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Figure 1. Comparison between the proposed EventPS and its frame-based counterpart, i.e., FramePS. Bottom: FramePS estimates the

surface normal (h) by analyzing images of an object illuminated from multiple directions (e). It involves capturing a series of exposure-

bracketing images2 (f, g), a process that is not only time-consuming but also demands substantial bandwidth for processing. Top: In

contrast, EventPS estimates the surface normal by analyzing the events triggered by a continuously rotating light source (a). The unique

attributes of event cameras, e.g., low latency, high dynamic range, and low redundancy in data representation (b), enable EventPS, a rapid

and highly efficient real-time solution (c, d), which significantly reduces the bandwidth usage while maintaining comparable performance

to FramePS.

Abstract

Photometric stereo is a well-established technique to es-

timate the surface normal of an object. However, the re-

quirement of capturing multiple high dynamic range images

under different illumination conditions limits the speed and

real-time applications. This paper introduces EventPS, a

novel approach to real-time photometric stereo using an

event camera. Capitalizing on the exceptional temporal

resolution, dynamic range, and low bandwidth character-

istics of event cameras, EventPS estimates surface nor-

mal only from the radiance changes, significantly enhanc-

ing data efficiency. EventPS seamlessly integrates with

∗Corresponding author: Boxin Shi
1Code available: https://codeberg.org/ybh1998/EventPS

both optimization-based and deep-learning-based photo-

metric stereo techniques to offer a robust solution for non-

Lambertian surfaces. Extensive experiments validate the

effectiveness and efficiency of EventPS compared to frame-

based counterparts. Our algorithm runs at over 30 fps in

real-world scenarios, unleashing the potential of EventPS

in time-sensitive and high-speed downstream applications.

1. Introduction

Photometric Stereo (PS) [53], a technique that estimates the

orientation of surface normals by analyzing images of an

object illuminated from various directions, is distinctive by

its ability to reconstruct high-resolution and precise surface

details, especially under controlled lighting conditions.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Due to deviations from an ideal Lambertian image

formation model such as shadows, specular reflections,

and various types of noise [17], it is complex and time-

consuming to achieve a robust normal estimation in tradi-

tional Frame-based PS (FramePS). As shown in Fig. 1 (f),

typically, this process requires capturing a series of expo-

sure bracketing images2 using a stationary camera under

the illumination of multiple, sequentially lit distant light

sources (e.g., around 100 lights [40, 45]). This laborious

process hinders real-time applications of PS.

Recent efforts in pushing real-time PS fall into two cat-

egories. One group of methods utilizes multi-spectral cam-

eras to simultaneously obtain observations of objects in

varying oriented multi-spectral lighting conditions [4, 8, 10,

23–25, 30, 36, 47]. Despite the single-shot data-capturing

process, the ambiguity between the colors of the lights and

the object poses challenges in normal estimation. Another

direction involves high-speed cameras synchronized with

carefully controlled light sources, which aims to expedite

the image-capturing process [5, 32, 49]. However, this

setup requires a high data throughput capability in cam-

eras and experimental facilities, which becomes a barrier

to their practical implementation in real-time applications,

especially with limited power and cost.

Event cameras, characterized by their high temporal res-

olution, high dynamic range, and low bandwidth require-

ments, have recently been recognized as a promising so-

lution for real-time vision applications [6]. Unlike tradi-

tional frame-based cameras, event cameras only record log-

arithmic scene radiance changes. This characteristic is ad-

vantageous in many scenarios. For example, it swiftly es-

tablishes the temporal correspondences and spatial dispari-

ties for multi-view stereo [38] or 3D reconstruction under

structured light [33, 34]. However, their nature of radi-

ance changes instead of absolute values deviates from the

FramePS problem. The exploration of how to effectively

utilize the unique attributes of event cameras for real-time

PS remains an open question.

In this paper, we propose a reformulation of the PS

problem to observations derived solely from scene radiance

changes under varying lighting conditions, which specifi-

cally tailors to advantageous characteristics of event cam-

eras. As shown in Fig. 1 (a), an object is illuminated by a

high-speed rotating light source (up to 1800 revolutions per

minute, rpm) that continuously induces radiance changes

and triggers event signals. Each event is associated with the

lighting direction of the triggering timestamp (Fig. 1 (b)).

