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Abstract

Dichotomous Image Segmentation (DIS) has recently
emerged towards high-precision object segmentation from
high-resolution natural images. When designing an effec-
tive DIS model, the main challenge is how to balance the
semantic dispersion of high-resolution targets in the small
receptive field and the loss of high-precision details in the
large receptive field. Existing methods rely on tedious mul-
tiple encoder-decoder streams and stages to gradually com-
plete the global localization and local refinement. Human
visual system captures regions of interest by observing them
from multiple views. Inspired by it, we model DIS as a
multi-view object perception problem and provide a parsi-
monious multi-view aggregation network (MVANet), which
unifies the feature fusion of the distant view and close-up
view into a single stream with one encoder-decoder struc-
ture. With the help of the proposed multi-view complemen-
tary localization and refinement modules, our approach es-
tablished long-range, profound visual interactions across
multiple views, allowing the features of the detailed close-
up view to focus on highly slender structures. Experiments
on the popular DIS-5K dataset show that our MVANet sig-
nificantly outperforms state-of-the-art methods in both ac-
curacy and speed. The source code and datasets will be
publicly available at MVANet.

1. Introduction

High-accuracy dichotomous image segmentation (DIS) [31]
aims to accurately identify category-agnostic foreground
objects within natural scenes, which is fundamental for a
wide range of scene understanding applications, including
AR/VR applications [30, 35], image editing [9], and 3D
shape reconstruction [22]. Different from existing segmen-
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Figure 1. Process of decomposing high-resolution image into
multi-view patch sequence.

tation tasks, DIS focuses on challenging high-resolution
(HR) fine-grained object segmentation. The segmentation
scope encompasses a wide range of content with vary-
ing structural complexities, regardless of their character-
istics. When confronted with the task of accurately seg-
menting HR objects, two primary challenges arise: 1) The
higher demand for segmentation capability. Due to a
larger amount of intricate details in high-accuracy HR im-
ages, accurately segmenting those objects of interest re-
quires a more complex processing pipeline and more pow-
erful feature modelling. And when dealing with occlusion
interference, complex lighting conditions, and variable ob-
ject poses, the processing of HR data also requires bet-
ter adaptability and robustness compared to low-resolution
(LR) data. 2) The more need for processing efficiency.
The much larger size of HR images can result in slower pro-
cessing speeds and more memory constraints. This restric-
tion hinders the further application of existing approaches to
real-world scenarios such as autonomous driving [15, 26] or
real-time video processing [1, 20]. As a result, this field has
higher expectations for inference efficiency in addition to
ensuring algorithmic effectiveness.

Many efforts [28, 31, 47] have been made to tailor
for the DIS task. Despite existing methods have demon-
strated impressive performance, their reliance on CNN may
pose limitations when tackling the HR image. It is be-
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cause the increase in input resolution will result in a rela-
tively small receptive field, which subsequently hinder the
network’s capacity to capture essential global semantics
for the DIS task. Recently, with the introduction of the
transformer [4, 23] with the global information propaga-
tion capability, the transformer-based methods [14, 40] have
shown better prediction performance. However, features are
extracted with global receptive field in these transformer-
based methods, but they may not handle fine-grained lo-
cal details as good as CNNs, which may be detrimental in
high-precision segmentation tasks. Moreover, their multiple
scale-independent models will increases the complexity of
the feature pipeline and the redundancy of the model struc-
ture. Given that the input HR image itself contains all the
information in the LR image, the multi-resolution inputs in
these methods may lead to repetitive computation and in-
formation redundancy.

