputs. As observed in the error maps with the

UHD features in the third column, downscaled input produced in

a model-aware manner (xc) maintains a higher level of represen-

tative consistency with the UHD input, as perceived by the model.

the low-resolution space, which is computed as:

xc = Conv([xd;D(x̂; [h,w])]). (9)

Here, we concatenate the downscaled UHD image and

downscaled compensatory information, then perform chan-

nel reduction by convolution layer. In this way, the newly

derived xc can be optimized under the guidance of model

knowledge, where we utilize the compensatory information

to bridge the resizer and enhancer.

3.5. Optimization Object

Given the pre-trained enhancer, the bottleneck features of

the UHD input image possess the most powerful represen-

tational capability compared to all of its downscaled coun-

terparts, Therefore, we encourage the consistency of bot-

tleneck features, which is referred to as resampling consis-

tency loss:

Lrc = SmoothL1(E(x)− U(E(xc))), (10)

where the E(x) and E(xc) represent the corresponding bot-

tleneck features of the UHD input x and learnable down-

scaled input xc. U(·) is used for size adjustment. In addi-

tion, we introduce attention loss [37] for these two bottle-

neck features, given as:

Lfa = ∥
E(x)

∥E(x)∥2
−

U(E(xc))

∥U(E(xc))∥2
∥2, (11)

where ∥·∥2 is the L2 normalization and this loss encourages

the attention transfer from E(x) to U(E(xc)).
The aforementioned losses are designed to incorporate

model-favored information into the learnable downscaled

input image xc but neglect the distribution consistency be-

tween the naive downscaled images xd and newly derived

images xc. Thus, we need to impose restrictions on the
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Table 1. Quantitative results on the UHD-LOL4K datasets with CNN-I as the backbone. The results with LMAR are shown in gray with

better results highlighted in bold.

Method CNN-I (UHD-LOL4K)

Scales (2160, 3840) (1440, 2560) (1080, 1920) (1200, 1600) (720, 1280) (540, 960) (432, 768)

Nearest
31.92 / 0.9843 28.20 / 0.9815 27.01 / 0.9792 26.66 / 0.9763 25.86 / 0.9761 23.99 / 0.9615 23.06 / 0.9445

31.86 / 0.9841 28.46 / 0.9824 27.69 / 0.9813 27.42 / 0.9790 26.60 / 0.9806 24.38 / 0.9715 23.98 / 0.9608

Bilinear
31.92 / 0.9843 31.07 / 0.9839 29.75 / 0.9828 29.16 / 0.9820 27.01 / 0.9767 25.90 / 0.9744 24.03 / 0.9448

31.88 / 0.9841 31.28 / 0.9840 30.17 / 0.9835 29.85 / 0.9832 27.94 / 0.9814 26.27 / 0.9795 24.85 / 0.9613

Bicubic
31.92 / 0.9843 31.19 / 0.9840 29.82 / 0.9834 29.26 / 0.9822 27.16 / 0.9767 25.40 / 0.9694 24.04 / 0.9450

31.89 / 0.9842 31.42 / 0.9841 30.20 / 0.9839 29.96 / 0.9836 27.97 / 0.9815 26.36 / 0.9792 24.88 / 0.9617

Lanczos2
31.92 / 0.9843 31.04 / 0.9840 29.83 / 0.9834 29.22 / 0.9819 26.97 / 0.9761 25.39 / 0.9694 24.03 / 0.9450

31.88 / 0.9841 31.39 / 0.9841 30.19 / 0.9838 29.97 / 0.9834 27.90 / 0.9815 26.29 / 0.9789 24.87 / 0.9617

Lanczos3
31.92 / 0.9843 30.86 / 0.9838 29.08 / 0.9815 28.88 / 0.9813 27.10 / 0.9764 25.04 / 0.9663 23.86 / 0.9438

31.90 / 0.9842 31.59 / 0.9842 30.24 / 0.9836 30.13 / 0.9834 27.93 / 0.9817 25.79 / 0.9718 24.66 / 0.9611

