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Figure 1. 3D Gaussian Splatting [ 18] renders images by representing 3D Objects as 3D Gaussians which are projected onto the image
plane followed by 2D Dilation in screen space as shown in (a). Its intrinsic shrinkage bias leads to degenerate 3D Gaussians that exceed
the sampling limit as illustrated by the § function in (b) while rendering similarly in 2D due to the dilation operation. However, when
changing the sampling rate (via the focal length or camera distance), we observe strong dilation effects (c) and high frequency artifacts (d).

Abstract

Recently, 3D Gaussian Splatting has demonstrated im-
pressive novel view synthesis results, reaching high fidelity
and efficiency. However, strong artifacts can be observed
when changing the sampling rate, e.g., by changing focal
length or camera distance. We find that the source for this
phenomenon can be attributed to the lack of 3D frequency
constraints and the usage of a 2D dilation filter. To ad-
dress this problem, we introduce a 3D smoothing filter to
constrains the size of the 3D Gaussian primitives based
on the maximal sampling frequency induced by the input
views. It eliminates high-frequency artifacts when zooming
in. Moreover, replacing 2D dilation with a 2D Mip filter,
which simulates a 2D box filter, effectively mitigates alias-
ing and dilation issues. Our evaluation, including scenarios
such a training on single-scale images and testing on mul-
tiple scales, validates the effectiveness of our approach.

1 Corresponding author.

1. Introduction

Novel View Synthesis (NVS) plays a critical role in com-
puter graphics and computer vision, with various appli-
cations including virtual reality, cinematography, robotics,
and more. A particularly significant advancement in this
field is the Neural Radiance Field (NeRF) [28], introduced
by Mildenhall et al. in 2020. NeRF utilizes a multi-
layer perceptron (MLP) to represent geometry and view-
dependent appearance effectively, demonstrating remark-
able novel view rendering quality. Recently, 3D Gaussian
Splatting (3DGS) [18] has gained attention as an appealing
alternative to both MLP [28] and feature grid-based repre-
sentations [4, 11, 24, 32, 46]. 3DGS stands out for its im-
pressive novel view synthesis results, while achieving real-
time rendering at high resolutions. This effectiveness and
efficiency, coupled with the potential integration into the
standard rasterization pipeline of GPUs represents a signif-
icant step towards practical usage of NVS methods.

Specifically, 3DGS represents complex scenes as a set
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of 3D Gaussians, which are rendered to screen space
through splatting-based rasterization. The attributes of each
3D Gaussian, i.e., position, size, orientation, opacity, and
color, are optimized through a multi-view photometric loss.
Thereafter, a 2D dilation operation is applied in screen
space for low-pass filtering. Although 3DGS has demon-
strated impressive NVS results, it produces artifacts when
camera views diverge from those seen during training, such
as zoom in and zoom out, as illustrated in Figure 1. We
find that the source for this phenomenon can be attributed
to the lack of 3D frequency constraints and the usage of a
2D dilation filter. Specifically, zooming out leads to a re-
duced size of the projected 2D Gaussians in screen space,
while applying the same amount of dilation results in dila-
tion artifacts. Conversely, zooming in causes erosion arti-
facts since the projected 2D Gaussians expand, yet dilation
remains constant, causing erosion and resulting in incorrect
gaps between Gaussians in the 2D projection.

To resolve these issues, we propose to regularize the 3D
representation in 3D space. Our key insight is that the high-
est frequency that can be reconstructed of a 3D scene is
inherently constrained by the sampling rates of the input
images. We first derive the multi-view frequency bounds of
each Gaussian primitive based on the training views accord-
ing to the Nyquist-Shannon Sampling Theorem [33, 45].
By applying a low-pass filter to the 3D Gaussian primitives
in 3D space during the optimization, we effectively restrict
the maximal frequency of the 3D representation to meet the
Nyquist limit. Post-training, this filter becomes an intrinsic
part of the scene representation, remaining constant regard-
less of viewpoint changes. Consequently, our method elim-
inates the artifacts presents in 3DGS [18] when zooming in,
as shown in the 8 x higher resolution image in Figure 2.

