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Abstract

Multi-modal Large Language Models (MLLMs) tuned on
machine-generated instruction-following data have demon-
strated remarkable performance in various multi-modal un-
derstanding and generation tasks. However, the hallucina-
tions inherent in machine-generated data, which could lead
to hallucinatory outputs in MLLMs, remain under-explored.
This work aims to investigate various hallucinations (i.e.,
object, relation, attribute hallucinations) and mitigate those
hallucinatory toxicities in large-scale machine-generated
visual instruction datasets. Drawing on the human ability to
identify factual errors, we present a novel hallucination de-
tection and elimination framework, HalluciDoctor, based
on the cross-checking paradigm. We use our framework to
identify and eliminate hallucinations in the training data
automatically. Interestingly, HalluciDoctor also indicates
that spurious correlations arising from long-tail object co-
occurrences contribute to hallucinations. Based on that,
we execute counterfactual visual instruction expansion to
balance data distribution, thereby enhancing MLLMs’ re-
sistance to hallucinations. Comprehensive experiments on
hallucination evaluation benchmarks show that our method
successfully mitigates 44.6% hallucinations relatively and
maintains competitive performance compared to LLaVA.
The data and code for this paper are publicly available."

1. Introduction

Recently, Multi-modal Large Language Models (MLLMs)
have made promising progress on multi-modal tasks, such
as image captioning, visual question-answering, and visual
conversations [1, 12, 13, 31]. Additionally, inspired by
the impressive instruction-following capability of LLMs [4,
28, 30], several more powerful MLLMs [5, 14, 21, 36, 44]
have recently emerged, extending instruction-tuning to the

fJuncheng Li is the corresponding author.
https://github.com/Yugqifanll117/HalluciDoctor

Human Input: Write a detailed description of the given image.

L R GPT Response: In the image, a group of people are gathered in a park
flying kites. ... two people are prominently seen flying a red kite. The audience
of onlookers is spread out in the park, Some chairs are placed around the park
for people to sit and relax. Additionally, there are a few traffic lights visible,
indicating that the park is situated near a road.

s 1‘&;;, % i

Object Hallucination: There is no traffic lights, while the Response mentions they are visible.

Relation Hallucination: A group of people are sitting and watching activities while the Response
mentions that they are gathered for flying kites.

Attribute Hallucination: The kite is a mix of red and black and there is no visible road, while the
Respon ions that the kite is only red and the park is near the road .

(a) Example of visual instruction data and various hallucinations within it

Original MiniGPT-4| Tstruction | ity (1aya | Hallucination — \yish | aypay  Visual Instruction | \yith || ava++
MME: 539.13 Tuning | MME: 1148.934 | Elimination  pyig: 107.181 Expansion MME: 1275.99
ALt o —_— -
CHAIR: 9.23% CHAIR: 21.73% 1 CHAIR: 13.75%, CHAIR: 12.03%,

(b) The MLLM performance (MME score 1) and the hallucinations in MLLMs (CHAIR |)

Figure 1. (a) On the top, we show an example of visual instruction
and various hallucinatory toxicities within it. (b) At the bottom,
we show that refined LLaVA++ from HalluciDoctor can alleviate
hallucinatory toxicity to MLLM and improve its performance.

multi-modal space. Due to the scarcity of visual-language
instruction-following data, recent research[21, 44] presents
a data reformation approach, which leverages text-only
LLMs conditioned on image captions and bounding boxes
to create instruction-following data involving visual con-
tent. However, these visual instructions might include hal-
lucinatory responses incongruent with the image content, as
they are produced by text-only large language models. For
instance, as shown in Figure 1 (a), the response in the vi-
sual instruction data includes object hallucinations such as
“a few traffic lights” and relation hallucinations like “peo-
ple gathered for flying kites” instead of “sitting and watch-
ing”. These hallucinatory responses may compromise the
MLLM’s ability to perceive the real world accurately.
Motivated by this insight, we systematically definite var-
ious kinds of hallucinations (i.e., object, relation, attribute
hallucinations) and investigate them in visual instruction
datasets. Using the widely used dataset LLaVA-Instruction-
158K [21], we construct extended CHAIR metrics to com-
prehensively evaluate the impact of these visual instructions
on modern MLLMs, considering both performance and hal-
lucination issues. While instruction-tuning on LLaVA data
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improves MLLM performance, it significantly increases the
probability of producing hallucinations (Figure 1 (b), orig-
inal MiniGPT-4 v.s. with LLaVA finetuning). These ob-
servations confirm with recent studies [7, 15, 20] that cur-
rent machine-generated instruction-following data contains
massive pernicious hallucinations (32.6% in LLaVA) that
cause MLLM to produce inaccurate outputs. This pushes
us to focus on mitigating those hallucinatory toxicities.