The core of solving the aforementioned issues is to de-
sign a parallel unified framework that can be compatible
with global and local cues to avoid cascading forms of fea-
ture/model reuse. Inspired by the pattern of capturing high
information content from images in the human visual sys-
tem, we split the high-resolution input images from the orig-
inal view into the distant view images with global infor-
mation and close-up view images with local details. Thus,
they can constitute a set of complementary multi-view low-
resolution input patches, as shown in Fig. 1. In this pa-
per, we make the attempt to address the HR image seg-
mentation task by modeling it as a multi-view segmenta-
tion task. First, we design a parsimonious multi-view ag-
gregation network (MVANet), which obtains global seman-
tics and local features in parallel according to the charac-
teristics of different patches. Such a design avoids the ad-
ditional challenges caused by the hybridization of features
in previous approaches. Second, we separately propose
the novel multi-view complementary localization module
(MCLM) and the multi-view complementary refinement
module (MCRM). The MCLM incorporates our specially
designed cross-attention mechanism driven by the global
tokens and reverse attention mechanism, to enhance ob-
ject localization and mitigating the local semantic gap be-
tween different patches. The MCRM aims to achieve a
detailed depiction of the localized object, which is domi-
nated by the local tokens, which is achieved through cross-
attention mechanism with modeled multi-sensory global to-
kens. Subsequently, the enhanced local tokens are then used
to refine the details in the global feature. Through the two-
step process, we achieve a comprehensive representation of
the scene, enabling effective object segmentation that takes
into account both the overall context and the intricate de-
tails. Finally, we fuse all the patch output through a simple
view rearrangement module and produce a highly accurate
high-resolution prediction.

Our main contributions can be summarized as follows:
• The traditional single-view high-resolution image pro-

cessing mode is upgraded to a multi-view processing
mode based on multi-view learning.

• We propose the multi-view aggregation network
(MVANet), which is the first single stream and single
stage framework for the dichotomous image segmenta-
tion.

• Two efficient transformer-based multi-view complemen-
tary localization and refinement modules are proposed to
jointly capturing the localization and restoring the bound-
ary details of the targets.

• MVANet achieves state-of-the-art performance in terms
of almost all metrics on the DIS benchmark dataset, while
being twice as fast as the second-best method in terms
of inference speed, demonstrating the superiority of our
multi-view scheme.

2. Related works

2.1. Dichotomous Image Segmentation

Dichotomous image segmentation (DIS) is formulated as a
category-agnostic task defined on non-conflicting annota-
tions for accurately segmenting objects with various struc-
tural complexities, regardless of their characteristics. What
sets it apart from classic segmentation tasks is the demand
for highly precise object delineation, even down to the in-
ternal details of objects. Additionally, it addresses a broader
range of objects, including salient[27, 45], camouflaged[7,
16], meticulous[19, 42], etc. Many efforts have been made
to tailor for DIS, the first solution, IS-Net [31], tackles the
DIS task by employing U2Net as backbone and leveraging
the intermediate supervision strategy. PF-DIS [47] is the
first to leverage frequency priors to identify fine-grained ob-
ject boundaries in DIS. Instead of using a general encoder-
decoder architecture, UDUN [28] proposes a unite-divide-
unite scheme to disentangle the trunk and structure segmen-
tation for high-accuracy DIS. Although these works have
achieved good performance, their reliance on CNN may
pose limitations when tackling HR, high-accuracy tasks. It
is because the increase in input resolution will result in a
relatively small receptive field, which subsequently hinders
the capacity of deep networks to capture essential global
semantics necessary for the DIS task. Recently, Xie et
al. [14] have proposed a novel architecture which enables
to merge multiple results regardless of the size of the in-
put. It is constructed to be trained with task-specified LR or
HR inputs and generate HR output with a multi-resolution
pyramid blending at the testing stage. However, the afore-
mentioned methods usually relay multiple stages/streams to
aggregation the global and local features, which will intro-
duce additional drawbacks such as large parameters, low
efficiency, and difficulty in optimization. In this paper, we
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focus on providing a parsimonious single stream and single
stage baseline for the DIS task.

2.2. Multi-view Learning

Multi-view learning is an emerging direction in machine
learning that leverages the use of multiple perspectives to
enhance generalization performance [34]. It involves the
utilization of distinct functions to model individual views,
and collectively optimizes these functions to exploit other
perspectives of the same input data, thereby enhancing over-
all learning performance [44]. In recent years, the integra-
tion of multi-view information with deep learning has gar-
nered significant attention in many areas, such as 3D object
recognition [33, 43], 3D reconstruction [17, 36, 37, 41],
and feature matching [12, 32]. Su et al. [33] pioneered
the utilization of multi-view 2D projected images as inputs,
constructing a multi-view convolutional neural network to
leverage information from object perspectives for 3D shape
recognition. Moreover, Wang et al. [36]proposed a repre-
sentative multi-view 3D reconstruction scheme, which en-
codes the relevant information amongst different views to
jointly explore multi-level correspondence and associations
between the 2D input views and 3D output volume with in
a single unified framework. To this end, we’re inspired to
split the input with high-resolution image information into
multi-view patch sequences to leverage complementary in-
formation for a more comprehensive understanding of vi-
sual data.