Nonetheless, rendering the reconstructed scene at lower
sampling rates (e.g., zooming out) results in aliasing. Pre-
vious work [1-3, 17] address aliasing by employing cone
tracing and applying pre-filtering to the input positional or
feature encoding, which is not applicable to 3DGS. Thus,
we introduce a 2D Mip filter (a la “mipmap”) specifically
designed to ensure alias-free reconstruction and render-
ing across different scales. Our 2D Mip filter mimics the
2D box filter inherent to the actual physical imaging pro-
cess [29, 37, 48], by approximating it with a 2D Gaussian
low pass filter. In contrast to previous work [1-3, 17] that
rely on the MLP’s ability to interpolate multi-scale signals
during training with multi-scale images, our closed-form
modification to the 3D Gaussian representation results in
excellent out-of-distribution generalization: Training at a
single sampling rate enables faithful rendering at various
sampling rates different from those used during training as
demonstrated by the 1/4x down-sampled image in Figure 2.
In summary, we make the following contributions:

* We analyze and identify the root of 3DGS’s artefacts
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Figure 2. We trained all the models on single-scale (full resolu-
tion here) images and rendered images with different resolutions
by changing focal length. While all methods show similar per-
formance at training scale, we observe strong artifacts in previous
work [18, 59] when changing the sampling rate. By contrast, our

Mip-Splatting renders faithful images across different scales.

when changing sampling rates.

* We introduce a 3D smoothing filter for 3DGS to effec-
tively regularize the maximum frequency of 3D Gaus-
sian primitives, resolving the artifacts observed in out-of-
distribution renderings of prior methods [18, 59].

* We replace the 2D dilation filter with a 2D Mip filter to
address aliasing and dilation artifacts.

» Experiments on challenging benchmark datasets [2, 28]
demonstrate the effectiveness of Mip-Splatting when
modifying the sampling rate.

2. Related Work

Novel View Synthesis: NVS is the process of generating
new images from viewpoints different from those of the
original captures [12, 22]. NeRF [28], which leverages vol-
ume rendering [10, 21, 25, 26], has become a standard tech-
nique in the field. NeRF utilizes MLPs [5, 27, 34] to model
scenes as continuous functions, which, despite their com-
pact representation, impede rendering speed due to the ex-
pensive MLP evaluation that is required for each ray point.
Subsequent methods [16, 40, 41, 52, 54] distill a pretrained
NeRF into a sparse representation, enabling real-time ren-
dering of NeRFs. Further advancements have been made
to improve the training and rendering of NeRF with ad-
vanced scene representations [4, 6, 11, 18, 19, 24, 32, 46,
51]. In particular, 3D Gaussians Splatting (3DGS) [18]
demonstrated impressive novel view synthesis results, while
achieving real-time rendering at high-definition resolutions.
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Importantly, 3DGS represents the scene explicitly as a col-
lection of 3D Gaussians and uses rasterization instead of
ray tracing. Nevertheless, 3DGS focuses on in-distribution
evaluation where training and testing are conducted at sim-
ilar sampling rates (focal length/scene distance). In this
paper, we study the out-of-distribution generalization of
3DGS, training models at a single scale and evaluating it
across multiple scales.

Primitive-based Differentiable Rendering: Primitive-
based rendering techniques, which rasterize geometric
primitives onto the image plane, have been explored ex-
tensively due to their efficiency [13, 14, 38, 44, 59, 60].
Differentiable point-based rendering methods [20, 36, 39,
43, 49, 53, 57] offer great flexibility in representing in-
tricate structures and are thus well-suited for novel view
synthesis. Notably, Pulsar [20] stands out for its efficient
sphere rasterization. The more recent 3D Gaussian Splat-
ting (3DGS) work [18] utilizes anisotropic Gaussians [59]
and introduces a tile-based sorting for rendering, achiev-
ing remarkable frame rates. Despite its impressive results,
3DGS exhibits strong artifacts when rendering at a differ-
ent sampling rate. We address this issue by introducing a
3D smoothing filter to constrain the maximal frequencies of
the 3D Gaussian primitive representation, and a 2D Mip fil-
ter that approximates the box filter of the physical imaging
process for alias-free rendering.

Anti-aliasing in Rendering: There are two principal strate-
gies to combat aliasing: super-sampling, which increases
the number of samples [7], and prefiltering, which ap-
plies low-pass filtering to the signal to meet the Nyquist
limit [8, 15, 31, 47, 50, 59]. For example, EWA splat-
ting [59] applies a Gaussian low pass filter to the projected
2D Gaussian in screen space to produce a band limited out-
put respecting the Nyquist frequency of the image. While
we also apply a band-limited filter to the Gaussian primi-
tives, our band-limited filter is applied in 3D space and the
filter size is fully determined by the training images not the
images to be rendered. While our 2D Mip filter is also a
Gaussian low pass filter in screen space, it approximates the
box filter of the physical imaging process, approximating
a single pixel. Conversely, the EWA filter limits the fre-
quency signal’s bandwidth to the rendered image, and the
size of the filter is chosen empirically. A critical differ-
ence to [59] is that we tackle the reconstruction problem,
optimizing the 3D Gaussian representation via inverse ren-
dering while EWA splatting only considers the rendering
problem.