Assuming the Lambertian reflectance model (we will re-

lease this assumption later), each pair of consecutive events

is transformed into a vector orthogonal to the surface nor-

mal, named “null space vector” (Fig. 1 (c)). The surface

2 High Dynamic Range (HDR) images are usually required in FramePS for

accurately observing the specular regions on the object surface.

normal for each pixel is then determined from at least two

linearly independent null space vectors without ambigu-

ity (Fig. 1 (d)). Owing to the unique attributes of event

cameras, this process enables the capturing of observations

with a high dynamic range under rapidly changing light-

ing, while maintaining economical data efficiency. This ap-

proach, termed EventPS, allows us to harness the inherent

strengths of event cameras for achieving real-time PS.

For real scenes where events are noisy, surface normals

are obtained more robustly by solving a least squares mini-

mization problem using all null space vectors. By integrat-

ing Singular Value Decomposition (SVD) [7] with EventPS,

our method notably achieves 30 frames per second (fps)

in normal estimation. Additionally, acknowledging the in-

herent challenges in handling non-Lambertian surfaces, we

propose deep learning variants [2, 13] under our EventPS

formulation. We develop a custom validation platform that

demonstrates the feasibility of our approach and highlights

the potential of EventPS in high-speed, time-sensitive ap-

plications such as real-time 3D reconstruction. Our ex-

periments show that EventPS matches the performance of

FramePS while using only 31%3 of the bandwidth, a testa-

ment to its effectiveness and efficiency. The key contribu-

tions of our work are summarized as follows:

• We are the first to formulate that the surface normals

can be estimated from continuous radiance changes w.r.t.

lighting recorded by an event camera, which achieves a

significant bandwidth reduction compared to FramePS.

• We propose EventPS integrated with both optimization-

based and deep-learning-based approaches to handle

Lambertian and non-Lambertian surfaces.

• We build up a validation platform with a high-speed ro-

tating light source, showcasing that the proposed EventPS

estimates surface normals in real-time with 30 fps output.

2. Related Works

2.1. Photometric Stereo Methods

Since the PS was proposed in the 1980s [53], both

optimization-based and deep-learning-based [40] methods

have been proposed to enhance performance. Most rep-

resentative optimization-based methods have been compre-

hensively discussed in [45], so we focus on reviewing deep-

learning-based solutions in the following part.

Recent PS methods predominantly adopt deep-learning-

based approaches, which are divided into two categories:

all-pixel and per-pixel [56]. All-pixel methods [2, 3] com-

bined the global information from observed images and

light directions, while per-pixel methods [13, 43, 55] took

the observations of each pixel under various light directions

to estimate the surface normal.

3Average bandwidth of three algorithms. More details are described in

Sec. 4.3.

9603



To improve the performance of deep-learning-based PS

methods, researchers combined the advantages from per-

pixel and all-pixel methods [54], augmented the observa-

tion maps for modeling global illumination [28], and uti-

lized inverse rendering to estimate surface normal [26, 48].

Besides, advanced learning models and techniques [21]

were also introduced to handle realistic complexity, such

as attention-based weight [20, 22], transformer [14], and

differentiable modeling [27]. Furthermore, general lighting

and feature representation [15] reshaped the deep-learning-

based PS and achieved comparable performance with 3D

scanners [16]. However, a significant number of images un-

der various illuminations are still necessary. The serialized

capturing process considerably limits PS application in dy-

namic scenarios.

The key to accelerating the imaging process of PS

lies in optimizing the observation process [46] with high-

speed cameras and synchronized illumination [24]. How-

ever, the cost greatly rises with the frame rate increasing

Other researchers introduced multi-spectral imaging sys-

tems [25, 36, 47] to observe the object under varying direc-

tional illuminations with a single shot, which significantly

enhances the efficiency of PS. However, the limitations of

multi-spectral cameras [8, 23], such as the number of bands,

the crosstalk and intensity inconsistency (e.g., unknown il-

lumination, surface reflectance, camera’s spectral response)

across different colors, introduce additional challenges to

surface normal estimation [19].