3. Method
In this section, we present the proposed approach in detail,
including the overall architecture and specific components.

3.1. Overall Architecture

Multi-view Input. As illustrated in Fig. 2, the HR image
input I ∈ RB×3×H×W is resized to create the LR version
G ∈ RB×3×h×w, which simulates the distant view. Also,
we evenly crop I into several non-overlapping local patches
{Lm}Mm=1 ∈ RB×3×h×w. Each of them can be seen as a
specific close-up view focusing on the fine-grained texture.
In this paper, we set M to be 4, i.e., (H,W ) = (2h, 2w),
and the corresponding discussion can be found in Sec. 4.4.
Multi-level Feature Extraction. G and {Lm}Mm=1 together
make up the multi-view patch sequence, which is fed in
batches into the feature extractor to generate the multi-level
feature maps, i.e., {Ei|i = 1, 2, 3, 4, 5}. Each Ei includes
representations of both the distant and close-up views.
Complementary Localization. The feature map E5 from
the highest level is partitioned along the batch dimension
into the two different sets, i.e., global and local features.
They are fed into the multi-view complementary localiza-
tion module (MCLM) to highlight the positional informa-
tion about the object within the global representation. It

is subsequently used to guide the local representation for
object localization and effectively filter out erroneous in-
formation from the close-up view. After the MCLM, the
updated global and local feature maps are concatenated
along the batch dimension to form a single feature map
D5 ∈ RB×3× h

32×
w
32 , which is sent to the well-designed top-

bottom decoder.

Refinement Decoding. Our novel network differs from the
classic FPN [21]-like architecture. We insert the on-the-
fly multi-view complementary refinement module (MCRM)
in each decoding stage as shown in Fig. 2. These mod-
els can dynamically optimize missing fine-grained details
in the global representation with information from the lo-
cal representations. And shallow features are also absorbed
layer by layer into the upsampling path in the decoder.

Multi-view Integration. As illustrated in the bottom-right
section of Fig. 2, we introduce a simple view rearrangement
module to merge the positional and semantic information
from the distant view with the detailed information from
the close-up view, into a unified whole. After the aforemen-
tioned steps, we can obtain Dmerge

1 ∈ RB×3×h
2 ×

w
2 , whose

shape is a quarter of the shape of the original image when
M = 4. Instead of directly upsampling it by 4 times, we
incorporate shallow features[18] as low-level visual cues to
further enhance the quality of image segmentation.

3.2. Multi-view Complementary Localization

To tackle the challenge of jointly localizing objects through
distant view and close-up views, we propose the multi-
view complementary localization module (MCLM). The
well-constructed process facilitates the proposed model in
attaining the holistic scene understanding and effectively
identifying potential areas of interest, thereby accomplish-
ing the goal of jointly localizing close-up views and dis-
tant views. First, we divide the E5 into global feature
EG

5 ∈ RB×C× H
32×

W
32 and local features {ELm

5 }Mm=1 where
ELm

5 ∈ RB×C× h
32×

w
32 and M denotes the number of local

features. Subsequently, the local features are assembled into
a unified global feature E

Lg

5 ∈ RB×C× H
32×

W
32 by aligning

with their respective positions in the original image. To si-
multaneously obtain the rich visual representation and cap-
ture important contextual feature cues, we embed the multi-
granularity pooling operation into the vanilla transformer
block [39, 49], which reduces the computational cost of
MHCA by 56.25% while facilitating deeper interaction be-
tween multiple views. Specifically, we apply multiple av-
erage pooling layers with various receptive fields onto the
aforementioned unified global feature, thereby generating
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Figure 2. Overall framework of the proposed MVANet. The downsampled original image and non-overlapping local patches are adopted
as inputs for the global context and detailed cues, representing distant and close-up views, respectively. To enhance object localization
and achieve detailed depiction, we propose multi-view complementary localization module (MCLM) and refinement module (MCRM),
respectively. Besides, a view rearrangement module is introduced to integrate multiple views, thereby generating predictions with highly
accurate dominant areas while preserving detailed object structures. The red dashed box indicates the location that is deeply supervised.
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Figure 3. Pipeline of the proposed multi-view complementary localization and refinement modules. represents the multi-granularity
pooling operation.