Recent neural rendering methods integrate pre-filtering
to mitigate aliasing [1-3, 17, 58]. Mip-NeRF [1], for in-
stance, introduced an integrated position encoding (IPE) to
attenuate high-frequency details. A similar idea is adapted
for feature grid-based representations [3, 17, 58]. Note that
these approaches require multi-scale images extracted from

the original data for supervision. In contrast, our approach
is based on 3DGS [18] and determines the necessary low-
pass filter size based on pixel size, allowing for alias-free
rendering at scales unobserved during training.

3. Preliminaries

In this section, we first review the sampling theorem in Sec-
tion 3.1, laying the foundation for understanding the alias-
ing problem. Subsequently, we introduce 3D Gaussian
Splatting (3DGS) [18] and its rendering process in Sec-
tion 3.2.

3.1. Sampling Theorem

The Sampling Theorem, also known as the Nyquist-
Shannon Sampling Theorem [33, 45], is a fundamental con-
cept in signal processing and digital communication that de-
scribes the conditions under which a continuous signal can
be accurately represented or reconstructed from its discrete
samples. To accurately reconstruct a continuous signal from
its discrete samples without loss of information, the follow-
ing conditions must be met:

Condition 1 The continuous signal must be band-limited
and may not contain any frequency components above a
certain maximum frequency v.

Condition 2 The sampling rate © must be at least twice the
highest frequency present in the continuous signal: v > 2uv.

In practice, to satisfy the constraints when reconstructing
a signal from discrete samples, a low-pass or anti-aliasing
filter is applied to the signal before sampling. The filter
eliminates any frequency components above % and attenu-
ates high-frequency content that could lead to aliasing.

3.2. 3D Gaussian Splatting

Prior works [18, 59] propose to represent a 3D scene as a set
of scaled 3D Gaussian primitives {Gi|k = 1,--- , K} and
render an image using volume splatting. The geometry of
each scaled 3D Gaussian Gy, is parameterized by an opac-
ity (scale) ay, € [0,1], center pr € R3*! and covariance
matrix 3, € R3*3 defined in world space:

Gr(x) = e~ 2(P) B (x—pi) (1)

To constrain X, to the space of valid covariance matrices, a
semi-definite parameterization £ = Oysis’ OF is used.
Here, s € R3 is a scaling vector and O € R3*3 is a rotation
matrix, parameterized by a quaternion [18].

To render an image for a given view point defined by ro-
tation R € R3*3 and translation t € R?, the 3D Gaussians
{Gy} are first transformed into camera coordinates:

p,=Rpr+t, =, =RZ;R’ 2)
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Afterwards, they are projected to ray space via a local affine
transformation
P =Je SR 3)

where the Jacobian matrix J is an affine approximation to
the projective transformation defined by the center of the 3D
Gaussian p/,. By skipping the third row and column of X7,
we obtain a 2D covariance matrix ZED in ray space, and we
use g,‘jD to refer to the corresponding scaled 2D Gaussian,
see [18] for details.

Finally, 3DGS [18] utilizes spherical harmonics to model
view-dependent color c; and renders image via alpha

blending according to the primitive’s depth order 1, ..., K:
K k—1

c(x) =Y carGPx) [0 -0 6" x) @
k=1 j=1

Dilation: To avoid degenerate cases where the projected 2D
Gaussians are too small in screen space, i.e., smaller than a
pixel, the projected 2D Gaussians are dilated as follows:

G20 (x) = e3P (B 4D xmp) (5

where I is a 2D identity matrix and s is a scalar dilation
hyperparameter. Note that this operator adjusts the scale of
the 2D Gaussian while leaving its maximum unchanged. As
this effect is similar to that of dilation operators in morphol-
ogy, we called it a 2D screen space dilation operation”.

Reconstruction: As the rendering process is fast and dif-
ferentiable, the 3D Gaussian parameters can be efficiently
optimized using a multi-view loss. During optimization, 3D
Gaussians are adaptively added and deleted to better repre-
sent the scene. We refer the reader to [18] for details.