Previous works mainly focus on collecting extra reme-
dial training data [20, 23, 32] or utilize additional plug-in
models [7, 18, 38] to mitigate the hallucinations during in-
ference. LRV-Instruction [20] proposes to add extra neg-
ative instructions to increase the robustness of the MLLM
against hallucinations. M-HalDetect [7] mitigates halluci-
nations by incorporating an additional trained reward model
during the inference phase. However, these methods ei-
ther raise training labor costs or prolong inference time.
Moreover, they merely superficially suppress the hallucina-
tory output of MLLMs, largely neglecting the inherent hal-
lucinatory toxicity in the visual instruction dataset, which
causes the hallucinatory errors in existing MLLMs. This
leads to sub-optimal hallucination elimination for MLLMs.

In contrast to the methods above, we aim to eradicate
hallucinations in machine-generated visual instruction data.
The primary challenge is how to accurately detect and re-
move various hallucinations from massive such data with-
out manual annotations. For this, we propose a flexible Hal-
lucination Detection and Elimination Framework, namely
HalluciDoctor, which automatically detects various hallu-
cinations in arbitrary positions and dispels them based on
a cross-checking paradigm. The key insight is that when
asked about the hallucinatory content of a given image, the
responses from different MLLM experts typically tend to
vary and can even contradict each other. Specifically, as
shown in Figure 2, HalluciDoctor breaks the hallucination
detection procedure into three sub-processes: 1) Answer
Chunks Extraction: extract all answer chunks including ob-
jects, relations, and attributes by textual scene graph parsing
as description-oriented answers; 2) Answer-based Question
Generation: generate corresponding fine-grained questions
with diverse types for each answer; 3) Consistency Cross-
Checking: obtain image-oriented candidate answers from
multiple MLLMs and cross-check the consistency between
description-oriented answer chunks and their correspond-
ing image-oriented answers. Subsequently, HalluciDoctor
identifies those semantic chunks with consistency scores
below a threshold as hallucinatory chunks. It eliminates
these hallucination errors without disrupting the contex-
tual semantics, resulting in the rectified dataset, LLaVA+.
This significantly alleviates hallucinations in MLLMs (Fig-
ure 1 (b), with LLaVA v.s. with LLaVA+).

In our exploration of eliminating hallucinations in visual
instruction data, we find that HalluciDoctor not only assists

in locating hallucinations but also indicates the spurious

correlations causing them, which stem from the long-tail

distribution of object co-occurrences. These spurious corre-
lations can mislead MLLMs into erroneously inferring the
presence of objects that do not exist in the images. Inspired

by concepts of counterfactual generation [10, 16, 35, 41],

we propose a seesaw-based strategy for counterfactual vi-

sual instruction expansion. It resolves this issue by balanc-

ing the long-tail object co-occurrence distribution through
two collaborative factors, ultimately creating a more robust
visual instruction dataset, LLaVA++. This enables MLLMs

to concentrate on accurately perceiving the content of im-

ages instead of spurious associations, thereby strengthen-

ing their resistance to hallucinations and overall perfor-
mance (Figure 1 (b), with LLaVA+ v.s. with LLaVA++).
Our main contributions are summarized as follows:

* To the best of our knowledge, we are the first to compre-
hensively investigate the severe hallucination toxicity in
existing machine-generated visual instruction datasets.

* We propose a novel HalluciDoctor method to detect
various hallucinations by a consistency cross-checking
paradigm and dispel them in a low-resource way.

* Based on HalluciDoctor, we further automatically gener-
ate more counterfactual instruction data to improve the
MLLMSs’ resistance to hallucinations.

* Our empirical study confirms our method’s effectiveness
in eliminating hallucinations in visual instruction data and
improving MLLMs’ robustness.

2. Related works
2.1. Multi-modal Large Language Model

With the remarkable generalizability of LLMs in a zero-
shot setting [26, 33, 34, 42], early works integrating LLMs
with visual modality have demonstrated impressive visual-
language understanding ability [8, 11, 13, 31, 39]. Re-
cently, more powerful MLLMs [2, 5, 14, 25, 36, 37, 44]
have emerged to mimic human perceptual capabilities for
unseen vision-language tasks. Generally, MLLMs align the
vision encoder into the LLM by a cross-modal alignment
network (e.g., a linear projection layer in MiniGPT-4 [44],
a visual abstractor in mPLUG-Owl [36], and Q-former in
InstructBLIP [5]). The training process of MLLMs mainly
contains two stages: the first pre-training and the second
multi-modal instruction tuning. Moreover, LLaVA [21]
leverages powerful LLMs to obtain extensive visual in-
struction data, paving the way for acquiring the instruction-
following ability of MLLMs. This is essential for construct-
ing more powerful MLLMs in a low-resource way.

