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Abstract

Multi-instance point cloud registration estimates the
poses of multiple instances of a model point cloud in a
scene point cloud. Extracting accurate point correspon-
dences is to the center of the problem. Existing approaches
usually treat the scene point cloud as a whole, overlook-
ing the separation of instances. Therefore, point features
could be easily polluted by other points from the back-
ground or different instances, leading to inaccurate cor-
respondences oblivious to separate instances, especially
in cluttered scenes. In this work, we propose MIRETR,
Multi-Instance REgistration TRansformer, a coarse-to-fine
approach to the extraction of instance-aware correspon-
dences. At the coarse level, it jointly learns instance-aware
superpoint features and predicts per-instance masks. With
instance masks, the influence from outside of the instance
being concerned is minimized, such that highly reliable su-
perpoint correspondences can be extracted. The superpoint
correspondences are then extended to instance candidates
at the fine level according to the instance masks. At last,
an efficient candidate selection and refinement algorithm is
devised to obtain the final registrations. Extensive experi-
ments on three public benchmarks demonstrate the efficacy
of our approach. In particular, MIRETR outperforms the
state of the arts by 16.6 points on F1 score on the challeng-
ing ROBI benchmark. Code and models are available at
https://github.com/zhiyuanYU134/MIRETR.

1. Introduction
Point cloud registration aims at estimating a rigid transfor-
mation that aligns two point clouds. In real-world appli-
cation scenarios such as robotic bin picking, there is of-
ten the requirement of multi-instance registration where the
point cloud of a model needs to be registered against mul-
tiple instances of the model in the target scene. Multi-
instance point cloud registration is challenging due to the
unknown number of instances and inter-instance occlusions
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Figure 1. MIRETR significantly improves the multi-instance reg-
istration results in cluttered scenes compared to the state-of-the-art
GeoTransformer [38]. Benefiting from the instance-aware corre-
spondences, our method can generate more accurate registrations
(see the yellow boxes) and register the heavily-occluded instances
with severe geometric deficiency (see the red boxes).

especially in a cluttered scene.

Existing approaches to multi-instance registration are
mostly two-stage: They first extract point correspondences
between the model and the scene point clouds and then
recover per-instance transformations with multi-model fit-
ting [28, 44, 55]. Clearly, the performance of such approach
highly depends on the quality of the correspondences. Un-
like pair-wise registration that can be pinned down by a
small number of correspondences, multi-instance registra-
tion poses unique challenges. First, the correspondences
should widely spread over the scene point cloud to cover
as many instances as possible so that more instances can be
found and registered. Second, the correspondences should
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be accurately clustered into individual instances to estimate
per-instance pose transformations.

Existing point correspondence methods can be broadly
classified into keypoint-based and keypoint-free ones. Al-
beit successful in pairwise registration, these methods fail
to effectively tackle the aforementioned challenges. On the
one hand, keypoint-based methods [4, 14, 25] first detect
keypoints and then match them to form correspondences.
In the multi-instance setting, however, it is common that an
instance is severely occluded so that too few keypoints can
be detected to guarantee a successful registration.

On the other hand, keypoint-free methods [38, 54] by-
pass keypoint detection with a coarse-to-fine pipeline. They
first extract correspondences between sparse superpoints
and then refine them to dense point correspondences. To
achieve reliable superpoint matching, they encode global
context with feature correlation [54] or geometric struc-
ture [38] to learn distinctive superpoint features. When used
in multi-instance registration, such approach may overlook
the separation of individual instances and lead to the follow-
ing two drawbacks. First, the superpoint features of an in-
stance may be contaminated by the global context from the
background or other instances, making the extracted fea-
tures less informative. Thus, the features of a severely oc-
cluded instance could be overwhelmed by those more com-
plete neighboring ones, making the occluded instances hard
to registered (see Fig. 1 (left)). Second, they cannot dis-
criminate correspondences into different instances and have
to rely on multi-model fitting [28, 44, 55] to cluster corre-
spondences. Multi-model fitting needs to sample numerous
hypotheses and finds difficulty in handling heavy occlusion.