4. Sensitivity to Sampling Rate

In traditional forward splatting, the centers py, and colors cy,
of Gaussian primitives are predetermined, whereas the 3D
Gaussian covariance 3 are chosen empirically [42, 59].
In contrast, 3DGS [18], optimizes all parameters jointly
through an inverse rendering framework by backpropagat-
ing a multi-view photometric loss.

We observe that this optimization suffers from ambigu-
ities as illustrated in Figure 1 which shows a simple exam-
ple involving one object and an image sensor with 5 pixels.
Consider the 3D object in (a), its approximation by a 3D
Gaussian and its projection into screen space (blue pixel).
Due to screen space dilation (Eq. 5) with a Gaussian kernel
(size == 1 pixel), the degenerate 3D Gaussian represented by
a Dirac § function in (b) leads to a similar image. In order to
represent high frequency details in real world scenes, the di-
lated 2D Gaussians would become small, since the smaller

*The dilation operation is not mentioned in original paper.

the Gaussian, the higher the frequency it represents, result-
ing in systematically underestimation of its scale.

While this does not affect rendering at similar sampling
rates (cf. Figure 1 (a) vs. (b)), it leads to erosion effects
when zooming in or moving the camera closer. This is be-
cause the dilated 2D Gaussians become smaller in screen
space. In this case, the rendered image exhibits high-
frequency artifacts, rendering object structures thinner than
they actually appear as illustrated in Figure 1 (d).

Conversely, screen space dilation also negatively affects
rendering when decreasing the sampling rate as illustrated
in Figure | (c) which shows a zoomed-out version of (a). In
this case, dilation spreads radiance in a physically incorrect
way across pixels. Note that in (c), the area covered by
the projection of the 3D object is smaller than a pixel, yet
the dilated Gaussian is not attenuated, accumulating more
light than what physically reaches the pixel. This leads to
increased brightness and dilation artifacts which strongly
degrade the appearance of the bicycle wheels’ spokes.

The aforementioned scale ambiguity becomes particu-
larly problematic in representations involving millions of
Gaussians. However, simply discarding screen space dila-
tion results in optimization challenges for complex scenes,
such as those present in the Mip-NeRF 360 dataset [2],
where a large number of small Gaussians are created by the
density control mechanism [18], exceeding GPU capacity.
Moreover, even if a model can be successfully trained with-
out dilation, decreasing the sampling rate results in aliasing
effects due to the lack of anti-aliasing [59].

5. Mip Gaussian Splatting

To overcome these challenges, we make two modifications
to the original 3DGS model. In particular, we introduce a
3D smoothing filter that limits the frequency of the 3D rep-
resentation to below half the maximum sampling rate deter-
mined by the training images, eliminating high frequency
artifacts when zooming in. Moreover, we demonstrate that
replacing 2D screen space dilation with a 2D Mip filter,
which approximates the box filter inherent to the physical
imaging process, effectively mitigates aliasing and dilation
issues. In combination, Mip-Splatting enables alias-free
renderings’ across various sampling rates. We now discuss
the the 3D smoothing and the 2D Mip filters in detail.

5.1. 3D Smoothing Filter

3D radiance field reconstruction from multi-view observa-
tions is a well-known ill-posed problem as multiple dis-
tinctly different reconstructions can result in the same 2D
projections [2, 55, 56]. Our key insight is that the high-
est frequency of a reconstructed 3D scene is limited by

"Note that we use alias to refer to multiple artifacts discussed in the
paper, including dilation, erosion, oversmoothing, high-frequency artifacts
and aliasing itself.
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Figure 3. Sampling limits. A pixel corresponds to sampling inter-
val T'. We band-limit the 3D Gaussians by the maximal sampling
rate (i.e., minimal sampling interval) among all observations. This
example shows 5 cameras at different depths d and with different
focal lengths f. Here, camera 3 determines the minimal T and
hence the maximal sampling rate 2.

the sampling rate defined by the training views. Following
Nyquist’s theorem 3.1, we aim to constrain the maximum
frequency of the 3D representation during optimization.