2.2. MLLM Hallucination

Although MLLMs have demonstrated remarkable perfor-
mances in various VL tasks, they still suffer from the hallu-
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cination phenomenon that textual outputs conflict with the
visual content. Current research on MLLM hallucinations
mainly focuses on the detection and elimination of hallu-
cinations [7, 15, 18, 20, 32, 43]. [15] solely concentrates
on object hallucinations and treats hallucination detection
as a binary classification issue, limiting its evaluation for
open-ended responses. HalDetect [7] identifies hallucina-
tions by training a specialized classifier. But both methods
need manual ground-truth answer collection and only con-
sider the simplest object hallucinations. For hallucination
mitigation within MLLMs, previous works generally either
collect more high-quality data manually [20] or attach an
extra correction model [7, 18, 32]. Furthermore, existing
works solely concentrate on direct hallucinations in MLLM
reasoning, ignoring the essential hallucinatory toxicity in
the visual instruction data itself. Contrary to the methods
above, we shift our attention to diverse hallucinations in the
visual instruction data and devise an automated framework
to detect and eliminate potential hallucinatory toxicity.

3. The Toxicity of Visual Instruction Data

Due to the scale limitation of multi-modal instruction-
following data, there is a growing interest in self-generated
instructions for MLLMs [21, 44]. However, since these
visual instructions are generated by text-only GPT-4, they
may contain numerous hallucinations, leading MLLMs to
produce responses that inaccurately represent the images.
To our knowledge, it is the first work to systematically ana-
lyze the hallucinatory toxicity of visual instruction datasets.

3.1. Hallucination Metrics

To better analyze hallucinatory toxicity in the dataset, we
first categorize three types of hallucinations frequently ap-
pearing in it: 1) object hallucination is the object that ap-
pears in the description but not in the image. 2) relation
hallucination involves the relation between corresponding
objects that exhibits inconsistency between descriptions and
images. 3) attribute hallucination refers to inaccurate object
properties in the description, such as size, color, and states.

The current popular metric CHAIR [29] only calcu-
lates the proportion of nonexistent objects in the descrip-
tion. Thus, we extend the naive CHAIR metric into more
complex scenarios to evaluate various hallucinations. Ini-
tially, we incorporate synonym lists into annotated objects
and phrases, forming an enhanced ground truth set. Sub-
sequently, we split the description into sentences and ex-
tracted all objects, relations, and attributes for a compre-
hensive assessment. The extended CHAIR metric then cal-
culates the ratio of sentences containing hallucinatory ele-
ments not present in the image. Accordingly, the definition
of extended CHAIR, including CHAIR,;, CHAIR,.¢;, and

Dataset #Samples CHAIR.;; | CHAIR,; | CHAIR,i | Length
LLaVA [21] 158K 28.1 36.0 337 96.1
LLaVA+ 158K 8.3 20.7 17.1 87.8
MiniGPT4-Instruction [44] 3.5K 22.6 35.6 31.6 70.8
MiniGPT4-Instruction+ 3.5K 13.3 217 238 61.8

Table 1. The statistics of three types of hallucinations in visual
instruction datasets and comparison with their corresponding rec-
tified version by HalluciDoctor (bolded rows).

CHAIR 4444, is delineated as follows:

|{sentences with nonexistent object}|
[{all sentences}|

CHAIR,;; = ()

|{sentences with nonexistent relation}|

CHAIR,.; = 2

|{all sentences}|

sentences with nonexistent attribute
CHAIR 44 = 1 } 3)
|{all sentences}|

The higher CHAIR score indicates there exist more hal-
lucinations in the description. Notably, we compute the
CHAIR,.; and the CHAIR,4,; only among existent objects
to avoid misjudging compositional errors influenced by ob-
ject hallucinations as additional hallucination errors.

3.2. Hallucinatory Toxicity Statistics

Utilizing our extended CHAIR metric designed for in-depth
hallucination analysis, we meticulously examine the hal-
lucination frequency within machine-generated visual in-
struction data. We concentrate on prevalent, machine-
generated visual instruction datasets, namely LLaVA [21]
and MiniGPT4-Instruction [44]. LLaVA consists of 158K
distinct instruction-following samples generated by GPT-
4 [25], while MiniGPT4-Instruction includes about 3.5K
instances refined by ChatGPT [24] from detailed descrip-
tions. To tackle the challenge of incomplete annotations in
the above datasets, particularly regarding relations and at-
tributes, we adopt GroundingDINO [22] to annotate objects
and use the image-text similarity of BLIP [12] to judge the
existence of relations and attributes. By incorporating these
pseudo-labels, we thoroughly assess the hallucinatory toxi-
city in those datasets, as depicted in Table 1. It can be seen
that machine-generated visual instruction data uniformly
exhibit various distinct types of hallucinations. However,
the proxy detection approach lacks flexibility in addressing
a variety of unidentified hallucinations due to its reliance
on accurate annotation. Therefore, we propose a general
hallucination detection and elimination framework Halluci-
Doctor based on the consistency cross-checking paradigm
to handle the potential hallucinations in the training data.