We propose MIRETR, Multi-Instance REgistration
TRansformer, which learns to extract instance-aware cor-
respondences in a coarse-to-fine fashion. Our key moti-
vation is to restrict the contextual feature encoding within
the instance scope. An Instance-aware Geometric Trans-
former module is devised to jointly extract reliable super-
point features and predict instance masks in the scene. We
resolve this chicken-and-egg problem with an iterative pro-
cess. In each iteration, we first encode intra-instance ge-
ometric structure based on the instance mask of the previ-
ous iteration and then learn geometric consistency between
the model and the scene. Next, the instance masks are re-
fined based on the instance-aware features. As the itera-
tion goes, the superpoint features gradually improve with
increasingly relevant context and accurate instance masks,
resulting in reliable registrations even for heavily-occluded
instances (see Fig. 1 (right)).

Having obtained superpoint correspondences, we extend
them to instance candidates based on instance masks. This
allows us to directly extract instance-wise point correspon-
dences and estimate a transformation for each instance can-
didate. An efficient candidate selection and refinement

method is proposed to eliminate duplicated instances and
obtain the final registrations. Thanks to the instance-aware
correspondences, our method bypasses the need of multi-
model fitting, achieving superior efficiency and accuracy.
Extensive experiments on three benchmarks [2, 10, 52]
demonstrate the efficacy of our method. Our method sur-
passes the previous state-of-the-art methods [38, 55] by
16.6 points on F1 score on the cluttered ROBI benchmark.
Our main contributions include:
• A multi-instance point cloud registration method which

extracts instance-wise correspondences and estimates
transformations without multi-model fitting.

• An instance-aware geometric transformer module which
jointly learns instance-aware superpoint features and pre-
dicts instance masks.

• An efficient instance candidate selection and refinement
method which removes duplicated candidates and gener-
ates the final registrations.

2. Related work
Point cloud registration. State-of-the-art point cloud reg-
istration methods can be categorized into direct registra-
tion methods and correspondence-based methods. Direct
registration methods [1, 18, 26, 48, 49, 51, 53] use a neu-
ral network to estimate the transformation in an end-to-end
manner. Correspondence-based methods [4, 14, 16, 17, 19,
25, 38, 54] extract point correspondences and estimate the
rigid transformation with a robust pose estimator. Early
point correspondence methods [4, 25] adopt a detect-then-
match pipeline, where keypoints are first detected and then
matched. Recent advances [38, 54] have bypassed keypoint
detection by extracting correspondences in a coarse-to-fine
fashion. However, existing methods mainly focus on pair-
wise registration and little attention has been paid to multi-
instance registration, which faces new challenges such as
unknown number of instances and heavy intra-instance oc-
clusion. In this paper, we fill this gap by directly extracting
instance-aware correspondences.
Multi-model fitting. Multi-model fitting aims at recov-
ering multiple models from noisy data, which is an im-
portant step in multi-instance registration. Multi-model fit-
ting methods can be classified into RANSAC-based meth-
ods and clustering-based methods. RANSAC-based meth-
ods [6, 7, 27, 28] adopt a hypothesize-and-verify manner
to sequentially fit multiple models. Clustering-based meth-
ods [33–35, 44, 55] sample a huge set of hypotheses and
cluster the correspondences according to their residuals un-
der these hypotheses. However, these methods suffer from
huge memory usage or long convergence time. In this work,
we achieve accurate and efficient multi-instance registration
without multi-model fitting.
Open-set pose estimation. Model retrieval [2, 3, 8, 9,
13, 20, 24, 29] and image-based pose estimation [11, 12,
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22, 23, 31, 32, 37, 41–43, 47, 50] are two highly-related
tasks to multi-instance registration. Model retrieval aims
at estimating the 9-DoF pose parameters of the CAD mod-
els from a pre-built database that appears in a given scene.
And image-based pose estimation recovers the 6-DoF poses
for certain objects [12, 22, 23, 37, 41–43, 50] or cate-
gories [11, 31, 32, 47] in an RGB or RGB-D image. How-
ever, both tasks are based on the close-set assumption,
where the training and testing data follow the same distri-
bution. Model retrieval can only retrieve the CAD models
in the database while image-based pose estimation can only
handle known objects or categories in the training data. On
the contrary, multi-instance registration is an open-set prob-
lem. It is based on geometric matching and thus can gen-
eralize well to novel objects and categories. We discuss the
generality of MIRETR in Sec. 5.3.