pyramid feature maps:

P1 = AvgPool1(E
Lg

5 ),

P2 = AvgPool2(E
Lg

5 ),

. . . ,

Pn = AvgPooln(E
Lg

5 ),

(1)

where n denotes the number of parallel pooling branches.
And we set the respective receptive fields to be 4, 8, 16 in
practice. These maps are then tokenized and concatenated

to be K and V for the MHCA block:

K,V = [T (P1), T (P2), . . . , T (Pn)]W
K,V , (2)

where WK,V ∈ RC×2C is used to transform all branches.
And T (·) indicates the tokenization operation which is
achieved with a flattening process for simplicity. The op-
eration [·] concatenates all sequences into a single one. Be-
sides, the global feature is also tokenized directly to be Q
for MHCA:

Q = T (EG
5 )WQ, (3)
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where WQ ∈ RC×C is a projection matrix. Then, Q, K
and V are fed into MHCA, followed by LN and FFN as shown
in the “Cross-Attention” part of Fig. 3a:

TG = T (EG
5 ) + LN(MHCA(Q,K, V )), (4)

TG = TG + LN(FFN(TG)). (5)

The updated global token TG ∈ R
HW
322

×B×C can be uti-
lized to reconstruct and update the global feature, where
we can obtain FG′

for further processing. Besides, in or-
der to utilize it to further assist in the activation of object-
related cues in the local field of view, we also rearrange
and partition TG ∈ R

HW
322

×B×C according to the order of
patch tokens, referred as {TGm}Mm=1. To effectively remain
the positional correlation between different views, we sup-
plement the position encoding into these local features as
shown in Fig. 3a. Subsequently, we tokenize them and ap-
ply MHCA within each patch, where the local tokens is used
as Q and the rearranged global tokens as K and V :

Qm = T (ELm
5 )WQm , (6)

TL′
m = MHCA(Qm, TGm , TGm). (7)

Finally, based on the updated local tokens {TL′
m}Mm=1, a

straightforward unflatten and reshape procedure is applied
to generate the reconstructed local features {EL′

m
5 }Mm=1,

which are then simply concatenated in batches with the up-
dated global feature EG′

5 to form the feature map D5 for
subsequent processing.

3.3. Multi-view Complementary Refinement

After the LR global feature provides a broader con-
text aiding in coarse-level identification, we introduce the
multi-view complementary refinement module (MCRM) as
shown in Fig. 3b. In this module, local features provide lo-
calized and detailed views to enhance the accuracy and ro-
bustness of segmentation. To be specific, the input feature is
denoted as Di, where i ∈ {1, 2, 3, 4, 5} represents the layer
number of the decoder. Similar to the MCLM, we parti-
tion the feature Di into global feature DG

i and local features
{DLm

i }Mm=1 along the batch dimension. To filter out back-
ground noise from the local features, a one-channel token
attention map A is initially generated using a 1 × 1 convo-
lution layer followed by a sigmoid function. A is subse-
quently utilized to the modulate feature map and eliminate
the background noise, thereby obtaining a purer representa-
tion for the object segmentation. And the aforementioned
operations can be formulated as:

A = sigmoid(conv(DG
i )), (8)

{DLm
i }Mm=1 = split(A⊙ assemble({DLm

i }Mm=1)),
(9)

where ⊙ is the Hadamard product. assemble and split

are a pair of opposite operations. The former rearranges the
independent patches into to the original image form, while
the latter reverses the process to the patch sequence. After
that, as in the MCLM, the individual position encoding is
also added to each local feature to model their positional
relationships. We then tokenize and concatenate these fea-
tures to serve as Q for the cross attention:

TLm
i = [T (DL1

i ), T (DL2
i ), . . . , T (DLm

i )], (10)