4. HalluciDoctor Framework

As illustrated in Figure 2, our HalluciDoctor framework
consists of two primary modules. Hallucination Cross-
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Conversations

Instruction: Explain the visual content of the image in great detail. a

Response: The image depicts a lively scene of a group of people
sitting around a dining table, enjoying a meal together. At the table,
there are four individuals, one on the left, one on the right, one in
the middle facing the table, and another person slightly behind the HalluciDoctor)| g
table. ...There is a clock placed in the background, and a cell phone !

can be seen on the table too, capturing memories of the gathering.

i Recovered Visual Instruction Data
' Image Conversations

| Instruction-Level Hallucination Elimination |

J The image depicts a lively scene of a group
of people sitting around a dining table. ... D—
There is a-clock-placed-in-the baek 4

cell phone can be seen on the table. ...
e £k ather

¥ f -
| Image-Level Visual Instruction Expansion
The scene seems to be in a kitchen area-with

Guidance ' e
: <people, enjoying, meal>
<clock, place in, background>

v

Description-Oriented
Image Answer Chunks Extraction
<people, sit around, dining table>

Lo visible in-the baek d

peef POss
havinga-cathering or socializine. There is
also a clock in the image. It appears to be a
cozy and comfortable environment.

Target scene
contain ‘cat’

Counterfactual \
Instruction Synthesis

Hallucinatory object ‘clock’

Answer-based Question Generation

Adding

Image-Oriented
Answers Generation

i 2. What are the people enjoying together?
MLLM Experts Y

1. What are the people doing around the dining table?

What is placed in the background of the image?

= ] i nn
Expansion: There can be
also a clock in the wall

BLIP2
InstructBLIP

MiniGPT-4

Semantic-aligned Q-A Pairs < q;, a; >

4 Scene selection

Enhancement Factor &;

DD [ X

cat car .. room table

o z
Seesaw.Score S, Inhibiting Factor

Consistency

v { i - S i
Candidate [ ) ] [ Conswtencnycore ! [— threshold ]
Answers af‘ E Cross-Checklng ; B(ai’ ai ) i [< threshold Hallucination Item (e.g. ('Iu('l\')o] i

Figure 2. Overview of our proposed HalluciDoctor for automatically eliminating hallucinatory toxicity in visual instruction data and
enhancing MLLM’s resistance to hallucinations. We summarize the process into four steps: (1) HalluciDoctor first extracts description-
oriented answers for semantic analysis and formulates corresponding questions. (2) Image-oriented candidate answers for these questions
are then gathered from various MLLMs. (3) HalluciDoctor will identify and remove hallucinatory chunks via consistency cross-checking.
(4) Lastly, It creates counterfactual instructions guided by preceding steps to expand the dataset and mitigate hallucinations radically.

Check Paradigm is designed to probe and eliminate hal-
lucinatory errors in the original visual instruction data.
Seesaw-based Visual Instruction Expansion produces ad-
ditional counterfactual visual instructions to reduce the
hallucinatory effects caused by spurious correlations and
strengthen the MLLMs’ resistance to hallucinations.

4.1. Hallucination Cross-Checking Paradigm

Overview. To exhaustively identify various types of hallu-
cinations (i.e., object hallucinations, relation hallucinations,
attribute hallucinations) in the corresponding description of
each image, we introduce a hallucination cross-checking
paradigm. Our insight is to decompose this demanding
detection task into several simpler answer consistency-
checking tasks. This paradigm comprises three subtasks:
answer chunks generation, question generation, and consis-
tency cross-checking. Then, HalluciDoctor eliminates any
detected hallucinations. More details are in Appendix B.

Answer Chunks Generation. Since the generated de-
scription contains massive concepts, we employ a textual
scene graph parser [17] to extract description-oriented an-
swer chunks to represent the specific semantics, including
objects, attributes, and relations. Given an image I with

its instruction-following data (X, X, ), where X, is the in-
struction from human and X, is the generated description
from GPT-4. We extra all answer chunks from instruction-
following data (X, X,) together as follows,

A={ay,....,a,} 4)

where a; represents the ‘" answer chunk in the (Xq, Xa).
Question Generation. Upon generating answer chunks,
we construct corresponding questions, which are then used
to derive image-oriented candidate answers. We employ
LLM, like ChatGPT as potent question generators to en-
compass the wide diversity of answer chunks and question
types. Thus, we can generate questions tailored to different
answers, including concrete objects, abstract relations, and
attribute descriptions as follows,

Q: {q17"'7QTL} (5)

where ¢; represents the i* question corresponding to a;.

Consistency Cross-Checking. The consistency cross-
checking step aims to verify the consistency between each
answer chunk a; and its corresponding content in the image.
To obtain the specific image content, we use the generated
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questions to derive image-oriented candidate answers based
on MLLM experts (e.g., BLIP2 [13], InstructBLIP [5], and
MiniGPT-4 [44]). Formally, let {F,} denote an MLLM
expert, the prompt template slotted with the reference im-
age I and one question g; is fed to the MLLM F, to pro-
duce the image-oriented candidate answer af = F, (I, g;).
Once we collect image-oriented candidate answers {a? } for
each answer chunk a;, we will compare their consistency.
We employ a Bert-based metric (i.e., BEM [3]) to evaluate
their consistency since this metric provides more flexibil-
ity in the answer formulation than strictly hard matching.
Let B(+,|q) denote the BEM score between two answers
according to the question, the final ConScore of the answer
chunk a; is calculated by voting as follows,