2.2. Event Camera based 3D Reconstruction

Event cameras detect radiance changes in the scene, which

could be induced by camera/object movement or illumi-

nation changes. We divide the related research into two

categories: motion-based and active illumination-based

methods. For motion-based methods, EMVS [38] and

EvAC3D [51] treated individual events as rays to estimate a

semi-dense 3D structure and an object mesh from an event

camera with known trajectory. Besides, event-based neural

radiance fields (NeRF) [1, 12, 29, 31, 37, 41] have emerged

as a significant breakthrough in leveraging the event signals

with high temporal resolution for constructing volumetric

scene representations. Please refer to the comprehensive

survey [11] for a summary of event-based SLAM methods.

For active illumination-based methods, researchers applied

structured light [33, 34] and maximized the spatio-temporal

correlation between the projector and an event camera for

depth sensing. EFPS-Net [42] interpolated the sparse event

observation maps and incorporated them with the RGB im-

ages to predict the surface normal maps under ambient light.

There are also methods using global illumination changes

(e.g., turning on the light in a darkroom [9] or applying ro-

tating polarizer [35]) to reconstruct iso-contour or estimate

surface normals.

3. Proposed Method

3.1. Problem Formulation

Photometric stereo. Assuming an object illuminated by

an ideal distant light source, the radiance of the light source

is constant and the direction is described as a normalized

lighting vector function L(t) w.r.t. time t. For a pixel at im-

age coordinate x = (x, y) with normal vector nx and dif-

fuse albedo ax, under Lambertian assumption, the reflected

radiance of this pixel Îx(t) is:

Îx(t) = max [0, ax(nx · L(t))] . (1)

Event formation model. Event cameras capture scene ra-

diance changes on a logarithmic scale. Each pixel measures

the radiance changes asynchronously. When the changes

of logarithmic radiance at the pixel x reaches a trigger-

ing threshold C, an event {x, p, t} will be triggered, where

t is the timestamp, and p ∈ {−1,+1} is the polarity

which represents the decrease or increase of radiance. As-

sume there are totally K events triggered at pixel x dur-

ing a short period of time. These events are represented as

Ex = {x, pk, tk}, where k = {1, 2, ...,K}. The change of

radiance value in pixel x from tk−1 to tk becomes:

log(Ix(tk) + ϵ) = log(Ix(tk−1 + ¸) + ϵ) + pkC, (2)

where ϵ is a small offset value to avoid taking the logarithm

of zero, and ¸ is the refractory time of the pixel [6]. By

omitting the offset value and refractory time in Eq. (2) and

performing exponentiation on both sides, we obtain the fol-

lowing equation:

Ix(tk) = exp(pkC) · Ix(tk−1). (3)

Substituting Eq. (1) into Eq. (3), we obtain:

max [0, ax(nx · L(tk))] =

exp(pkC) ·max [0, ax(nx · L(tk−1))] .
(4)

Given the captured events Ex at pixel x and lighting di-

rection L(t), our goal is to find the following function f that

estimates the surface normal n̂x at pixel x as close to nx as

possible:

n̂x = f(Ex,L(t)). (5)

3.2. EventPS Model

In this subsection, we start from a static object with a Lam-

bertian surface captured by an event camera using ideal

event-triggering mechanisms to explain how the EventPS

model works. The proposed algorithms based on the

EventPS model in the following subsections (Sec. 3.3 and

Sec. 3.4) deal with all the non-ideal effects in real scenarios

(generic BRDF, noisy events, and dynamic scenes).

As shown in Fig. 2, we observe that there are three prop-

erties for the event signals triggered in the PS setting that

make EventPS possible:
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Figure 2. The key observations on event signal characteristics.

(1) Albedo invariance: Surface albedo patterns at the bottom are

not visible from the events on the top. (2) No events in attached

shadow: For light directions on the right half circle, the current

pixel is in the attached shadow and does not trigger any event.

(3) Linear-independent null space vectors: The null space vectors

spanning a tangent plane uniquely determines a surface normal.

