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Abstract

With the rapidly increasing demand for oriented object de-
tection (OOD), recent research involving weakly-supervised
detectors for learning rotated box (RBox) from the horizontal
box (HBox) has attracted more and more attention. In this pa-
per, we explore a more challenging yet label-efficient setting,
namely single point-supervised OOD, and present our ap-
proach called Point2RBox. Specifically, we propose to lever-
age two principles: 1) Synthetic pattern knowledge combina-
tion: By sampling around each labeled point on the image,
we spread the object feature to synthetic visual patterns with
known boxes to provide the knowledge for box regression. 2)
Transform self-supervision: With a transformed input image
(e.g. scaled/rotated), the output RBoxes are trained to follow
the same transformation so that the network can perceive
the relative size/rotation between objects. The detector is
further enhanced by a few devised techniques to cope with
peripheral issues, e.g. the anchor/layer assignment as the
size of the object is not available in our point supervision
setting. To our best knowledge, Point2RBox is the first end-
to-end solution for point-supervised OOD. In particular, our
method uses a lightweight paradigm, yet it achieves a com-
petitive performance among point-supervised alternatives,
41.05%/27.62%/80.01% on DOTA/DIOR/HRSC datasets.

1. Introduction
As a fundamental task in computer vision, object detection
plays an important role, e.g. in autonomous driving [8],
aerial images [9, 27, 40, 43, 44], scene text [21, 25, 30, 31,
59], retail scenes [11, 32], industrial inspection [26, 39], and
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more, with the object detection results usually rendered in
three ways: 1) Horizontal bounding box (HBox); 2) Rotated
bounding box (RBox); 3) Pixel-wise labels (Mask).

To teach the detector new concepts of visual objects, man-
ual annotations are required. Early research is usually based
on full supervision where the manual annotation is in the
same manner as the desired network output. Although hav-
ing achieved promising performance, full supervision in ori-
ented object detection faces with two problems: 1) RBox an-
notations are less available in many scenarios. In particular,
a large number of datasets have already been annotated with
other formats. When RBoxes are required, a possible way is
to conduct labor-intensive re-annotation, e.g. DIOR-HBox
[18] to DIOR-RBox [6] for aerial image (192K instances)
and SKU110K-HBox [11] to SKU110K-RBox [32] for retail
scene (1,733K instances). 2) RBox annotations are much
more costly. The cost of each RBox is about 36.5% higher
than an HBox and 104.8% higher than a point annotation1.

To mitigate the dependence on labor-intensive RBox la-
beling, H2RBox [50] and H2RBox-v2 [56] have explored
the HBox-to-RBox setting that learns RBox detectors from
HBox annotations. A more challenging task setting is then
featured: Can we achieve oriented object detection under the
weak supervision of point annotations?

Several point supervised detectors for HBox/Mask have
been proposed: 1) P2BNet [4] samples boxes of differ-
ent sizes around the labeled point and classify them to
achieve Point-to-HBox; 2) Point2Mask [20] achieves seg-
mentation using a single point annotation per target for train-
ing; 3) SAM (Segment Anything Model) [17] produces ob-
ject masks from input Point/HBox prompts. Although the
above Point-to-HBox/Mask settings can be applied to Point-
to-RBox, e.g. by using an additional HBox-to-RBox stage
or finding the circumscribed rectangle of the mask, we show
that such a solution is not perfect in both speed (7x slower

1According to https://cloud.google.com/ai-platform/
data-labeling/pricing and point annotations are 1.1-1.2x more
time consuming than obtaining image-level labels [1].
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Figure 1. Visual detection results based on the same ResNet50 [14] backbone. The first row compares our method (Point2RBox-SK, AP50 =
40.27, see Table 1) with Point-to-HBox-to-RBox pipeline powered by the state-of-the-art P2BNet (2022) [4] and H2RBox-v2 (2023) [56].
The second row displays the comparison with Point-to-Mask-to-RBox method Point2Mask-RBox [20].

converting from mask [50]) and accuracy (see Fig. 1).
Motivation. Using the finger for single-point instructions

is a natural way to convey the object concepts. While point
supervision is gaining attention [4, 20], end-to-end point-
supervised oriented detection is still a missing part of the
literature. Inspired by humans’ ability to use knowledge
from sketches to learn real-world objects, we intend to ex-
plore Point-to-RBox with a similar and novel idea – using
synthetic visual patterns for knowledge combination.

What is new? 1) A light-weight detector Point2RBox for
leaning RBox from single point annotations is proposed. It
has a simple and elegant structure and is trained in a single-
stage end-to-end manner. 2) At the core of Point2RBox
is novel principles for RBox regression: synthetic pattern
knowledge combination and transform self-supervision. The
former enables the network to estimate the size and angle of
real objects through the knowledge from synthetic patterns,
whereas the latter to perceive the relative size/rotation be-
tween objects. 3) As a result, Point2RBox give a competitive
performance, as is displayed in Fig. 1 and Tables 1-2.