1 v
ConScore; = o ;::1 B(a;,a;) (6)

where m denotes the number of MLLM experts. We will
consider the answer chunk a; as a hallucination when its
ConScore < 0.5. More discussion of BEM evaluation and
threshold determination is presented in Appendix B.2.
Hallucination Elimination. Benefiting from the above
subtasks, we can accurately locate hallucinatory chunks
with their contexts. We employ ChatGPT to automatically
remove the hallucinatory chunks based on the context and
guarantee the coherence and harmony of the corresponding
sentences. After this rectification process, we obtain more
accurate visual instruction data by diminishing erroneous
hallucinatory descriptions, denoted as LLaVA+. This step is
designed to alleviate the hallucinatory toxicity in machine-
generated visual instruction data for MLLM training.

4.2. Seesaw-based Visual Instruction Expansion

In our efforts to locate hallucinations within visual instruc-
tion data, we have observed a notable pattern: these hallu-
cinations frequently occur alongside objects that often ap-
pear together due to the long-tail distribution of object co-
occurrences. For instance, in visual datasets, commonly
co-occurring objects like ‘cars’ and ‘roads’ may inadver-
tently lead to spurious correlations, resulting in hallucina-
tions. Consequently, a model trained on such data might
incorrectly infer the presence of a ‘car’ when encountering
a ‘road’ even in images where such a pairing is absent. This
misunderstanding is the root cause of many hallucinations
in visual data. By integrating hallucinatory objects into tail
scenes where they rarely appear, we introduce counterfac-
tual interventions [27] to mitigate the spurious correlations
among strongly associated objects.

However, selecting such scenes is challenging, as it re-
quires balancing the rarity of co-occurrence with the hal-
lucinatory objects and their contextual plausibility. To this
end, we propose a seesaw-based strategy with an enhance-

ment factor and an inhibiting factor to adaptively select tar-
get scenes for counterfactual instruction expansion.

Enhancement Factor. Given an illusory object o in the
response, we denote the object in the response that appears
most frequently with o across all annotations as o* and their
co-occurrence frequency as n*. The enhancement factor &;
is designed to increase the weight of other objects o; that
rarely co-occur with o and is computed as follows,

_nt .f < ¥
E = { max(lni,l) , HUn;sSn ' o

. *
, ifn;>n

where n; represents the co-occurrence frequency between
the hallucinatory object o and other object o;, and &; is in-
versely correlated with their co-occurrence frequency.
Inhibiting Factor. Although the enhancement factor ef-
fectively promotes the co-occurrence of the hallucinatory
object with its infrequently co-occurring objects, it over-
looks the contextual plausibility of these co-occurring pairs.
Therefore, we introduce the inhibiting factor Z; to suppress
the weight of objects in rare combinations with the contex-
tually relevant object o* as follows,

my
Ii{ ”1* :

where m,; represents the co-occurrence frequency between
the o’s most contextually relevant object o™ and other ob-
jects 0;. Once we obtain &; and Z;, we calculate the Seesaw-
Score S; as demonstrated below.

if m; <n*
if m; > n*

®)

In eq. 7-9, rare objects exhibit a higher £, while reason-
able combinations show a higher Z. In this way, we identify
scenes containing objects with the highest seesaw scores as
target scenes and integrate o into these scenes. We phrase its
description as There is also a/an {object} in
the image and create counterfactual instructions. Subse-
quently, we incorporate hallucinatory objects into suitable
locations of target scenes guided by the bounding box, to
facilitate the corresponding counterfactual image synthesis.
The generated counterfactual instructions are then amalga-
mated with the rectified dataset, LLaVA+, to form a more
robust dataset for MLLM instruction tuning, LLaVA++,
thereby reducing the impact of spurious correlations on hal-
lucinations. More details and analyses are in Appendix B.4.

S. Experiments

In this section, we present both qualitative and quanti-
tative experimental results and corresponding analyses to
assess HalluciDoctor’s superiority. Our focus primarily
lies on detailed experiments regarding MLLM hallucina-
tions (§ 5.2) and MLLM performance (§ 5.3), and based
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Instance-level

Sentence-level

Model Type Methods CHAIR,,; | CHAIR,. | CHAIR,,; | | CHAIR,,, | CHAIR,. | CHAIR,;; |

Faithful Prompt 93 1.1 4.1 232 248 255

Specific LURC[43] 57 7.6 13.3 16.0 2.8 285
VIGC[32] 6.1 75 115 152 17.7 23

w/LLaVA [21] 12.0 122 10.1 35.0 3438 263

o . w/ LRV [20] 10.0 10.8 13.6 24.9 21.0 24.8
g MiniGPT4(TB) vy 5.9 6.1 8.5 19.6 20.5 21.9
53 w/ LLaVA++ 5.7 54 7.1 16.6 17.1 20.3
;-f w/LLaVA [21] 10.6 10.0 10.3 32.6 32.0 29.1
3 w/ LRV [20] 10.3 95 13.0 30.8 29.6 32.1
S  mPLUG-OWL(TB) /1 avas 7.6 7.1 8.0 L) 21.1 242
w/ LLaVA++ 6.4 55 6.7 19.3 17.6 16.5

Table 2. Comprehensive CHAIR evaluation results to show the recovery effect of hallucination elimination by HalluciDoctor for MLLMs.

on these aspects, we organize more comprehensive GPT-4
evaluations (§ 5.4) and human assessments (§ 5.5) to evalu-
ate MLLMs’ open-ended capabilities precisely.