Observation 1: Albedo invariance. Event signals are ir-

relevant to surface albedo ax. Since there are ax on both

sides of Eq. (4), we remove the ax. It means the surface

albedo does not affect the event triggering given the same

changes in lighting directions. Thus, Eq. (4) can be sim-

plify it as:

max [0,nx · L(tk)] =

exp(pkC) ·max [0,nx · L(tk−1)] .
(6)

Observation 2: No events in attached shadow. From

Eq. (2), we infer that the derivative of Ix(tk) must be non-

zero at tk. Otherwise, there will be no events triggered. This

property indicates that the event signal does not contain re-

dundant information for pixels in the attached shadow re-

gion and Î should be greater than 0 at any event timestamp

tk. Therefore, we remove the max operator from both sides

of Eq. (6) and obtain:

nx · L(tk) = exp(pkC)(nx · L(tk−1)),

i.e., nx · (L(tk)− exp(pkC) · L(tk−1)) = 0.
(7)

For each pixel, we convert each pair of successive event

signals into a vector that lies in the tangent plane of the

object surface at this pixel, which is perpendicular to the

surface normal. We call these vectors null space vectors,

which are represented as zk, where k = {1, 2, ...,K − 1}:

zk = L(tk+1)− exp(pk+1C)L(tk). (8)

Combining Eq. (7) and Eq. (8), we verify that null

space vectors are perpendicular to the surface normal, i.e.,

{z1, z2, ..., zK−1} § nx.

 

Surface Normal

z

y

x

(a) Ideal Event (b) Real Event

z

y

x

Null Space Vector

Positive Event
Null Space Vector

Negative Event
Null Space Vector

Ground Truth
Normal

Ground Truth
Tangent Plane

Surface Normal Null Space Vector

Figure 3. Visualization of null space vectors and estimated normal

maps for (a) a Lambertian sphere with ideal event triggering model

and (b) a non-Lambertian sphere with real events.

Observation 3: Linear-independent null space vectors.

To determine the surface normal of each pixel, at least 2 null

space vectors that are linearly independent are required. If

all null space vectors are linearly correlated, there would

be infinite surface normal vectors perpendicular to all null

space vectors. When applying convex curves at each round

as the scanning pattern, any 3 points on this curve are not on

the same line, which means all the null space vectors should

not be linearly dependent:

zi ̸= µzj , ∀i ̸= j and µ ̸= 0. (9)

Therefore, for each pixel, as long as we have obtained 2 null

space vectors, the tangent plane is determined, and then we

can calculate the unique surface normal at that pixel.

We use two examples in Fig. 3 to verify the validity of the

EventPS formulation. In case (a), we show a point on the

sphere with Lambertian surface and the ideal event trigger-

ing model. We visualize the positive and negative null space

vectors computed from Eq. (8). As visualized in Fig. 3 (a),

all of the null space vectors are perfectly lying on the tan-

gent surface (gray transparent plane), which determines the

unique normal direction (yellow arrow). In case (b), we

show the scenario with non-Lambertian surface captured by

a real event camera (more details about the experiment setup

will be introduced in Sec. 4.1). As visualized in Fig. 3 (b),

even with offsets caused by non-ideal reflectance model and

noise events, the null space vectors are still around the tan-

gent plane.

To demonstrate that surface normal can be clearly de-

scribed by the profile of event signals, we show an exam-

ple in Fig. 4. We plot the radiance changes and event sig-

nals triggered along the rotation of light direction using 4
points in different directions. When the light source is ro-

tating with the azimuth angle ϕL sweeping from 0◦ to 360◦,

the radiance of blue, orange, and green points decreases.