Qi = [TL1
i , TL2

i , . . . , TLm
i ]WQi . (11)

Besides, we partition the global feature into corresponding
regions based on the original positions of each local feature:

{DGm
i }Mm=1 = split(DG

i ). (12)

And then, a similar multi-granularity pooling process as
in the MCLM is imposed in these patch-wise features
{DGm

i }Mm=1 as shown in Fig. 3b, which involves the ex-
traction of contextual information through the utilization of
multiple branches with varying receptive fields. After the
transformation and concatenation, we can obtain the multi-
sensory tokens TGm

i with different contextual abstraction
levels in the mth patch. These tokens are then concatenated
into a unified whole, as K and V for the cross attention:

Ki, Vi = [TG1
i , TG2

i , . . . , TGm
i ]WKi,Vi . (13)

During the cross attention operation, we employ a vanilla
transformer block to facilitate interaction between informa-
tive local tokens and multi-sensory tokens from correspond-
ing regions in the global context. Then, we reconstruct the
updated local tokens to the local features {DL′

m
i }Mm=1 by

adjusting the shape, which are then integrated into the orig-
inal global feature by the addition operation to obtain glob-
ally optimized features DG′

i with enhanced details. Finally,
these two sets of features are concatenated along the batch
dimension, resulting in a detail-enhanced feature map:

D′
i = [{DL′

m
i }Mm=1, D

G′

i ]. (14)

After repetitively stacking the decoding components while
continuously integrating the multi-level features from the
encoder, we can obtain output features D′

1 with a higher
resolution, which incorporates the broader context and the
fine-grained locality.

3.4. View Rearrangement

The patch-based local enhancement strategy can retain suf-
ficient texture details for the model, but also introduces
the problem of misalignment between neighboring patch
boundaries when reorganizing the patches into the image.
In our decoder embedded with the refinement module, the
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Datasets Metric
F3Net GCPANet PFNet BSANet ISDNet IFA PGNet IS-Net FP-DIS UDUN InSPyReNet Ours
[38] [2] [25] [48] [10] [13] [40] [31] [47] [28] [14]
R-50 R-50 R-50 R2-50 R-50 R-50 S+R - R-50 R-50 Swin-B Swin-B

D
IS

-T
E

1

Fmax
β ↑ 0.726 0.741 0.740 0.683 0.717 0.673 0.754 0.740 0.784 0.784 0.845 0.893
Fω
β ↑ 0.655 0.676 0.665 0.545 0.643 0.573 0.680 0.662 0.713 0.720 0.788 0.823

Em
ϕ ↑ 0.820 0.834 0.830 0.773 0.824 0.785 0.848 0.820 0.860 0.864 0.874 0.911

Sm ↑ 0.783 0.797 0.791 0.754 0.782 0.746 0.800 0.787 0.821 0.817 0.873 0.879
M↓ 0.074 0.070 0.075 0.098 0.077 0.088 0.067 0.074 0.060 0.059 0.043 0.037

D
IS

-T
E

2

Fmax
β ↑ 0.789 0.799 0.796 0.752 0.783 0.758 0.807 0.799 0.827 0.829 0.894 0.925
Fω
β ↑ 0.719 0.741 0.729 0.628 0.714 0.666 0.743 0.728 0.767 0.768 0.846 0.874

Em
ϕ ↑ 0.860 0.874 0.866 0.815 0.865 0.835 0.880 0.858 0.893 0.886 0.916 0.944

Sm ↑ 0.814 0.830 0.821 0.794 0.817 0.793 0.833 0.823 0.845 0.843 0.905 0.915
M↓ 0.075 0.068 0.073 0.098 0.072 0.085 0.065 0.070 0.059 0.058 0.036 0.030

D
IS

-T
E

3

Fmax
β ↑ 0.824 0.844 0.835 0.783 0.817 0.797 0.843 0.830 0.868 0.865 0.919 0.936
Fω
β ↑ 0.762 0.789 0.771 0.660 0.747 0.705 0.785 0.758 0.811 0.809 0.871 0.890