5.1. Experimental Setup

Model Setting. In this paper, we utilize the most widely
used machine-generated visual instruction data LLaVA-
158K [21] to conduct experiments. To provide a com-
prehensive evaluation, we thoroughly compare our Hallu-
ciDoctor (w/ LLaVA+ and w/ LLaVA++, shown in the

of Table 2) with various SOTA methods tailored for alle-
viating hallucinations. We categorize those methods into
two categories: (1) Specialized approaches. We incorporate
some models requiring additional dedicated modules to mit-
igate hallucinations, including LURC[43] and VIGC [32],
as well as employing explicit faithful prompts to constrain
the generation of reliable instruction data (Faithful Prompt).
(2) Model-agnostic baselines. They refer to plug-and-play
methods for optimization at the dataset level and fine-tune
MLLMs on the corresponding instruction data, including
w/ LLaVA [21] and w/ LRV [20]. For model-agnostic base-
lines, we equip variant datasets with two popular MLLMs:
MiniGPT-4 [44] and mPLUG-Owl [36]. We use the official
pre-trained MLLM with the image-text alignment stage and
only fine-tune it in the second stage for fair comparison.

5.2. Comparion of MLLM Hallucinations

To assess the toxicity of visual instruction data on MLLMs
and the efficacy of Hallucidoctor in eliminating halluci-
nations, we compared MLLMs with Hallucidoctor against
baseline models using our extended CHAIR benchmark. In
addition to the sentence-level CHAIR evaluation mentioned
above (i.e., CHAIRg), we further computed CHAIR at the
instance-level (i.e., CHAIR ;) by quantifying all nonexistent
instances within a sentence to assess the overall distribution
of hallucinations. Following previous works [15, 20], we
randomly select 500 unique images from the intersection
of MSCOCO [19] and Visual Genome [9] for a more de-
tailed evaluation. Notably, these images were different from

the ones used in LLaVA-158k and contained various kinds
of annotations. Subsequently, we prompt MLLMs with the
instruction of Provide a detailed description
of the given image to generate detailed captions of
similar length. We compute CHAIR,;;, CHAIR,..;, and
CHAIR,;4,; at two different levels and report the results in
Table 2. Based on the observation of experimental results,
we have summarized the following conclusions:

Visual instruction data has serious hallucinatory tox-
icity. We compare the MLLM fine-tuned with LLaVA
against the original MLLM. The former is more susceptible
to generating hallucinations, particularly in object percep-
tion. This confirms our previous analysis of the hallucina-
tory toxicity in visual instruction data, further emphasizing
the necessity to eliminate hallucinations therein.

Our HalluciDoctor can be flexibly equipped to dif-
ferent MLLMs for hallucination elimination. We uti-
lize HalluciDoctor to eliminate hallucinations and obtain
the LLaVA+. For hallucination evaluation, we integrate
this rectified dataset into two backbone models, MiniGPT-
4 [44] and mPLUG-Owl1 [36]. Despite the model diversity,
MLLMs with LLaVA+ can consistently reduce the proba-
bility of various hallucinations (average reduction of 4.6%
/ 11.4% in MiniGPT-4 and 2.7% / 8.7% in mPLUG-OwlI in
two metric levels). The results confirm that our HalluciDoc-
tor, by effectively reducing hallucination errors in visual in-
struction data (as shown in the bolded rows in Table 1), can
alleviate hallucinatory outputs in MLLMs, thereby enhanc-
ing their reliability in the real world.

Compared with other model-agnostic methods, our
HalluciDoctor outperforms all of them for hallucination
elimination. Specifically, MLLMs fine-tuned on LLaVA+
exhibit fewer hallucinations among all three types com-
pared to those trained on the meticulously curated SOTA
dataset LRV-Instruction [20], especially for more challeng-
ing attribute hallucinations (8.5% v.s. 13.6% in instance-
level of MiniGPT-4). Similar results are also observed in
the closed-ended POPE evaluation [15], with detailed anal-
ysis in Appendix C.2. It indicates that our HalluciDoctor
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Model Type Methods Perception  Cognition

Faithful Prompt 696.34 293.57

Specific LURC[43] 904.61 254.13
o VIGC[32] 879.35 221.79
§ w/LLaVA [21] 859.64 289.29
£ » w/ LRV [20] 870.12 291.79
Q
£ MiniGPT4(TB) 11 avas 889.32 317.86
A w/ LLaVA++ 955.28 320.71
§ w/ LLaVA 967.34 276.07
w/ LRV [20] 1008.57  263.93
mPLUG-OWL(TB) 1 | ava+ 1043.19  282.14
w/ LLaVA++ 111434  302.86

Table 3. Results on MME evaluation [6] of MiniGPT4-7B and
mPLUG-OwI-7B. The performance is measured by the sum of the
subtasks’ scores, where the best score for each partition is bolded.

effectively eliminates massive hallucinations in machine-
generated data, constructing higher-quality visual instruc-
tions to mitigate hallucinatory toxicity in MLLMs.