The red point has a 90◦ delay due to the difference in sur-

face normal azimuth angle. As the elevation angle increases

(blue-orange-green points), the change of radiance becomes

smoother and the number of events triggered monotonically

decreases. The unique events triggering pattern (i.e., times-
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Figure 4. Given 4 points with coordinates (elevation angle θ,

azimuth angle φ) of blue: (30◦, 0◦), orange: (45◦, 0◦), green:

(60◦, 0◦), and red: (60◦, 90◦) on a sphere, and a light source ro-

tating in a clockwise circle, the radiance changes (top) and events

triggered (bottom) of the 4 points w.r.t. light direction changing are

plotted. The bottom part shows event number determines the nor-

mal elevation angle (comparing blue, orange, and green points),

while the zero-crossing point determines the normal azimuth an-

gle (comparing green and red points).

tamp and number) at each point clearly reflects the radiance

changes. Therefore, we can directly get the normal vector at

each point solely from event signals without any ambiguity.

Next, we will introduce the optimization-based and

deep-learning-based EventPS solutions to estimate the sur-

face normal from the noisy null space vectors robustly.

3.3. EventPS by Optimization

For each pixel, we combine all the null space vectors into

a 3 × (K − 1) matrix Zx. Theoretically, at least 3 events

are required to get a rank-2 matrix Zx for surface normal

estimation. Given sufficient events (i.e., K > 3), we define

the optimization target to estimate the surface normals n̂x

as minimizing the following mean square error (MSE):

argmin
n̂x

∥Z¦

x
n̂x∥2. (10)

This optimization problem is solved by SVD. We calcu-

late the eigenvector corresponding to the smallest eigen-

value of the matrix ZxZ
¦

x
, then we obtain the surface nor-

mal n̂x. We name this method Event Photometric Stereo

OPtimization (EventPS-OP).

It has been verified on a benchmark [44] that adding a

threshold to filter out the brightest region (most likely in

specular highlight) and the darkest region (most likely in

attached/cast shadow) effectively improves the PS accuracy
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Figure 5. EventPS-FCN structure. The events triggered within

each time bin are summed up and converted to null space vectors.

Then the null space vector maps are fed into the PS-FCN [2] in

replacement of the images.

solved by least squares [45]. In EventPS, due to the lack

of absolute radiance information, we can hardly add such a

threshold to the event signals. However, events are trig-

gered at a high frequency when intensity variations with

high contrast are observed. In PS settings, this usually hap-

pens when a point is crossing shadow boundaries (includ-

ing attacked shadows and cast shadows) or specular high-

lights. By setting a threshold on event triggering frequency,

we can achieve a similar goal as adding a threshold to the

least squares method in the frequency domain. The filtered

null space vector Ẑ is:

Ẑ = {zk | k > 1 and tk > tk−1 + ¶} , (11)

where ¶ is the time threshold and ¶ g ¸. With a larger ¶

more null space vectors are removed by this filter, resulting

in a stricter filtering on the EventPS-OP algorithm.

3.4. EventPS by Deep Learning

In FramePS, deep-learning-based methods [2, 13] demon-

strate higher robustness against shadows, specular reflec-

tion, and inter-reflection thanks to the prior learned from

the large-scale synthetic training dataset. To improve the

robustness and generalization of EventPS, we adapt two

frame-based deep learning methods, i.e., PS-FCN [2] and

CNN-PS [13]4 to the modality of event signals.

The original PS-FCN [2] applies convolution layers to

each individual image under specific lighting and merges

multiple image features by max pooling. As illustrated in

Fig. 5, we adapt PS-FCN [2] to event modality (named as

EventPS-FCN) by constructing null space vector images

as the input to maintain the intra-pixel relationship. We

first divide the scanning time period of interest (typically

a whole circle) into N bins. The events are converted to

null space vectors using Eq. (8). The null space vector im-

ages are formed by summing up all the null space vectors

4According to the survey paper [56], these approaches represent two typi-

cal categories of deep-learning-based PS formulated in “all-pixel” [2] and

“per-pixel” [13] manner, respectively.
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Figure 6. EventPS-CNN structure. The null space vectors are cal-

culated from the events of each pixel, which are accumulated as

event observation maps and fed into the CNN-PS [13] architecture

in replacement of the original frame observation maps. The obser-

vation maps are down-sampled by 32×32 times for visualization.

in each pixel within each time bin, which share the light

direction changes. We follow the original PS-FCN [2] de-

sign by adding a light direction L̂i channel to each null

space vector image for feature extraction. Since event fea-

tures are much sparser than image features and the differ-

ences between the adjacent time bins are not distinct, we

add two temporal convolution layers to extract temporal fea-

tures from events of adjacent bins. Then features from all

bins are max-pooled together to estimate surface normal.