3. Problem Statement
Given a model point cloud P={pi∈R3 |i=1, ..., N} and
a scene point cloud Q={qi∈R3 |i=1, ...,M}, where Q
could contain multiple instances of P , the goal of multi-
instance registration is to register all instances of P in Q.
Specifically, Q is represented as Q = Q0 ∪Q1 ∪ ... ∪QK ,
where Q0 is the background points and {Q1, ...,QK} are
the K instances of P . For each instance Qk, we estimate a
6-DoF pose Tk ∈ SE(3) aligning P to Qk, which consists
of a 3D rotation Rk ∈ SO(3) and a 3D translation tk ∈
R3. To solve this problem, one usually first extracts a set of
correspondences C={(pi,qi) |pi∈P,qi∈Q} between the
two point clouds. The correspondences are then clustered
into different groups {C1, ..., CK}, and each group recovers
the pose of one instance by solving the following problem:

min
Rk,tk

∑
(pi,qi)∈Ck

∥Rk · pi + tk − qi∥22. (1)

This problem is very challenging as the number of instances
is unknown and it is difficult to cluster the correspondences
to the correct instances. In this work, we deal with this
problem by extracting instance-aware correspondences.

4. Method
MIRETR extracts correspondences in a coarse-to-fine fash-
ion similar to keypoint-free registration methods. The over-
all pipeline of our method is illustrated in Fig. 2. At the
coarse level, we establish correspondences between down-
sampled superpoints with an Instance-aware Geometric
Transformer module (Sec. 4.1). At the fine level, each su-
perpoint correspondence is extended to form an instance
candidate, where instance-wise point correspondences are
extracted for pose estimation (Sec. 4.2). At last, we merge
similar instance candidates and refine the resultant poses to
obtain the final registrations (Sec. 4.3).

Given the input point clouds P and Q, we progressively
downsample them into sparse superpoints, denoted as P̂ and
Q̂, using grid subsampling [45]. KPFCNN [45] is adopted
to extract multi-level point features. Let us denote the fea-
tures of P , Q, P̂ and Q̂ as FP , FQ, F̂P and F̂Q, respec-
tively. Following [38, 54], each superpoint p̂i∈P̂ (q̂i∈Q̂)
is associated with a local patch GP

i (GQ
i ) by the point-to-

node partition strategy [30] where each point is assigned to
its nearest superpoint.

4.1. Instance-aware Geometric Transformer

Given the superpoints P̂ and Q̂, as well as their features
F̂P and F̂Q, we first extract a set of superpoint correspon-
dences whose local patches overlap with each other. Ac-
curate superpoint matching relies on learning the geomet-
ric consistency between the two point clouds. To this end,
previous works [38, 54] adopt transformer [46] to encode
intra- and inter-point-cloud context in the global scope, as
shown in Fig. 3 (a). Albeit successful in pairwise registra-
tion, this is problematic in multi-instance registration. In the
scene point cloud, the superpoints from the background or
other instances are de facto noises for modeling the geomet-
ric consistency and severely pollute the superpoint features.
This becomes more severe in cluttered scenes. Consider-
ing an heavily-occluded instance, as its geometric structure
is incomplete, the features of its superpoints could be eas-
ily overwhelmed by those from the background or nearby
instances. As a result, it can hardly be registered.

To address these issues, we propose to make the super-
point features instance-aware with a novel Instance-aware
Geometric Transformer module. The key insight is to re-
strict the intra-point-cloud context encoding in the scene
point cloud within each individual instance. To this end, we
first extract the k-nearest neighbors for each superpoint and
conduct context aggregation within local regions. However,
as shown in Fig. 3 (b), nearby superpoints do not neces-
sarily reside in the same instance, and the feature pollution
problem still exists. For this reason, we further design an in-
stance masking mechanism by predicting an instance mask
for each superpoint to select the neighbors in the same in-
stance as it, and only aggregate the context among them.
Fig. 3 (c) illustrates our instance masking mechanism.