Em
ϕ ↑ 0.892 0.909 0.901 0.840 0.893 0.861 0.911 0.883 0.922 0.917 0.940 0.954

Sm ↑ 0.841 0.855 0.847 0.814 0.834 0.815 0.844 0.836 0.871 0.865 0.918 0.920
M↓ 0.063 0.068 0.062 0.090 0.065 0.077 0.056 0.064 0.049 0.050 0.034 0.031

D
IS

-T
E

4

Fmax
β ↑ 0.815 0.831 0.816 0.757 0.794 0.790 0.831 0.827 0.846 0.846 0.905 0.911
Fω
β ↑ 0.753 0.776 0.755 0.640 0.725 0.700 0.774 0.753 0.788 0.792 0.848 0.857

Em
ϕ ↑ 0.883 0.898 0.885 0.815 0.873 0.847 0.899 0.870 0.906 0.901 0.936 0.944

Sm ↑ 0.826 0.841 0.831 0.794 0.815 0.841 0.811 0.830 0.852 0.849 0.905 0.903
M↓ 0.070 0.064 0.072 0.107 0.079 0.085 0.065 0.072 0.061 0.059 0.042 0.041

O
ve

ra
ll

Fmax
β ↑ 0.789 0.804 0.797 0.744 0.778 0.755 0.809 0.799 0.831 0.831 0.891 0.916
Fω
β ↑ 0.722 0.746 0.730 0.618 0.707 0.661 0.746 0.726 0.770 0.772 0.838 0.855

Em
ϕ ↑ 0.864 0.879 0.871 0.811 0.864 0.832 0.885 0.858 0.895 0.892 0.917 0.938

Sm ↑ 0.816 0.831 0.823 0.789 0.812 0.791 0.830 0.819 0.847 0.844 0.900 0.905
M↓ 0.071 0.065 0.071 0.098 0.073 0.084 0.063 0.070 0.057 0.057 0.039 0.035

Table 1. Quantitative comparison of DIS5K with 11 representative methods. ↓ represents the lower value is better, while ↑ represents the
higher value is better. The best score is highlighted in bold. R-50, R2-50, and SwinB respectively denote the utilization of ResNet-50[11],
Res2Net-50[8], and Swin-B[23] as backbones, while S+R represents the combination of Swin-B and ResNet-50 as a new backbone.

iterative dense interactions between patches and global fea-
tures alleviate this problem. And we make further optimiza-
tions in the cascaded view rearrangement module as shown
in Fig. 2 Specifically, we split the local features in D′

1 along
batch dimension and assemble them into a global form. To
address aforementioned issue, we introduce a convolutional
head that consists of three convolutional layers interspersed
with BN and ReLU layers, to smooth the features as in Fig. 2.
This architecture is purposefully tailored to prioritize the
enhancement of patch alignment. Subsequently, the aligned
feature is added to the global feature split from D′

1 to fur-
ther enhance image quality, and used to generate the final
segmentation map.

3.5. Loss Function

As illustrated in the Fig. 2, we incorporate supervision
at each layer output of the decoder and the final predic-
tion. Specifically, the former consists of three components:
ll, lg and la for the assembled local representation, the
global representation, and the token attention map in the
refinement module, respectively. Note that the side out-
puts here each require a separate convolutional layer to ob-
tain a single-channel prediction. And the latter is repre-
sented as lf . These components employ the combination of
the binary cross-entropy (BCE) loss and the weighted IoU
loss, following the common practice in most segmentation

tasks [28, 46, 47]:

l = lBCE + lIoU . (15)

To this end, our total loss can be written as:

L = lf +

5∑
i−1

(lil + λgl
i
g + λal

i
a), (16)

where λg and λh are set to 0.3 in our experiment.