Time (ms)
9.7 9.6 13.3 13.4 14.8 15.4 15.0

10.7 10.2 13.3 13.8 15.1 15.6 15.4

(a) Input (b) × 5

23.07/0.9519

24.32/0.9642

23.19/0.9651

26.64/0.9791

26.06/0.9776

29.09/0.9832

29.09/0.9836

30.58/0.9840

30.54/0.9841

30.78/0.9843

31.32/0.9845

31.31/0.9845

(c) × 4 (d) × 3 (e) × 2 (f) × 1.5 (g) × 1 (h) GT

Figure 7. Qualitative results on the UHD-LOL4K dataset of different scales. The top row is obtained from the cubic operator without

LMAR, while the bottom row is with LMAR. Please zoom in for details.

xc to ensure its similarity to xd. However, measuring the

distances in the pixel space deteriorates the learning of the

above process. Inspired by [7], we add a discriminator and

impose xc and xd to confound it, known as adversarial loss,

formulated as:

Ld = log(D(xd)) + log(1−D(xc)), (12)

where D(·) is the discriminator, which ensures the inter-

action between the resizer and enhancer while maintaining

distribution consistency between xc and xd. In addition, to

account for the introduction of the discriminator, a new gen-

eration loss is incorporated to constrain xc, computed as:

Lg = log(D(xc)). (13)

Overall, our optimization objects are twofold. The first

optimization focus is on correlating the resizer and en-

hancer:

Lc = Lrc + αLfa + βLg, (14)

where α and β are adjustable parameters to balance differ-

ent losses, which are set empirically. The second optimiza-

tion object is Ld to restrict the distribution. These two op-

timization objects are alternatively optimized. As can be

seen in Figures 5 and 6, our downscaled images not only

maintain consistency in terms of perceptual distribution but

also exhibit a more consistent representation, as perceived

by the model.

4. Experiments

4.1. Experimental Setup

Datasets. To evaluate the significance of correlating the

enhancer and resizer, experiments are conducted on two

UHD low-light enhancement datasets, including the UHD-

LOL4K dataset proposed by [33] and the 4KIL dataset pro-

posed by [24]. More details about datasets are provided in

the supplementary materials.

Pre-training. We begin by training multiple enhancers

F (·) to verify the effectiveness of our method. Specifi-

cally, we employ the widely used encoder-decoder architec-

ture in image restoration tasks as the backbone. Regarding

the UHD-LOL4K dataset, we leverage the invertible block

proposed by [25] as the basic unit for processing, termed

CNN-I. For the 4KIL dataset, we replace the basic process-

ing unit with the half instance normalization block proposed
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Table 2. Quantitative results on the 4KIL datasets with CNN-H as the backbone. The results with LMAR are shown in gray with better

results highlighted in bold.

Method CNN-H (4KIL)

Scales (2160, 3840) (1440, 2560) (1080, 1920) (1200, 1600) (720, 1280) (540, 960) (432, 768)

Nearest
29.80 / 0.9805 28.36 / 0.9779 27.71 / 0.9754 27.67 / 0.9742 26.98 / 0.9719 25.92 / 0.9616 25.37 / 0.9428

29.77 / 0.9801 28.53 / 0.9789 28.11 / 0.9779 27.93 / 0.9762 27.21 / 0.9745 26.16 / 0.9672 25.56 / 0.9493

Bilinear
29.80 / 0.9805 29.12 / 0.9796 28.47 / 0.9785 28.39 / 0.9779 27.30 / 0.9726 26.38 / 0.9659 25.56 / 0.9439

29.79 / 0.9804 29.14 / 0.9804 28.55 / 0.9794 28.51 / 0.9790 27.52 / 0.9750 26.57 / 0.9687 25.62 / 0.9464

Bicubic
29.80 / 0.9805 29.25 / 0.9797 28.60 / 0.9787 28.47 / 0.9780 27.30 / 0.9726 26.36 / 0.9650 25.58 / 0.9444

29.80 / 0.9804 29.35 / 0.9804 28.74 / 0.9797 28.96 / 0.9793 27.53 / 0.9752 26.57 / 0.9685 25.79 / 0.9509

Lanczos2
29.80 / 0.9805 29.24 / 0.9797 28.59 / 0.9787 28.46 / 0.9780 27.29 / 0.9726 26.35 / 0.9649 25.56 / 0.9444

29.80 / 0.9803 29.34 / 0.9805 28.72 / 0.9796 28.63 / 0.9792 27.54 / 0.9752 26.57 / 0.9684 25.78 / 0.9509

Lanczos3
29.80 / 0.9805 29.32/ 0.9798 28.69 / 0.9798 28.54 / 0.9781 27.34 / 0.9730 26.34 / 0.9645 25.58 / 0.9457

29.79 / 0.9803 29.48 / 0.9804 28.89 / 0.9799 28.76 / 0.9794 27.60 / 0.9756 26.58 / 0.9686 25.80 / 0.9523

Time (ms)
5.0 5.0 5.8 6.3 6.5 6.9 6.9

5.9 5.7 6.1 6.5 6.8 8.5 8.0

Table 3. Quantitative results on the 4KIL datasets with Restormer as the backbone. The results with LMAR are shown in gray with better

results highlighted in bold.