Multiview Frequency Bounds: Multi-view images are 2D
projections of a continuous 3D scene. The discrete image
grid determines where we sample points from the continu-
ous 3D signal. This sampling rate is intrinsically related to
the image resolution, camera focal length, and the scene’s
distance from the camera. For an image with focal length
f in pixel units, the sampling interval in screen space is 1.
When this pixel interval is back-projected to the 3D world
space, it results in a world space sampling interval T ata
given depth d, with sampling frequency ¥ as its inverse:

.1 d

I'=-= 7 (6)
As posited by Nyquist’s theorem Section 3.1, given samples
drawn at frequency 7, reconstruction algorithms are able to
reconstruct components of the signal with frequencies up to
2, or . Consequently, a primitive smaller than 27 may
result i 1n ahasmg artifacts during the splatting process, since
its size is below twice the sampling interval.

To simplify, we approximate depth d using the center of
the primitive pg, and disregard the impact of occlusion for
sampling interval estimation. Since the sampling rate of a
primitive is depth-dependent and differs across cameras, we
determine the maximal sampling rate for primitive % as

N
U, = max ({]ln(pk) . C'];n} ) (7
n ) n=1

where N is the total number of images, 1,,(p) is an indi-
cator function that assesses the visibility of a primitive. It
is true if the Gaussian center py falls within the view frus-
tum of the n-th camera. Intuitively, we choose the sampling
rate such that there exists at least one camera that is able
to reconstruct the respective primitive. This process is il-
lustrated in Figure 3 for N = 5. In our implementation,

we recompute the maximal sampling rate of each Gaussian
primitive every m iterations as we found the 3D Gaussians
centers remain relatively stable throughout the training.

3D Smoothing: Given the maximal sampling rate 7 for a
primitive, we aim to constrain the maximal frequency of the
3D representation. This is achieved by applying a Gaussian
low-pass filter G0y to each 3D Gaussian primitive Gy, before
projecting it onto screen space:

Gk (X)reg = (gk & glow)(x) ()

This operation is efficient as convolving two Gaussians with
covariance matrices X1 and X5 results in another Gaussian
with variance 31 + ¥5. Hence,

g (X) _ |Ek| 7%(x7pk)T (EkJF%'I)_l (x—Pk)
k reg |E b + 1957,3 . Il e

©)
Here, s is a scalar hyperparameter to control the size of the
filter. Note that the scal
itive are different as they depend on the training views in
which they are visible. By employing 3D Gaussian smooth-
ing, we ensure that the highest frequency component of any
Gaussian does not exceed half of its maximal sampling rate
for at least one camera. Note that G, becomes an intrin-
sic part of the 3D representation, remaining constant post-
training.

5.2. 2D Mip Filter

While our 3D smoothing filter effectively mitigates high-
frequency artifacts [18, 59], rendering the reconstructed
scene at lower sampling rates (e.g., zooming out or mov-
ing the camera further away) would still lead to aliasing. To
overcome this, we replace the screen space dilation filter of
3DGS by a 2D Mip filter.

More specifically, we replicate the physical imaging pro-
cess [37, Section 8], where photons hitting a pixel on the
camera sensor are integrated over the pixel’s area. While an
ideal model would use a 2D box filter in image space, we
approximate it with a 2D Gaussian filter for efficiency

D
=i

12T~ -pe) T (B +sD) 7 (x—pi)
D |

Q%D(X)mip =
(10)

where s is chosen to cover a single pixel in screen space.
While our Mip filter shares similarities with the EWA
filter [59], their underlying principles are distinct. Our Mip
filter is designed to replicate the box filter in the imaging
process, targeting an exact approximation of a single pixel.
Conversely, the EWA filter’s role is to limit the frequency
signal’s bandwidth, and the size of the filter is chosen empir-
ically. The EWA paper [15, 59] even advocates for an iden-
tity covariance matrix, effectively occupying a 3x3 pixel re-
gion on the screen. However, this approach leads to overly
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PSNR 1 SSIM 1 LPIPS |