As shown in Fig. 2 (bottom), the instance-aware geo-
metric transformer contains three blocks. First, a geometric
encoding block encodes intra-instance geometric structure
based on the instance masks. Next, a cross-attention block
enhances the superpoint features by modeling inter-point-
cloud geometric consistency. At last, an instance masking
block predicts new instance masks with the instance-aware
superpoint features. We adopt Nt instance-aware geometric
transformer modules to progressively refine the superpoint
features and the instance masks.
Geometric encoding block. This block encodes the intra-
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Figure 2. Overall pipeline of MIRETR. The backbone progressively downsamples two point clouds and extracts multi-level features. At
the coarse level, the Instance-aware Geometric Transformer module extracts instance-aware superpoint features and establishes reliable
superpoint correspondences. At the fine level, the superpoint correspondences are extended to instance candidates, where instance-wise
point correspondences are extracted to estimate per-candidate poses. At last, a simple but effective candidate selection and refinement
algorithm is adopted to generate the final registrations.

instance geometric context within each point cloud. Given
an anchor superpoint q̂i ∈ Q̂, its k-nearest superpoints
NQ

i = {q̂i1 , ..., q̂ik}, the input feature matrix XQ ∈
R|Q̂|×d, and the instance mask matrix MQ ∈ R|Q̂|×k, the
output feature matrix ZQ ∈ R|Q̂|×d is computed as:

zQi =
k∑

j=1

exp(ei,j)∑k
l=1 exp(ei,l)

(xQ
ij
WV ), (2)

where the attention score ei,j is computed as:

ei,j =
(xQ

i W
Q)(xQ

ij
WK + ri,jW

R)⊤
√
d

+mQ
i,j , (3)

where WQ,WK ,WV ,WR ∈ Rd×d are the projection
weights for query, key, value and geometric embedding, re-
spectively. ri,j is the geometric structure embedding [38]
encoding the transformation-invariant geometric informa-
tion among the superpoints. For the instance mask MQ, we
set mQ

i,j = 0 if q̂i and q̂ij are in the same instance, while
mQ

i,j = −∞ otherwise. MQ is initialized with all zeros and
refined by the instance masking block described later. Ben-
efiting from the instance masks, the superpoint features are
instance-aware by encoding the feature correlation and the
geometric context within their belonging instances. For the
computation in P̂ , we ignore the mask term in Eq. (3) and
aggragate the features from all neighbors.
Cross-attention block. After encoding the intra-instance
geometric context, we further learn the inter-point-cloud ge-
ometric consistency with a cross-attention block inspired

(a) Global attention (c) Instance-aware attention(b) Local attention

Figure 3. Comparison of (a) global attention, (b) local attention,
and (c) instance-aware attention. The superpoints (patches) partic-
ipating in the attention computation are color-coded. The anchor
superpoints are in red. The k-nearest neighbors of the anchor are
enclosed by the purple line.

by [38, 54]. Given the feature matrices XP ∈R|P̂|×d of P̂
and XQ∈R|Q̂|×d of Q̂ from the geometric encoding block,
the output feature matrix ZP ∈R|P̂|×d of P̂ is computed as:

zPi =

|Q̂|∑
j=1

exp(ei,j)∑|Q̂|
k=1 exp(ei,k)

(xQ
k W

V ), (4)

where the attention score ei,j is computed as:

ei,j =
(xP

i W
Q)(xQ

j W
K)⊤

√
d

, (5)
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Figure 4. Structure of the Instance masking block.

where WQ,WK ,WV ∈ Rd×d are the respective projec-
tion weights for query, key and value. The same computa-
tion goes for ZQ. Benefiting from the cross-attention block,
the superpoint features in one point cloud are aware of the
geometric structure of the other one, which facilitates mod-
eling the geometric consistency between two point clouds.
Instance masking block. At last, this block consumes the
cross-attention features XQ of Q̂ as well as the previous
instance mask MQ

(t−1) to predict a refined instance mask
MQ

(t). We observe that two superpoints from different in-
stances tend to be distant in the geodesic space. To this
end, we design a geodesic self-attention mechanism by re-
placing the geometric structure embedding in Eq. (3) with
a similar geodesic distance embedding to enhance the su-
perpoint features. Please refer to the appendix for more de-
tails. The resultant superpoint features are denoted as Y.
At last, we adopt an MLP to predict a confidence score ui,j

for each neighbor q̂ij ∈NQ
i indicating whether it belongs

to the same instance as q̂i based on the feature discrepancy
between yi and yij and the geodesic distance embedding
gi,j between q̂i and q̂ij :

ui,j = σ
(
MLP

(
[ yij − yi; gi,j ]

))
, (6)

where σ(·) is the sigmoid function and [·] is the concatena-
tion operator. At last, the confidence matrix U ∈ R|Q̂|×k is
converted into MQ

(t) with a thresholding function:

mQ
i,j =

{
−∞ ui,j < τ

0 otherwise
, (7)

where τ is the confidence threshold. Thanks to the instance
mask, our model can effectively learn instance-aware su-
perpoint features and extract accurate superpoint correspon-
dences covering more instances. Furthermore, the instance
masks also help extract instance-aware dense point corre-
spondences as described in Sec. 4.2.
Superpoint matching. We extract superpoint correspon-
dences Ĉ by matching the superpoint features from the last
cross-attention block. As in [38], we select the top Nc su-

perpoint pairs with the highest cosine feature similarity as
the superpoint correspondences.