The original CNN-PS [13] treats each pixel individually

by extracting a 32×32 observation map from each pixel and

applying convolution layers on such an observation map.

Similarly, the conversion from event signals into null space

vectors using the proposed EventPS formulation is also per-

formed on a per-pixel basis. As illustrated in Fig. 6, we

modify the definition of observation map to adapt the origi-

nal CNN-PS [13] to the event modality (named as EventPS-

CNN). In our event observation maps, we increase the num-

ber of channels from 1 (gray-scale image) to 3 (x, y, z axis

of the null space vector). Each pixel represents a null space

vector at the corresponding lighting direction. In this way,

all the null space vectors at each pixel are gathered in this

event observation maps and fed to the original CNN-PS [13]

model. Compared to the time bins in EventPS-FCN, the ob-

servation map contains more information for each pixel. As

a result, more details about each individual null space vector

are preserved in EventPS-CNN.

4. Experiment

4.1. Implementation Details

Algorithms implementation. To demonstrate the real-

time performance of our method, we implement the event

pre-processing part (for EventPS-OP, EventPS-FCN, and

EventPS-CNN) and SVD part (for EventPS-OP only) with

GPU acceleration written in Rust and OpenCL. We imple-

ment an asynchronous pipeline for EventPS-OP to keep

updated with the latest incoming events for lower latency,

and synchronous pipelines for EventPS-FCN and EventPS-

CNN to wait and process all the events for better quality.

The EventPS-FCN neural network is fine-tuned and eval-

uated with the checkpoint from the original PS-FCN [2]

using PyTorch. For EventPS-CNN, we implement a Py-

Torch version similar to the original CNN-PS [13] and train

it from scratch. More details can be found in the released

source code (upon acceptance of this paper).

Validation platform. To verify the performance of the al-

gorithms on real-world objects, we design a high-speed il-

lumination and capturing validation platform. There is a

green LED light source powered by an in-suit Lithium-ion

battery. The LED is mounted on a rotating axis and driven

by a synchronous belt-wheel system with a DC motor at

up to 1800 rpm, resulting in the high-speed “circle” scan-

ning pattern. A Hall effect angular sensor is installed to

detect the LED position, which is sent to the event camera

for synchronization. We use a Prophesee EVK4 HD cam-

era (with an IMX636 sensor) to capture event signals during

rotation. The two “contrast sensitivity threshold biases” are

set to −20, and the “dead time bias” is set to −20, resulting

in about 580 µs refractory time.

4.2. Datasets

Synthetic dataset. To train the deep-learning-based algo-

rithms for systemic and controllable comparison, we build a

pipeline to render a synthetic dataset and generate simulated

event streams. We choose all the objects from the Blobby

dataset [18] and 15 objects from the Sculpture dataset [52].

For each object, we add random transformation and random

BRDF textures similar to previous deep-learning-based PS

methods [2, 13]. We choose three types of scanning patterns

for lighting in the synthetic dataset: “circle” for mechanical

feasibility, “hypotrochoid” to avoid blind area, and “DiLi-

GenT” for compatibility of the following semi-real dataset.

Then we pick a scanning pattern with random parameters

and use a ray-tracing renderer to render 600 dense images

under rotating lighting for 6 rounds. These images are con-

verted to event streams with an event simulator ESIM [39].

Semi-real dataset. Popular real datasets for

FramePS [40, 45, 50] only contain images captured

under several discrete lighting directions. We select

the images at the out-most border light directions from

DiLiGenT dataset [45] and convert them to event streams

with event simulator [39] to generate this semi-real dataset

named DiLiGenT-Ev.