4. Experiments
4.1. Datasets and Evaluation Metrics

Data Settings. We conduct extensive experiments on the
DIS5K [31] benchmark dataset, comprising 5, 470 HR im-
ages (e.g., 2K, 4K or larger) across 225 categories. The
dataset is partitioned into three subsets: DIS-TR, DIS-VD,
and DIS-TE. DIS-TR and DIS-VD consist of 3, 000 training
images and 470 validation images, respectively. DIS-TE is
further divided into four subsets (DIS-TE1, 2, 3, 4) with in-
creasing shape complexities, each containing 500 images.
With its diverse objects featuring varying geometric struc-
tures and appearances, the DIS5K dataset presents higher
resolution images, intricate structural details, and superior
annotation accuracy compared to existing object segmenta-
tion datasets. As a result, segmentation on DIS5K proves to
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Figure 4. Visual comparison of different DIS methods.

be challenging and necessitates models with robust capabil-
ities in identifying structural details.
Evaluation Metrics. For evaluating the results, we
adopt some widely used metrics, including max F-measure
(Fmax

β ) [29], weighted F-measure (Fω
β ) [24], structural

similarity measure (Sm) [5], E-measure (Em
ϕ ) [6] and mean

absolute error (MAE, M) [29]. Fmax
β and Fω

β are the max-
imum and weighted scores of the precision and recall, re-
spectively, where β2 is set to 0.3. Sm simultaneously evalu-
ates region-aware and object-aware structural similarity be-
tween the prediction and mask. Em

ϕ is widely used for eval-
uating pixel-level and image-level matching. MAE mea-
sures the average error of the prediction maps.

4.2. Implementation Details

Experiments are implemented in PyTorch on a single RTX
3090 GPU. During the training phase, the original images
are first resized to 1024 × 1024. Then, both the With
the number of patches set to 4, the resulting patch size is
512 × 512. Consequently, the low-resolution (LR) global
image is also resized to 512 × 512. Swin-B [23] is used
as the backbone with the pre-trained weights on the Ima-
geNet [3], while other parameters are initialized randomly.
To avoid overfitting, we adopt some data augmentation
techniques, including random horizontal flipping, cropping
and rotating. We use the Adam optimizer with an initial
learning rate of 0.00001. The batch size is set to 1, and the
maximum number of epochs is set to 80.

4.3. Comparison with State-of-the-arts

Quantitative Evaluation. In Tab. 1, we compare our
proposed MVANet with other 11 well-known task-related

models, including F3Net [38], GCPANet [2], PFNet [25],
BSANet [48], ISDNet [10], IFA [13], IS-Net [31], FP-
DIS [47], UDUN [28], PGNet [40], InSPyNet [14]. For
a fair comparison, we standardize the input size of the
comparison models to 1024 × 1024. It can be seen that
MVANet significantly outperforms the other models on all
the datasets under different metrics. In particular, ours
outperforms the second-best model (InSPyReNet) with the
gain of 2.5% , 2.1% , 0.5% , 0.4% in terms of the Fmax

β ,
Em

ϕ , Sm and MAE, respectively. Besides, we evaluate the
inference speed for the InSPyReNet and ours. Both of them
are tested under the same NVIDIA RTX 3090 GPU. Bene-
fiting from the parsimonious single stream design, MVANet
achieves the 4.6 FPS over the InSPyReNet with the 2.2 FPS.
Qualitative Evaluation. To demonstrate the highly accu-
rate prediction of our model in an intuitive perspective, we
visualize the output of some images selected from the test
set. As shown in Fig. 4, our model can capture both the
accurate object localization and edge details under different
complex scenes. In particular, other methods suffer from
interference from the salient yellow gauze and shadows,
whereas our model allows for a complete segmentation of
the chair and accurate differentiation of the interior for each
grille (see the last row).

4.4. Ablation Study

In this section, we analyze the effects of each component.
All the results are tested on the DIS-TE1.
Diverse Views Inputs. To investigate the effectiveness of
our multi-view input strategy, we conduct a series of exper-
iments involving different inputs, as shown in Tab. 2. First,
we separately list the in-dependent results of the ”HR-Ori”,
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HR-Ori LR-Dis HR-Clo Fmax
β ↑ Em

ϕ ↑ Sm ↑ M ↓
✓ 0.822 0.869 0.812 0.058

✓ 0.815 0.858 0.801 0.058
✓ 0.801 0.814 0.759 0.069

✓ ✓ 0.875 0.897 0.862 0.041
✓ ✓ 0.893 0.911 0.879 0.037

Table 2. Ablation experiments of diverse views inputs. ”HR-
Ori” is the high-resolution original images. ”LR-Dis” is the
low-resolution global images generated by resizing the ”HR-Ori”.
”HR-Clo” is the 4 non-overlapping patches evenly cropped from
the ”HR-Ori”.