4.2. Instance Candidate Generation

After obtaining the superpoint correspondences, we then re-
fine them to dense point correspondences at the fine level.
Previous methods [38, 54] opt to match the points within the
local patches of two matched superpoints with an optimal
transport layer [40]. Nonetheless, the local correspondences
extracted in this manner often cluster closely, which could
lead to unstable pose estimation as noted in [25]. This is
aggravated in multi-instance registration, especially in clut-
tered scenes, as each instance is typically small and thus its
pose cannot be globally optimized as in [38].

To address this issue, we propose to extract dense point
correspondences within the instance scope by leveraging
the instance masks from the coarse level. For each super-
point correspondence Ĉk = (p̂i, q̂j), we collect their neigh-
boring superpoints NP

i and NQ
j . The superpoints from dif-

ferent instances of q̂j are removed from NQ
j based on the

instance mask Mj . The points in the local patches of all
superpoints in NP

i and NQ
j imply a potential occurrence of

P in Q, i.e., an instance candidate, denoted as Ik. Next,
instance-wise point correspondences are extracted within
Ik with an optimal transport layer and mutual top-k selec-
tion following [38], denoted as Ck. At last, we estimate
a pose Tk = {Rk, tk} for Ik by solving Eq. (1) with
weighted SVD [8]. Thanks to the powerful instance-aware
geometric transformer, an instance candidate can cover a
relatively large portion of an instance, with few points from
the background or other instances, so the poses obtained in
this step have already been very accurate.

4.3. Candidate Selection and Refinement

As several superpoint correspondences could belong to the
same instance, there are commonly duplicated instances in
the instance candidates. For this reason, we further design
a simple but effective algorithm for duplicate removal and
candidate refinement.

Inspired by non-maximum suppresion (NMS) [39], we
first sort the instance candidates by the inlier ratio on the
global point correspondences C =

⋃Nc

i=1 Ci. The inlier ratio
of the instance candidate Ik is:

γk =
1

|C|
∑

(p,q)∈C

J∥Rkp+ tk − q∥ < τ2K, (8)

where J·K is the Iverson bracket and τ2 is the acceptance ra-
dius. Next, we select the instance candidate with the high-
est inlier ratio as the anchor candidate. All remaining can-
didates similar with the anchor are merged with it and re-
moved from future computation. We define the similarity
between two candidates Ii and Ij by the average distance
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(ADD) [21] between their estimated poses:

si,j = 1− ADD(Ti,Tj)

r
, (9)

where r is the diameter of P . And Ii and Ij are consid-
ered similar if si,j is above τs. To merge two candidates,
we combine their point correspondences and recompute the
pose by solving Eq. (1). At last, the preserved pose is itera-
tively refined with the surviving inliers as in [5, 38], leading
to a final instance registration. The anchor is then removed
from future computation. The above process repeats until
there are no candidates left and we omit the instance regis-
trations with too few inliers.

Compared to multi-model fitting methods [44, 55], the
advantages of our MIRETR are two-fold. First, by learn-
ing instance-aware superpoint features, the influence from
the background and other instances is minimized, thus the
correspondences are more accurate and can cover more in-
stances. Second, correspondence clustering-based methods
tend to lose heavily-occluded instances as there are few cor-
respondences on them, especially in cluttered scenes. On
the contrary, our method can better recognize these hard in-
stances as we bypass the clustering process by directly ex-
tracting instance candidates and merging similar ones.

4.4. Loss Functions

We adopt three loss functions to train MIRETR: an overlap-
aware circle loss [38] Lcircle to supervise the superpoint fea-
tures, a negative log-likelihood loss [40] Lnll to supervise
the point matching, and a mask prediction loss [36] Lmask
to supervise the instance masks. The overall loss is com-
puted as L = Lcircle + Lnll + Lmask. Please refer to the
supplementary material for more details.