Visual instruction expansion can effectively reduce
hallucinations caused by spurious correlations. With the
help of LLaVA++, MLLM obtained fewer object halluci-
nations than LLaVA+ (17.1% v.s. 20.5% in sentence-level
CHAIR,;). It suggests that expanded counterfactual in-
structions can equalize the long-tail distribution of object
co-occurrences, reducing MLLMs’ inclination towards in-
correct associations. Remarkably, the MLLM fine-tuned
on LLaVA++ exhibited the fewest hallucinations across all
metrics, highlighting the superiority of HalluciDoctor in en-
hancing model reliability. To further mitigate the impact
of long-tail distributions, it is also promising to incorporate
contrastive learning [40] with counterfactual interventions.

5.3. Comparion of MLLM Performance

While the extended CHAIR evaluation affirms HalluciDoc-
tor’s efficacy in hallucination elimination, a well-rounded
analysis of its impact on MLLM performance remains to
be conducted. Therefore, we conduct quantitative analy-
sis on the MME benchmark [6], which evaluates the per-
ception and cognition abilities of MLLMs on 14 subtasks.
This setup converts human annotations into a series of ’yes
or no” questions and measures MLLM performance by
calculating the total accuracy score. Table 3 summarizes
the cognitive and perceptual performance of MLLMs fine-
tuning on different datasets. Compared to LLaVA, LLaVA+
not only mitigates hallucinations but also achieves higher
MLLM performance (1207.18 v.s. 1148.93). In compari-
son to LRV-Instruction [20], LLaVA+ performs better than
this SOTA method, even with fewer visual instructions.
This indicates that HalluciDoctor still preserves the accu-
rate elements when eliminating hallucinations in visual in-
structions for better instruction alignment. Additionally,
LLaVA++ offers more challenging counterfactual instruc-
tions for better generalization. With the aid of LLaVA++,
both fine-tuned MLLMs experience further improvement

w Detailedness Score (1-5)
5. Accuracy Score (1-5) 7.6
~0O-Total Score
4 74
7.2
7.0

6.8

A= .
. Ty Ol E
411

Total Score

6.0
5.8

5.6
MiniGPT-4 w/
LLaVA LRV LLaVA+

MiniGPT-4 w/
LLaVA++

Figure 3. Evaluation scores of detailedness and accuracy for de-
scriptions from MiniGPT-4 with different setups. We visualized
the total scores using a gray line, where higher scores indicate
more detailed descriptions and fewer hallucinations.

than LLaVA (+127.06 / +173.79 in overall performance).

5.4. GPT-4 Evaluation

Empirically, there is a trade-off between the diversity of de-
scriptions generated by MLLMs and the frequency of hallu-
cinations. To strike a balanced evaluation between halluci-
nations and performance, we employ GPT-4 for a compre-
hensive assessment, comparing detailedness and accuracy
in descriptions generated by MLLMs. In Figure 3, we vi-
sualize the GPT-4 evaluation scores under different MLLM
settings. On the one hand, LLaVA significantly enriches de-
scriptive content but at the cost of increased hallucinations.
On the other hand, LRV-Instruction [20] reduces such hal-
lucinatory errors at the expense of descriptive diversity, thus
constraining the generative potential of the model. In con-
trast, our HalluciDoctor outperforms other models on a total
score, indicating that it can eliminate hallucinations while
preserving MLLM’s ability to output diverse descriptions.

5.5. Human Evaluation

To more comprehensively assess the open-ended capabili-
ties of MLLMs, we further conduct human evaluations us-
ing the OwlEval benchmark. OwlEval [36] is another open-
ended evaluation set with 82 artificially constructed ques-
tions. We quantified responses from all models on the 3-
0 scale (aligned with option A-D in the official setting),
calculating quality and accuracy scores based on the rele-
vance of the response to the question and the precision of
the description, respectively. Additionally, we computed
the score variance among each MLLM’s responses to eval-
uate model stability. We show the visualized results for all
MLLMs in Figure 5. We observe that MLLMs fine-tuned
with LLaVA++ achieve the highest accuracy scores regard-
ing image content while maintaining fidelity to the corre-
sponding questions. This suggests that HalluciDoctor ef-
fectively reduces hallucinations without compromising re-
sponse quality, adeptly addressing a wide range of open-
domain questions rather than limiting response length.
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Provide a detailed description

of the given image. s in an urban area, with tall buildings

sides of the street.