Full Res. 1/2 Res. 1/4 Res. 1/s Res. Avg. [Full Res. /2 Res. 1/4 Res. 1/8 Res. Avg. |Full Res. 1/2 Res. 1/4 Res. 1/s Res Avg.
NeRF w/0 Ly [1,28] | 3120  30.65 2625 22.53 27.66| 0.950 0.956 0.930 0.871 0.927| 0.055 0.034 0.043 0.075 0.052
NeRF [28] 2990 32.13 3340 29.47 31.23| 0938 0.959 0973 0.962 0.958| 0.074 0.040 0.024 0.039 0.044
MipNeRF [1] 32.63 3434 3547 35.60 34.51| 0958 0.970 0.979 0983 0.973| 0.047 0.026 0.017 0.012 0.026
Plenoxels [11] 31.60 32.85 30.26 26.63 30.34| 0956 0.967 0961 0.936 0.955| 0.052 0.032 0.045 0.077 0.051
TensoRF [4] 32.11  33.03 3045 26.80 30.60| 0.956 0.966 0.962 0.939 0.956| 0.056 0.038 0.047 0.076 0.054
Instant-NGP [32] 30.00 3215 33.31 2935 31.20| 0.939 0961 0.974 0.963 0.959| 0.079 0.043 0.026 0.040 0.047
Tri-MipRF [17]* 32.65 3424 35.02 3553 3436/ 0958 0971 0.980 0.987 0.974) 0.047 0.027 0.018 0.012 0.026
3DGS [18] 28.79 30.66 31.64 2798 29.77| 0943 0962 0.972 0.960 0.960| 0.065 0.038 0.025 0.031 0.040
3DGS [18]+EWA [59]| 31.54 3326 33.78 3348 33.01| 0961 0973 0.979 0.983 0.974| 0.043 0.026 0.021 0.019 0.027
Mip-Splatting (ours) 32.81 3449 3545 35.50 34.56| 0.967 0.977 0.983 0988 0.979| 0.035 0.019 0.013 0.010 0.019

Table 1. Multi-scale Training and Multi-scale Testing on the Blender dataset [28]. Our approach achieves state-of-the-art performance
in most metrics. It significantly outperforms 3DGS [18] and 3DGS + EWA [59]. * indicates that we retrain the model.

smooth results when zooming out as we will show in our
experiments.

6. Experiments

We first present the implementation details of Mip-
Splatting. We then assess its performance on the Blender
dataset [28] and the challenging Mip-NeRF 360 dataset [2].
Finally, we discuss the limitations of our approach.

6.1. Implementation

We build our method upon the popular open-source 3DGS
code base [18]". Following [18], we train our models for
30K iterations across all scenes and use the same loss func-
tion, Gaussian density control strategy, schedule and hyper-
parameters. For efficiency, we recompute the sampling rate
of each 3D Gaussian every m = 100 iterations. We choose
the variance of our 2D Mip filter as 0.1, approximating a
single pixel, and the variance of our 3D smoothing filter as
0.2, totaling 0.3 for a fair comparison with 3DGS [18] and
3DGS + EWA [59] which replaces the dilation of 3DGS
with the EWA filter.

6.2. Evaluation on the Blender Dataset

Multi-scale Training and Multi-scale Testing: Following
previous work [1, 17], we train our model with multi-scale
data and evaluate on multi-scale data. Similar to [1, 17]
where rays of full resolution images are sampled more fre-
quently compared to lower resolution images, we sample
40 percent of full resolution images and 20 percent from
other image resolutions each. Our quantitative evaluation
is shown in Table 1. Our approach attains comparable or
superior performance compared to state-of-the-art methods
such as Mip-NeRF [1] and Tri-MipRF [17]. Notably, our
method outperforms 3DGS [18] and 3DGS + EWA [59] by
a substantial margin, owing to its 2D Mip filter.

Single-scale Training and Multi-scale Testing: Contrary
to prior work that evaluates models trained on single-scale
data at the same scale, we consider an important new setting

*https://github.com/graphdeco-inria/gaussian-splatting

that involves training on full-resolution images and render-
ing at various resolutions (i.e. 1x, 1/2, 1/4, and 1/8) to mimic
zoom-out effects. In the absence of a public benchmark
for this setting, we trained all baseline methods ourselves.
We use NeRFAcc [23]’s implementation for NeRF [28],
Instant-NGP [32], and TensoRF [4] for its efficiency. Of-
ficial implementations were employed for Mip-NeRF [1],
Tri-MipRF [17], and 3DGS [18]. The quantitative results,
as presented in Table 2, indicate that our method signifi-
cantly outperforms all existing state-of-the-art methods. A
qualitative comparison is provided in Figure 4. Methods
based on 3DGS [18] capture fine details more effectively
than Mip-NeRF [1] and Tri-MipRF [17], but only at the
original training scale. Notably, our method surpasses both
3DGS [18] and 3DGS + EWA [59] in rendering quality at
lower resolutions. In particular, 3DGS [18] exhibits dila-
tion artifacts. EWA splatting [59] uses a large low pass filter
to limit the frequency of the rendered images, resulting in
oversmoothed images, which becomes particularly apparent
at lower resolutions.