Real dataset. To validate the performance of the pro-

posed EventPS methods, we fabricate 5 objects and cap-

ture a real dataset with ground truth normal maps. The real

dataset covers simple geometry (BALL), spatially-varying

albedo (BALLCVPR), and shapes with moderate details

(BUNNY) and complex details (HORSE, TIGER). Each ob-
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Table 1. Full comparison results of EventPS and FramePS meth-

ods on DiLiGenT-Ev dataset. The second row is the number (#)

of events per round for each data. The middle three rows show

the MAE of our EventPS. The last three rows show the percent-

age of data rate that EventPS requires to achieve the same MAE

compared to the FramePS counterparts.

BALL

BUDDHA

CAT
COW

GOBLET

HARVEST

POT1
POT2

READIN
G

Average

# Events 260 k 176 k 203 k 251 k 112 k 179 k 141 k 189 k 201 k 192 k

M
A

E EventPS-OP 10.99 18.73 12.74 26.51 18.43 36.06 13.78 15.75 24.61 19.73

EventPS-FCN 7.49 18.13 11.42 20.61 18.07 26.05 12.83 16.59 15.16 16.26

EventPS-CNN 10.44 16.79 11.88 20.60 16.44 25.26 12.93 15.54 18.19 16.45

D
at

a
R

at
e

EventPS-OP 38% 31% 23% 13% 17% 47% 21% 20% 23% 25.86%

EventPS-FCN 45% 61% 35% 52% 29% 37% 37% 33% 29% 39.82%

EventPS-CNN 45% 31% 26% 37% 11% 27% 21% 13% 29% 26.61%
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Figure 7. Comparison of data rate and MAE between FramePS

and EventPS. On the left, the data rate for FramePS increases lin-

early as the number of images increases. In contrast, EventPS

has a low and constant data rate paramount to about 2 frame im-

ages. On the right, the MAE for FramePS decreases with more

images. EventPS achieves comparable MAE as about 7.9 images

(for EventPS-OP), 8.9 images (for EventPS-CNN), and 4.9 im-

ages (for EventPS-FCN).

ject is captured using our validation platform (rotating at

240 rpm in a darkroom for better quality5).

4.3. Comparison with FramePS

We conduct a quantitative comparison of the proposed

EventPS with the FramePS counterparts on the DiLiGenT-

Ev dataset. To compute the data rate required by the event

input and frame input, we assume that the event streams

employ 16-bit Prophesee EVT 3.06 format, and frame im-

ages are captured as 8-bit gray-scale images with 3 ex-

posure bracketing. For the three FramePS algorithms i.e.

TH28 [45] (least square method with [20%, 80%] thresh-

olding, counterpart of EventPS-OP), CNN-PS [13] (coun-

terpart of EventPS-CNN), and PS-FCN [2] (counterpart of

EventPS-FCN), we randomly select images from 96 light

directions in DiLiGenT dataset [45]. For three EventPS al-

5The impact of rotation speed on normal estimation quality can be found

in the supplementary material.
6https://docs.prophesee.ai/stable/data/encoding_

formats/evt3.html

CAT POT1 READING

GT / Event

EventPS-FCN

(Normal / Error)

12.74

11.88

11.42

13.78

12.93

12.83

24.61

18.19

15.16

EventPS-OP

(Normal / Error)

EventPS-CNN

(Normal / Error)

Object

0

45

Figure 8. Results on DiLiGenT-Ev dataset. The first row shows

the preview of our objects. The second row displays ground truth

surface normals and simulated events. The last three rows plot the

estimated surface normals (with MAE on the top right corner) and

the corresponding angular error maps.

gorithms, different numbers of events are generated for each

scene. The Mean Angular Error (MAE) and data rate com-

parison are shown in Tab. 1. On average, EventPS reduces

the required data rate to around 25.9% (for EventPS-OP),

39.8% (for EventPS-FCN), and 26.6% (for EventPS-CNN).

As shown in Fig. 7, FramePS shows a linear increase in

data rate as the number of input images increases, accom-

panied by a decrease in normal MAE. In contrast, the pro-

posed EventPS has a constant data rate and MAE. For each

algorithm, the cross point of data rate is on the left, while

the cross point of MAE is on the right. This indicates that

EventPS achieves smaller MAE with better data efficiency.

For qualitative evaluation, we show three object examples

in Fig. 8, which indicates that the error distributions of the

proposed EventPS evenly across the object.