Method Restromer (4KIL)

Scales (2160, 3840) (1440, 2560) (1080, 1920) (1200, 1600) (720, 1280) (540, 960) (432, 768)

Nearest
28.86 / 0.9773 27.81 / 0.9750 27.57 / 0.9738 27.45 / 0.9720 26.99 / 0.9714 25.91 / 0.9608 25.31 / 0.9470

28.78 / 0.9768 28.36 / 0.9765 27.67 / 0.9742 27.80 / 0.9739 27.27 / 0.9733 25.98 / 0.9619 25.46 / 0.9527

Bilinear
28.86 / 0.9773 28.63 / 0.9770 28.50 / 0.9768 28.49 / 0.9767 27.56 / 0.9719 26.71 / 0.9686 25.71 / 0.9459

28.83 / 0.9770 28.75 / 0.9771 28.52 / 0.9769 28.64 / 0.9770 27.85 / 0.9739 26.77 / 0.9688 25.90 / 0.9531

Bicubic
28.86 / 0.9773 28.83 / 0.9771 28.64 / 0.9770 28.53 / 0.9766 27.57 / 0.9719 26.65 / 0.9668 25.79 / 0.9477

28.84 / 0.9772 28.84 / 0.9772 28.69 / 0.9771 28.76 / 0.9771 27.82 / 0.9738 26.71 / 0.9678 25.94 / 0.9533

Lanczos2
28.86 / 0.9773 28.83 / 0.9770 28.63 / 0.9769 28.52 / 0.9766 27.56 / 0.9719 26.65 / 0.9668 25.78 / 0.9476

28.83 / 0.9772 28.84 / 0.9771 28.67 / 0.9770 28.74 / 0.9773 27.81 / 0.9739 26.70 / 0.9678 25.93 / 0.9533

Lanczos3
28.86 / 0.9773 28.84 / 0.9770 28.68 / 0.9768 28.55 / 0.9765 27.56 / 0.9719 26.56 / 0.9652 25.72 / 0.9468

28.85 / 0.9772 28.85 / 0.9773 28.84 / 0.9771 28.85 / 0.9772 27.84 / 0.9740 26.58 / 0.9665 25.89 / 0.9528

Time (ms)
11.9 11.5 12.5 11.7 12.0 11.7 12.3

12.8 12.9 12.9 13.0 12.2 12.6 12.5

by [3] to demonstrate the robustness of our method, termed

CNN-H. In addition to the above CNN models, we also train

a transformer-based enhancer conditioned on Restormer, as

proposed by [38], on the 4KIL dataset to further validate the

scalability of our method. More details about pre-training

are provided in the supplementary materials.

4.2. Collaborative Training

In this stage, we keep the pre-trained enhancers fixed and

train to correlate the resizer and enhancer. Considering the

randomness of scale variability in the resampling process,

we incorporate random scale training. Specifically, we be-

gin by cropping a Hp × Wp patch from the UHD input

image. Next, we randomly sample a scale factor r from

a uniform distribution U(1, 4). Finally, we downsample the

high-resolution Hp×Wp patch by the scale factor r to gen-

erate a low-resolution hp ×wp patch. The optimization ob-

jectives mentioned earlier are applied to these two resolu-

tion patches.

Table 4. Comparison of model parameters. Baseline models with

LMAR are shown in gray, where the extra parameters are trainable

parameters possessed by LMAR.