6.3. Evaluation on the Mip-NeRF 360 Dataset

Single-scale Training and Multi-scale Testing: To simu-
late zoom-in effects, we train models on data downsampled
by a factor of 8 and rendered at successively higher reso-
lutions (1%, 2%, 4x, and 8x). In the absence of a public
benchmark for this setting, we trained all baseline meth-
ods ourselves. We use the official implementation for Mip-
NeRF 360 [1] and 3DGS [18] and use a community reim-
plementation for Zip-NeRF [3]® as the code is not avail-
able. The results in Table 3 show that our method performs
comparable to prior work at the training scale (1x) and sig-
nificantly exceeds all state-of-the-art methods at higher res-
olutions. As depicted in Figure 5, our method generates
high fidelity imagery without high-frequency artifacts. No-
tably, both Mip-NeRF 360 [2] and Zip-NeRF [3] exhibit
subpar performance at increased resolutions, likely due to
their MLPs’ inability to extrapolate to out-of-distribution
frequencies. While 3DGS [18] introduces notable erosion

$https://github.com/SuLvXiangXin/zipnerf-pytorch
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Figure 4. Single-scale Training and Multi-scale Testing on the Blender Dataset [28]. All methods are trained at full resolution and
evaluated at different (smaller) resolutions to mimic zoom-out. Methods based on 3DGS capture fine details better than Mip-NeRF [1] and
Tri-MipRF [17] at training resolution. Mip-Splatting surpasses both 3DGS [18] and 3DGS + EWA [59] at lower resolutions.

PSNR 1 SSIM 1 LPIPS |

Full Res. 1/2 Res. 1/4 Res. 1/s Res. Avg. |Full Res. 1/2 Res. /4 Res. 1/8 Res. Avg. |Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg.
NeRF [28] 31.48 3243 3029 26.70 30.23| 0.949 0.962 0.964 0.951 0.956| 0.061 0.041 0.044 0.067 0.053
MipNeRF [1] 33.08 33.31 3091 27.97 31.31| 0.961 0.970 0.969 0.961 0.965| 0.045 0.031 0.036 0.052 0.041
TensoRF [4] 3253 3291 30.01 2645 30.48| 0.960 0.969 0.965 0.948 0.961| 0.044 0.031 0.044 0.073 0.048
Instant-NGP [32] 33.09 33.00 29.84 2633 30.57| 0.962 0.969 0.964 0.947 0.961| 0.044 0.033 0.046 0.075 0.049
Tri-MipRF [17] 32.890 32.84 2829 2387 29.47| 0958 0.967 0.951 0913 0.947| 0.046 0.033 0.046 0.075 0.050
3DGS [18] 3333 2695 21.38 17.69 24.84| 0.969 0.949 0.875 0.766 0.890| 0.030 0.032 0.066 0.121 0.063
3DGS [18] + EWA [59] | 33.51 31.66 27.82 24.63 29.40| 0.969 0.971 0.959 0.940 0.960| 0.032 0.024 0.033 0.047 0.034
Mip-Splatting (ours) 3336 34.00 31.85 28.67 31.97| 0.969 0.977 0978 0.973 0.974| 0.031 0.019 0.019 0.026 0.024

Table 2. Single-scale Training and Multi-scale Testing on the Blender Dataset [28]. All methods are trained on full-resolution images
and evaluated at four different (smaller) resolutions, with lower resolutions simulating zoom-out effects. While Mip-Splatting yields

comparable results at training resolution, it significantly surpasses previous work at all other scales.

artifacts due to dilation operations, 3DGS + EWA [59] per-
forms better while still yielding pronounced high-frequency
artifacts. In contrast, our method avoids such artifacts,
yielding aesthetically pleasing images that more closely re-
semble ground truth. It’s important to remark that rendering
at higher resolutions is a super-resolution task, and models
should not hallucinate high-frequency details absent from
the training data.

Single-scale Training and Same-scale Testing: We further
evaluate our method on the Mip-NeRF 360 dataset [2] fol-
lowing the widely used setting, where models are trained
and tested at the same scale, with indoor scenes down-
sampled by a factor of two and outdoor scenes by four.
As shown in Table 4, our method performs on par with
3DGS [18] and 3DGS + EWA [59] in this challenging
benchmark, without any decrease in performance. This con-

firms our method’s effectiveness to handle various settings.