5. Experiments
We evaluate MIRETR on indoor Scan2CAD [2, 44, 55],
industrial ROBI [52] and synthetic ShapeNet [10] bench-
marks. And we also introduce the implementation details
and more experiments in the supplementary material.
Baselines. We compare with three state-of-the-art point
cloud correspondence methods, FCGF [14], CoFiNet [54]
and GeoTransformer [38], and four recent multi-model fit-
ting methods, T-linkage [33], RansaCov [34], ECC [44],
and PointCLM [55]. The point cloud correspondence meth-
ods and the multi-model fitting methods are pairwise inte-
grated for a comprehensive comparison.
Metrics. Following [44, 55], we evaluate our method with
three registration metrics: (1) Mean Recall (MR), the ratio
of registered instances over all ground-truth instances, (2)
Mean Precision (MP), the ratio of registered instances over
all predicted instances, and (3) Mean F1 score (MF), the
harmonic mean of MP and MR. We also report Inlier Ratio
(IR), the ratio of inliers over all extracted correspondences.

Model IR(%) MR(%) MP(%) MF(%)

FCGF [14] + T-Linkage [33]

36.27

54.75 22.76 32.15
FCGF [14] + RansaCov [34] 73.50 45.01 55.83
FCGF [14] + PointCLM [55] 86.99 70.05 77.60
FCGF [14] + ECC [44] 92.60 73.79 82.13

CoFiNet [54] + T-Linkage [33]

18.52

28.17 5.09 8.62
CoFiNet [54] + RansaCov [34] 38.29 13.69 20.16
CoFiNet [54] + PointCLM [55] 36.15 24.70 29.34
CoFiNet [54] + ECC [44] 57.26 17.24 26.50

GeoTransformer [38] + T-Linkage [33]

44.02

72.68 44.80 55.43
GeoTransformer [38] + RansaCov [34] 78.84 67.16 72.53
GeoTransformer [38] + PointCLM [55] 82.81 81.90 82.35
GeoTransformer [38] + ECC [44] 94.63 74.83 83.57

MIRETR (ours) + T-Linkage [33]

56.59

77.12 46.04 57.65
MIRETR (ours) + RansaCov [34] 84.78 71.34 77.48
MIRETR (ours) + PointCLM [55] 91.85 91.08 91.46
MIRETR (ours) + ECC [44] 96.52 89.03 92.62
MIRETR (ours, full pipeline) 95.70 91.21 93.40

Table 1. Evaluation results on Scan2CAD benchmark.

5.1. Evaluations on Scan2CAD

Dataset. Scan2CAD [2] is a scene-to-CAD alignment
dataset build upon ScanNet [15] and ShapeNet [10]. It con-
sists of 1506 scenes from ScanNet annotated with 14225
CAD models from ShapeNet and their poses in the scenes.
Following [55], we replace the objects in the scenes with the
corresponding aligned CAD models. We select the scene-
model pairs which the scene contain multiple instances of
the model for multi-instance registration. As last, we obtain
2184 point cloud pairs and use 70% pairs for training, 10%
for validation and 20% for testing.
Quantitative results. As shown in Tab. 1, our MIRETR
achieves consistent improvements over the baseline corre-
spondence models. Notably, our method surpasses the pre-
vious best GeoTransformer on IR by 12 percentage points
(pp). When coupled with PointCLM, it outperforms Geo-
Transformer by over 9 pp on the three registration metrics.

Moreover, our full pipeline surpasses all models with the
baseline multi-model fitting methods. Although the ECC-
based model performs slightly better than full MIRETR on
MR, its MP is significantly worse. This indicates that ECC
achieves high MR by predicting more registrations, which is
impractical in real-world applications. And our method out-
performs PointCLM on all three registration metrics, which
demonstrates the strong effectiveness of our method.