4.4. Evaluation on Real Camera

Results on static objects. We evaluate the performance

of EventPS on real data. The results are shown in Tab. 2. On

average, our EventPS achieve MAE of 18.8 (for EventPS-

OP), 14.7 (for EventPS-FCN), and 17.6 (for EventPS-

CNN), which demonstrates the effectiveness of utilizing

only event signals for PS. We show 3 object examples and

normal estimation results in Fig. 9. The left example shows

a ball with spatially varying albedo. We can hardly see the

“CVPR” words in the captured event signals and the esti-

mated normal map, demonstrating the “albedo invariance”

property of EventPS. The MAEs are higher in the bound-

aries of the normal estimation results, which is due to the

near-light effects (only around 12 cm light-object distance)

and coarsely aligned lighting.
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Figure 9. Results on real dataset. The first row shows the preview

of our objects. The second row displays ground truth surface nor-

mals and captured events. The last three rows plot the estimated

surface normals and the corresponding angular error maps.

Table 2. Results of EventPS on real dataset.

BALLCVPR BALL BUNNY HORSE TIGER Average

EventPS-OP 12.9 14.2 19.7 24.8 22.4 18.8

EventPS-FCN 8.5 10.6 14.7 21.2 18.5 14.7

EventPS-CNN 13.8 12.2 17.1 25.3 19.5 17.6

(b) RUBBER(a) FINGER

T
im

e

Figure 10. Results on dynamic objects. (a) A human finger move-

ment. (b) The hand-pinching process of a soft rubber toy7.

Results on dynamic objects. To adapt the EventPS

model to the dynamic objects in real-world scenarios, we

add exponentially decreasing weights on all the null space

vectors to prioritize the latest events. In Fig. 10, we show

real-time PS on (a) fingers and (b) rubber toys using our val-

idation platform (rotating at 1800 rpm full speed for lowest

latency). We can see the fine-grained details like fingerprint

and rubber deformation in real-time7, which demonstrates

the superiority of EventPS in recovering fine-grained de-

tails. The processing speeds of EventPS algorithms are over

1000 fps (for EventPS-OP), about 2 fps (for EventPS-FCN),

7Please refer to the video in supplementary material for full animation.

EventPS-OP EventPS-FCN EventPS-CNN

0.05

0.1

0.2

23.6 14.4 16.9

24.8 14.4 17.4

28.1 15.7 19.6

0

45

Figure 11. Results on DiLiGenT-Ev dataset with different level

of noises. The mean event triggering threshold is 0.15, and the

standard deviations are 0.05, 0.1, and 0.2.

and about 0.1 fps (for EventPS-CNN).

5. Conclusion and Discussion

In this paper, we propose EventPS, a novel real-time PS

approach using a single event camera. Our method demon-

strates the remarkable advantages of speed and data effi-

ciency, which shows great potential to extend the capability

for real-time sensing in the dynamic scenes and rapid mea-

surement of the object surface normal.

Robustness to event noise. In both optimization and

deep-learning-based methods, there are designs concerning

noise robustness: We collect events from a sliding window

and aggravate them with SVD (for EventPS-OP in Eq. (10))

or sum them up as neural network input (for EventPS-FCN

in Fig. 5 and EventPS-CNN in Fig. 6). In this way, the noise

in each pixel is reduced. During the training stage of the two

deep-learning methods. By adding event triggering noise

with the variable noise levels, we conduct hyperparameter

analysis experiment about noise level in Fig. 11 to demon-

strate the robustness of our method. All three EventPS al-

gorithms are robust as the noise level increases.

Limitation. Firstly, the scanning patterns of lighting have

their limitations: the “circle” pattern leaves a blind area

for high elevation angle surface normal, and the “hypotro-

choid” pattern is difficult to implement mechanically. Sec-

ondly, as the scanning speed of lighting increases, the qual-

ity of event signals gradually degrades due to frequency

response [6]. Achieving diverse scanning patterns, imple-

menting non-mechanical illumination devices, and improv-

ing event signal quality under high-speed illumination is

worth exploring as further work.
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