6.4. Limitations

Our method employs a Gaussian filter as an approximation
to a box filter for efficiency. However, this approximation
introduces errors, particularly when the Gaussian is small
in screen space. This issue correlates with our experimen-
tal findings, where increased zooming out leads to larger
errors, as evidenced in Table 2. Additionally, there is a
slight increase in training overhead as the sampling rate for
each 3D Gaussian must be calculated every m = 100 it-
erations. Currently, this computation is performed using
PyTorch [35] and a more efficient CUDA implementation
could potentially reduce this overhead. Designing a better
data structure for precomputing and storing the sampling
rate, as it depends solely on the camera poses and intrin-
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3DGS [18]

Mip-NeRF 360 [2] Zip-NeRF [3]

3DGS [18] + EWA [59] Mip-Splatting (ours)

Figure 5. Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 Dataset [2]. All models are trained on images down-
sampled by a factor of eight and rendered at full resolution to demonstrate zoom-in/moving closer effects. In contrast to prior work,
Mip-Splatting renders images that closely approximate ground truth. Please also note the high-frequency artifacts of 3DGS + EWA [59].

PSNR 1 SSIM + LPIPS |

1x Res. 2x Res. 4x Res. 8x Res. Avg. |1x Res.2x Res.4x Res.8x Res. Avg. [1x Res. 2x Res. 4x Res. 8x Res. Avg.
Instant-NGP [32] 26.79 2476 2427 2427 25.02| 0.746 0.639 0.626 0.698 0.677| 0.239 0.367 0.445 0475 0.382
mip-NeRF 360 [2] 29.26  25.18 24.16 24.10 25.67| 0.860 0.727 0.670 0.706 0.741| 0.122 0.260 0.370 0.428 0.295
zip-NeRF [3] 29.66 23.27 20.87 20.27 23.52| 0.875 0.696 0.565 0.559 0.674| 0.097 0.257 0.421 0.494 0.318
3DGS [18] 29.19 2350 20.71 19.59 23.25| 0.880 0.740 0.619 0.619 0.715/ 0.107 0.243 0.394 0.476 0.305
3DGS [18]+ EWA [59] | 29.30 2590 23.70 22.81 25.43| 0.880 0.775 0.667 0.643 0.741| 0.114 0.236 0.369 0.449 0.292
Mip-Splatting (ours) 29.39 27.39 2647 2622 27.37| 0.884 0.808 0.754 0.765 0.803| 0.108 0.205 0.305 0.392 0.252

Table 3. Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 Dataset [2]. All methods are trained on the smallest scale
(1x) and evaluated across four scales (1x, 2x, 4%, and 8 ), with evaluations at higher sampling rates simulating zoom-in effects. While
our method yields comparable results at the training resolution, it significantly surpasses all previous work at all other scales.

PSNR 1 SSIM T LPIPS |
NeRF [9, 28] 23.85  0.605  0.451
mip-NeRF [1] 24.04 0616  0.441
NeRF++ [56] 25.11  0.676  0.375
Plenoxels [11] 23.08  0.626  0.463
Instant NGP [32, 52] 25.68  0.705  0.302
mip-NeRF 360 [2, 30] 27.57 0793  0.234
Zip-NeRF [3] 2854  0.828  0.189
3DGS [18] 2721 0815 0214
3DGS [18]* 2770 0.826  0.202
3DGS [18] + EWA [59] | 27.77  0.826  0.206
Mip-Splatting (ours) 27.79  0.827 0.203

Table 4. Single-scale Training and Same-scale Testing on the
Mip-NeRF 360 dataset [2]. In the standard in-distribution set-
ting, our approach demonstrates performance on par with many
established techniques. * indicates that we retrain the model.

sics, is an avenue for future work. As mentioned before,
the sampling rate computation is the only prerequisite dur-
ing training and the 3D smoothing filter can be fused with
the Gaussian primitives per Eq. 9, thereby eliminating any
additional overhead during rendering.

7. Conclusion

We introduced Mip-Splatting, a technique improving 3DGS
with a 3D smoothing filter and a 2D Mip filter for alias-
free rendering at any scale. Our 3D smoothing filter effec-
tively limits the maximal frequency of Gaussian primitives
to match the sampling constraints imposed by the training
images, while the 2D Mip filter approximates the box fil-
ter to simulate the physical imaging process. Mip-Splatting
significantly outperforms state-of-the-art methods in out-of-
distribution scenarios, when testing at sampling rates differ-
ent from training, resulting in better generalization to out-
of-distribution camera poses and zoom factors.
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