5.2. Evaluations on ROBI

Dataset. ROBI [52] is a recent dataset for industrial bin-
picking. It includes 7 reflective metallic industrial objects
and 63 bin-picking scenes. Each scene contains cluttered
instances of one industrial object. For each point cloud pair,
the scene point cloud is backprojected from a depth image
and the model point cloud is sampled from the CAD model
of its corresponding industrial object. We obtain 4880 pairs
in total, and we split the scenes for training, validation and
testing according to the ratio of 6 : 1 : 2 for each object.
Quantitative results. As in Tab. 2, our method outper-
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(b) Ground Truth (c) GeoTrans (d) Ours (e) GeoTrans (corr) (f) Ours (corr)(a) Input

# Inst:22 # Inst:4 # Inst:11 IR:49.91% IR:56.90%

# Inst:18 # Inst:4 # Inst:8 IR:48.03% IR:72.40%

# Inst:12 # Inst:3 # Inst:9 IR:39.42% IR:54.21%

Figure 5. Registration results on ROBI benchmark. We visualize the successfully registered instances in (c) and (d). MIRETR registers
more instances in the cluttered scenes (the 2nd and the 3rd rows) and with incomplete geometry (all three rows). And it extracts more
accurate correspondences benefiting from the instance-aware correspondence learning mechanism.

Model IR(%) MR(%) MP(%) MF(%)

CoFiNet [54] + T-Linkage [33]

10.35

1.34 0.72 0.93
CoFiNet [54] + RansaCov [34] 1.25 1.39 1.31
CoFiNet [54] + PointCLM [55] 1.17 2.11 1.50
CoFiNet [54] + ECC [44] 3.21 8.50 4.66

GeoTransformer [38] + T-Linkage [33]

39.64

7.71 4.57 5.73
GeoTransformer [38] + RansaCov [34] 8.99 13.58 10.81
GeoTransformer [38] + PointCLM [55] 13.98 26.64 18.33
GeoTransformer [38] + ECC [44] 18.55 30.99 23.20

MIRETR (ours) + T-Linkage [33]

45.14

12.04 10.47 11.20
MIRETR (ours) + RansaCov [34] 14.14 26.29 18.38
MIRETR (ours) + PointCLM [55] 18.68 40.11 25.48
MIRETR (ours) + ECC [44] 24.65 34.85 28.91
MIRETR (ours, full pipeline) 38.51 41.19 39.80

Table 2. Evaluation results on ROBI benchmark.

forms the baseline correspondence methods by a large mar-
gin on all four metrics. Compared to Scan2CAD, ROBI is
more challenging due to the more cluttered scenes, where
instance-aware information is more important. Benefiting
from the instance-aware geometric transformer module, our
method extracts reliable instance-aware correspondences,
which contributes to more accurate instance registrations.

Our full model achieves significant improvements over
the ECC-based model on MR, MP and MF. The PointCLM-
based model achieves comparable MP with the full model,
but significantly worse MR, which means it can regis-
ter only several easy instances but misses most heavily-
occluded instances. Specifically, it can register on aver-
age only 6.2 instances per scene, while the number of our
method is 13.7. Our method achieves both high MR and
MP, showing strong robustness in cluttered scenes.
Qualitative results. Fig. 5 visualizes the registration re-
sults of GeoTransformer and MIRETR. Our method can

Figure 6. Visualizations of the predicted instance masks. The an-
chor superpoint (patch) is in red and the selected neighbors are
color-coded. Our method can effectively reject the patches outside
the interested instance while preserving most of those inside.

register more instances in cluttered scenes (see the 2nd and
the 3rd rows) and with severe geometric deficiency (see all
three rows). And MIRETR attains more high-quality corre-
spondences thanks to our instance-aware design.

We further visualize the predicted instance masks Fig. 6.
The instance masks effectively reject the patches out of
the interested instance while preserving most of those in-
side. Specifically, our method achieves the instance mIoU
of 69.26 pp while the result of the model without mask-
ing is merely 38.13 pp. The high-quality masks allow us to
effectively encode intra-instance context and contribute to
accurate registrations.

Fig. 7 compares the results under different overlap ratios.
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Figure 7. Results in different overlap levels on ROBI benchmark.

MIRETR consistently outperforms the baselines at all over-
lap levels, and the improvements are more significant when
the overlap ratio is below 50%. This proves the strong ca-
pability of our method to handle low-overlap instances.