”LR-Dis”, ”HR-Clo” models. The ”HR-Orr” will as the
performance anchor to show the effectiveness of the multi-
view inputs strategy. Next, the gap between the first and
fourth rows show the effectiveness of low-resolution global
images in providing the distant view. Then, the gap be-
tween the fourth and last rows can illustrate the necessity
of the local patches in providing the close-up view. Finally,
the combined global and local multi-view inputs provide a
complete set of target perceptual cues with no mutually ex-
clusive effects on each other.
Effectiveness of MCLM. In Tab. 3, the comparison of the
second row with last row shows the effectiveness of the
proposed multi-view complementary localization module
(MCLM). The utilization of pyramid pooling for generat-
ing multi-sensory tokens enables the identification of tar-
gets within tokens at minimal cost and facilitates long-range
visual interactions across multiple local views. Therefore,
the MCLM guarantees an increase in performance while de-
creasing speed by only 1.09 FPS.
Effectiveness of MCRM. The gap between the third row
and last row verify the effectiveness of the proposed multi-
view complementary refinement module (MCRM). Al-
though the pooling operation is used in MCRM, it is only
embed in the global features. Once applying cross-attention
on shallow features, the computational cost will increases
significantly due to the larger feature sizes. By generating
multi-sensory tokens, we can reduce the sequence length
and thereby greatly reduce the computational burden.
Effectiveness of VRM. Thanks to the sufficient feature fu-
sion among local patch features in the decoder, we only
need to perform a simple convolution operation at the tail
of the MVANet to accomplish an effective view rearrange
and obtain a complete high-resolution prediction. Finally,
we can see that the combination of MCLM, MCRM and
VRM can separately achieve more than 8%, 4%, 8%, 36%
performance gain in terms of the Fmax

β , Em
ϕ , Sm and MAE,

compared to the FPN baseline (the first row) with only the
original view image input.
Patch Quantity. To thoroughly investigate the impact of
patch quantity on our work, we crop the original image into

MCLM MCRM VRM Fmax
β ↑ Em

ϕ ↑ Sm ↑ M↓ FPS ↑
0.822 0.869 0.812 0.058 9.2

✓ ✓ 0.880 0.889 0.866 0.038 5.71
✓ ✓ 0.884 0.903 0.870 0.041 5.38
✓ ✓ 0.888 0.897 0.874 0.039 4.76
✓ ✓ ✓ 0.893 0.911 0.879 0.037 4.62

Table 3. Ablation experiments of each component.

Number Fmax
β ↑ Em

ϕ ↑ Sm ↑ M ↓
4 0.893 0.911 0.879 0.037
9 0.821 0.856 0.799 0.058
16 0.717 0.751 0.745 0.081

Table 4. Ablation experiments of the number of the patches in the
sequence for the close-up view.

4, 9, and 16 patches, serving as the close-up view inputs.
As shown in Tab. 4, performance degrades as the number
of patches increases. It may be attributed to two reasons:
1) While an increase in patch quantity and a decrease in
resolution may enhance processing speed, it also results in
reduced information within each close-up view, weakened
connectivity between patches, and even instances where di-
minished receptive fields lead to noise being mistaken for
foreground objects. 2) As the resolution decreases for each
patch, the resolution of the LR global image correspond-
ingly diminishes, leading to significant information loss that
is detrimental to accurate object localization.

5. Conclusion

In this paper, we tackle the high-accuracy DIS by model-
ing it as a multi-view object perception problem and pro-
vide a parsimonious, streamlined multi-view aggregation
network, aiming at making a better trade-off among model
designs, accuracy, and the inference speed. To address
the target alignment problem for multiple views, we pro-
pose the multi-view complementary localization module to
jointly calculate the co-attention region of the target. Be-
sides, the proposed multi-view complementary refinement
module are embed into each decoder block to fully integrate
complementary local information and mitigate the semantic
deficit of a single view patch, thus the final view rearrange-
ment can be accomplished with only a single convolutional
layer. Extensive experiments show that our model performs
well on the DIS dataset.
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[26] Ferdinand Mütsch, Helen Gremmelmaier, Nicolas Becker,
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