Model CNN-I CNN-H Restormer

#Params
1.009MB 1.128MB 1.660MB

1.314MB 1.495MB 1.965MB

Implementation Details. We conduct experiments based

on the PyTorch framework along with the tiny-cuda-nn [27]

library with one NVIDIA 3090 GPU. During the collab-

orative training process, the Adam [21] optimizer with

β1 = 0.9 and β2 = 0.999 is used in our experiments. A

batch size of 1 is utilized for all experiments. The cropped

patch size (Hp × Wp) is set to 1024 × 1024 for the CNN

enhancers, and 768× 768 for the transformer enhancer. For

the CNN-I and CNN-H, the collaborative training epoch is

set to 12 and 24, respectively. The initial learning rate is

4e−4, which decays by a factor value of 0.75 every 4 epochs

and 8 epochs for the CNN-I and CNN-H enhancers. As for
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26.80/0.9574

27.88/0.9629

27.54/0.9708
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29.13/0.9809

29.33/0.9814

29.35/0.9814

29.41/0.9815

29.43/0.9815

29.43/0.9815

(a) Input (b) × 5 (c) × 4 (d) × 3 (e) × 2 (f) × 1.5 (g) × 1 (h) GT

Figure 8. Qualitative results on the 4KIL dataset of different scales. The top row is obtained from the lanzcos3 operator without LMAR,

while the bottom row is with LMAR. Please zoom in for details.

the transformer enhancer, the number of collaborative train-

ing epochs is 60, with a 4e−4 initial learning rate, which

decays by a factor of 0.75 every 20 epochs. The discrimina-

tor is composed of several convolution layers, whose initial

learning rate is 2e−4 and shares the same training strategies

as mentioned above.

4.3. Performance Comparison

Quantitative Evaluation. We utilize two metrics, the Peak

Signal to Noise Ratio (PSNR, dB), and the Structural Sim-

ilarity (SSIM), to assess the performance gains. To verify

the universality of our methods, we adopt five types of re-

sizers and test them on various commonly used scales, in-

cluding both in-distribution and out-of-distribution scales.

As shown in Tables 1, 2, and 3, our method consistently

achieves performance improvements across different reso-

lutions, regardless of the choice of resizer or the category

of the backbone. Notably, the performance with LMAR

at UHD resolution is analogous to the original UHD input,

which illustrates the superior continuous modeling capabil-

ity of LMAR. Additionally, our approach maintains com-

parable effectiveness with the baselines, where a minor in-

crease in parameters, as shown in Table 4. More impor-

tantly, our algorithm only needs to be trained on one type of

resizer, which can then be applied to any other resizers.

Qualitative Evaluation. Figures 7 and 8 present the visual

comparison on the UHD-LOL4K dataset and 4KIL dataset

respectively. These comparisons demonstrate that enabling

model-aware resampling leads to enhanced results with im-

proved global lightness and local structural details, across

various resampling scales. It verifies that coupling the resiz-

ers and enhancers could generate better visual results. More

visual results are presented in the supplementary materials.

4.4. Ablation Studies

We conduct ablation studies on the UHD-LOL4K dataset

to investigate the rationality of our designs. The ablation

results are shown in Table 5. First, we replace the bottle-

neck features (Full) with the relatively front features (Ff )

and relatively end features (Fe) to apply feature constraints,

where remarkable performance drops can be observed at 4

times downsampling. The findings indicate that the bottle-

neck features exhibit the most representative capability in

guiding model-aware resampling. Second, we replace the

discriminator (Full) with the perceptual loss (VGG) to con-

duct the distribution restriction. The utilization of discrimi-

nator encourages more consistent feature alignment. Lastly,

even with sub-optimal constraints, our method outperforms

the baseline, emphasizing the effectiveness of coupling re-

sizers and enhancers.

Table 5. Ablation studies on the constraints employed in our de-

signs. We present the PSNR results here.

Scales Baseline Ff Fe VGG Full

x2 29.82 29.98 30.05 30.03 30.20

x4 25.40 25.86 25.50 25.47 26.36

5. Conclusion

In this paper, we introduce a novel approach for effec-

tively enhancing the UHD images at different downsam-

pling scales by a model-aware resampling strategy. Our

method customizes resampling under the guidance of model

knowledge, integrating the resizers and enhancers through

compensatory information learning. Notably, our algorithm

is fully compatible with existing interpolation resamplers

and maintains the efficiency. Moreover, our design pro-

motes performances at low resolutions remarkably while

keeping comparable results at UHD resolution, without the

need to retrain the enhancer. Extensive experiments have

validated the effectiveness and scalability of our method.
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[6] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W
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