5.3. Evaluations on ShapeNet

Dataset. ShapeNet [10] is a large CAD model dataset
which contains 51300 models from 55 categories. We use
the models from first 30 categories for training and those
from the rest 25 categories for testing to evaluate the gener-
ality to novel categories. We randomly sample at most 500
models from each category to avoid class imbalance. For
each point cloud pair, the model point cloud is a random
CAD model and the scene one is constructed by applying
4∼16 random poses on the model. At last, we obtain 8634
pairs for training, 900 for validation, and 7683 for testing.
Quantitative results. As shown in Tab. 3, our MIRETR
achieves the best results on all four metrics, surpassing the
baselines by a large margin. GeoTransformer significantly
outperforms CoFiNet, which proves the importance of ge-
ometric structure to achieving generality. And our method
achieves improvements of more than 10 pp over GeoTrans-
former on all registration metrics with PointCLM and ECC.
Thanks to the instance-ware geometric transformer, the cor-
respondences extracted by our method provide strong in-
stance information, facilitating the correspondence cluster-
ing process. At last, our full model surpasses the previous
best ECC-based baseline by around 2 pp on MR, 11 pp on
MP and 7 pp on MF, demonstrating the strong generality of
MIRETR to unseen objects.

5.4. Ablation Studies

We conduct extensive ablation studies on ROBI benchmark
to better understand our design choices in Tab. 4. We first
ablate the instance-aware point matching and extract point
correspondences within only the patches of the superpoint
correspondences in Tab. 4 (b), which is significantly worse
than the full model. The poses estimated by this method
is unstable due to clustered correspondences, thus the du-
plicated candidates cannot be effectively removed by NMS.

Model IR(%) MR(%) MP(%) MF(%)

CoFiNet [54] + T-Linkage [33]

39.53

4.59 3.24 3.79
CoFiNet [54] + RansaCov [34] 7.35 5.33 6.17
CoFiNet [54] + PointCLM [55] 23.40 19.66 21.36
CoFiNet [54] + ECC [44] 41.49 26.60 32.41

GeoTransformer [38] + T-Linkage [33]

69.65

27.68 26.40 27.02
GeoTransformer [38] + RansaCov [34] 41.86 48.16 44.78
GeoTransformer [38] + PointCLM [55] 68.09 69.09 68.58
GeoTransformer [38] + ECC [44] 78.03 64.08 70.37

MIRETR (ours) + T-Linkage [33]

77.13

29.40 28.67 29.03
MIRETR (ours) + RansaCov [34] 45.63 46.85 46.23
MIRETR (ours) + PointCLM [55] 85.63 85.81 85.71
MIRETR (ours) + ECC [44] 92.56 82.08 87.01
MIRETR (ours, full pipeline) 94.95 93.94 94.44

Table 3. Evaluation results on ShapeNet benchmark.

Model IR(%) MR(%) MP(%) MF(%)

(a) full MIRETR 45.14 38.51 41.19 39.80
(b) w/o instance-aware point matching 40.52 18.15 27.54 21.88
(c) w/o instance masking block 36.78 17.07 45.37 24.80
(d) w/o both 38.81 14.13 27.44 18.65
(e) w/ global attention 25.98 7.72 18.86 10.96

Table 4. Ablation studies on ROBI benchmark.

Next, we remove the instance masking blocks in Tab. 4 (c)
and the instance-aware point matching gathers the points
from all neighbor superpoints. This model achieves a good
MP, but a significantly worse MR, which means it can reg-
ister only few instances (2.9 vs. 13.7 average instances per
scene). We then ablate both modules in Tab. 4 (d), which
further degrades the performance. At last, we replace the
geometric encoding block with the global geometric self-
attention [38] in Tab. 4 (e), which achieves the worst results.
This indicates that the superpoint features can be polluted if
global context is encoded. These results have proven the
strong efficacy of our designs. More ablation studies are
presented in the supplementary material.

6. Conclusion
We have proposed MIRETR, a coarse-to-fine method to
extract instance-aware correspondences for multi-instance
registration. At the coarse level, an instance-aware geomet-
ric transformer module jointly learns instance-aware super-
point features and predicts per-instance masks. At the fine
level, the superpoint correspondences are extended to in-
stance candidates according to the instance masks, where
instance-wise point correspondences are extracted. At last,
we devise a simple but effective candidate selection and re-
finement algorithm to obtain the final registrations, bypass-
ing the need of multi-model fitting methods. Extensive ex-
periments on three public benchmarks have demonstrated
the efficacy of our method. For future work, we would like
to extend MIRETR to multi-modal multi-instance registra-
tion to boost more applications.
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