A

MiniGPT-4 (7 The given image is of a small storefront on\ \
the corner of two streets. It appears to be

surrounding it and cars passing by on both

/“The image shows a street corner with a building on the\ MiniGPT-4
left side of the scene. The building appears to be a shop, w/ LLaVA++
named “The Old Furniture", with a cow statue out
front. There are two cars in the scene, one sliver cat @
driving down the road and another one in the distance.

Outside the shop, several chairs and sofas are seen,

More details! |
Fewer
hallucinations!

7

SR

seems to have been abandoned or for rest. The buildings
have a traditional town architectural style, and the sky is |

\.one end of the street.

through their journeys. A bus is also visible
in the scene, as is a pedestrian crossing the
street. In addition to these vehicles, there
are two bicycles parked near each other at |

More detailed mfonna.tlon- s ‘\overcast, suggesting a typical cloudy day.
But much more hallucinations! . - - .
HalluciDoctor Visual Instruction Expansion
‘/ The image depicts a busy street scene wm ‘/ The image depicts an urban street scene during daylight.\‘
. several cars and trucks driving along the Hallucination | In the foreground, there's a road with a silver car driving
MiniGPT-4| 4. There are multiple traffic lights Elimination | past from left to right. There are at least two cars, MiniGPT-4
w/ ‘LaVA present on the street, guiding drivers including a silver car, and a red car in the distance. The w/ LLaVA+

buildings in the area are a mix of colors, with a yellow and
blue storefront visible among the others , adding to the
vintage atmosphere of this urban setting. Multiple traffic
light can be seen in the scene, likely regulating the flow of |

&

Figure 4. A case study comparing the levels of MLLM hallucination after fine-tuning on various instruction data.
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w/ LLaVA+
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(a) MiniGPT-4 Results (b) mPLUG-OwI Results
Figure 5. Quality score (y-axis, higher is better), accuracy

score (x-axis, higher is better), and the stability (circle sizes,
smaller is better) of MLLMs’ responses on OwlEval benchmark.

5.6. In-depth Analysis

Robustness Analysis of HalluciDoctor. Additionally, we
investigated the robustness of HalluciDoctor when applied
to other machine-generated datasets, such as MiniGPT4-
Instruction [44]. As illustrated in Table 4, HalluciDoc-
tor similarly reduces hallucination frequency and enhances
model performance, demonstrating our method’s robust-
ness across various machine-generated visual instructions.
Analysis of Instruction Expansion Factors. To dissect
the influence of various factors in our counterfactual in-
struction expansion, we incrementally removed them and
presented the associated results in Figure 6. The absence of
enhancement factors for balancing tail co-occurrences leads
MLLMs to more hallucinations, while the lack of inhibitory
factors leads to excessive unreasonable instructions, dimin-
ishing MLLM performance in contextual understanding.
Visualization Results. In Figure 4, we present a case where
MLLM progressively enhances response quality after Hal-
luciDoctor mitigates the hallucinatory toxicity from visual
instruction data. In this case, HalluciDoctor effectively
reduces hallucinatory toxicity introduced by LLaVA (e.g.,
pedestrian crossing the street). Furthermore, with the aid
of the more robust LLaVA++, MLLMs reduce the impact
of specious correlations and enhance the perception of fine-
grained (e.g., shop’s name) and unusual content (e.g., cow
out front of shop). More case analyses are in Appendix D.

‘\tTafﬁc at the intersection. /
Dataset CHAIR (%) MME Performance
i CHAIR; | CHAIRg | Perception{ Cognition 1
MiniGPT4-Instruction [44] 9.2 23.7 616.41 232.71
MiniGPT4-Instruction+ 8.4 18.6 659.67 255.03
MiniGPT4-Instruction++ 59 15.2 696.96 282.86

Table 4. CHAIR results and MME performance of applying Hal-
luciDoctor on MiniGPT4-Instruction Dataset [44].

14 1300 15

=3 Default

=1 wio Enhancement Factor
wio inhibiting Factor

£ Total HalluciDoctor

23 Default
EZ1 wio Enhancement Factor
15.0| Z2 wio inhibiting Factor
EZ1 Total HalluciDoctor

14.0
1280

1260

°
CHAIR (%)

CHAIR (%)
MME Performance

x
S

1220

°

MLLM Hallucination 1200

(a) MiniGPT-4

MLLM Performance

(b) mPLUG-Owl1

Figure 6. Ablation study of two factors in HalluciDoctor.

6. Conclusions

In this paper, we initially delve deep into the underlying hal-
lucination phenomena in machine-generated visual instruc-
tion data. We introduce a flexible framework, HalluciDoc-
tor, that exploits a question-based cross-checking paradigm
to detect and eliminate potential hallucinations automati-
cally. Additionally, we pinpoint the co-occurrence issue
leading to hallucinations and augment the MLLMS’ resis-
tance to such errors through the expansion of counterfac-
tual instruction. The extensive experimental results by both
automatic metrics and human evaluations demonstrate the
superiority of our approach in dispelling various hallucina-
tions and retaining MLLM’s open-ended capabilities.
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