Contributions. 1) To our best knowledge, this work is
the first attempt for end-to-end single point supervised OOD,
where we propose two schemes: knowledge combination
and self-supervision. 2) The training pipeline and detail
implementation are elucidated, with devised techniques to
cope with peripheral issues, e.g. the anchor assignment
when the object size is not available. 3) Extensive experi-
ments demonstrate the method’s capability to learn RBox
regression, surpassing other alternatives in performance.

2. Related Work
Beyond horizontal detection [24, 58], oriented object detec-
tion [38] has received extensive attention. Here, pproaches
to oriented detection and point supervision are discussed.

Fully-supervised oriented detection. Representative
works include anchor-based detector Rotated RetinaNet [23],
anchor-free detector Rotated FCOS [36], and two-stage so-
lutions, e.g. RoI Transformer [7], Oriented R-CNN [41],
and ReDet [12]. Some research enhances the detector by
exploiting alignment features, e.g. R3Det [47] and S2A-Net
[13]. The angle regression may face boundary discontinu-
ity and remedies are developed, including modulated losses
[34, 45] that alleviate loss jumps, angle coders [42, 46, 55]
that convert the angle into boundary-free coded data, and
Gaussian-based losses [48, 49, 51, 52] transforming rotated
bounding boxes into Gaussian distributions. RepPoint-based
methods [15, 19, 53] provide alternatives that predict a set
of sample points that bounds the spatial extent of an object.

HBox-to-RBox. The seminal work H2RBox [50] circum-
vents the segmentation step and achieves RBox detection
directly from HBox annotation. With HBox annotations
for the same object in various orientations, the geometric
constraint limits the object to a few candidate angles. Sup-
plemented with a self-supervised branch eliminating the
undesired results, an HBox-to-RBox paradigm is established.
An enhanced version H2RBox-v2 [56] is proposed to lever-
age the reflection symmetry of objects to estimate their angle,
further boosting the HBox-to-RBox performance.

Some similar studies use additional annotated data for
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Figure 2. The training flowchart, consisting of synthetic pattern knowledge combination (Sec. 3.1) and transform self-supervision (Sec. 3.2).
The core idea is to combine knowledge from synthetic patterns for size/angle estimation with that from annotated points for classification.
The basic patterns are obtained based on two different settings (see Fig. 3).

training, which are also attractive but less general: 1) OAOD
[16] is proposed for weakly-supervised oriented object de-
tection. But in fact, it uses HBox along with an object
angle as annotation, which is just “slightly weaker” than
RBox supervision. Such an annotation manner is not com-
mon, and OAOD is only verified on their self-collected ITU
Firearm dataset. 2) Sun et al. [35] propose a two-stage
framework: i) training detector with the annotated horizontal
and vertical objects, and ii) mining the rotation objects by
rotating the training image to align the oriented objects as
horizontally or vertically as possible. 3) KCR [61] combines
RBox-annotated source datasets with HBox-annotated target
datasets, and achieves HBox-supervised oriented detection
on the target datasets via transfer learning.

Point-to-HBox. Several related approaches have been
developed, including: 1) P2BNet [4] samples box proposals
of different sizes around the labeled point and classify them
to achieve point-supervised horizontal object detection. 2)
PSOD [10] achieves point-supervised salient object detection
using an edge detector and adaptive masked flood fill.

Some methods accept partial point annotations (a com-
mon setting is 80% points and 20% HBoxes), usually termed
semi-supervision: 1) Point DETR [3] extends DETR [2]
by adding a point encoder for point annotations. 2) Group-
RCNN [57] generates a group of proposals for each point
annotation. 3) CPR [54] produces center points from coarse
point annotations, relaxing the supervision signals from ac-
curate points to freely spotted points.

These Point-to-HBox methods are potentially applicable
to our Point-to-RBox task setting – by using a subsequent
HBox-to-RBox stage. In our experiment, the state-of-the-art
methods P2BNet [4] and H2RBox-v2 [56] are used to build

a Point-to-HBox-to-RBox baseline for comparison.
Point-to-Mask. Compared with point-supervised ori-

ented detection, Point-to-Mask has been better studied. For
instance, Point2Mask [20] is proposed to achieve panoptic
segmentation using only a single point annotation per target
for training. SAM (Segment Anything Model) [17] produces
object masks from input point/HBox prompts.

The Point-to-Mask pipeline is also a potential alternative
for our task – by finding the minimum circumscribed rectan-
gle of the segmentation mask. Though the oriented bounding
box can be obtained from the mask, such a complex pipeline
can be less cost-efficient and perform worse [50, 56].

3. Method
An overview of the proposed Point2RBox is illustrated in
Fig. 2, which consists of synthetic pattern knowledge combi-
nation (Sec. 3.1) and transform self-supervision (Sec. 3.2).

On the left is the generation procedure for the knowledge
combination. In this phase, synthetic patterns are generated
and randomly overlaid on the input image. These patterns
with known bounding boxes are subsequently used to super-
vise the regression during the loss calculation.

After the image is generated, we perform a transformation
on this image (randomly selected from rotate, flip, and scale).
By feeding both the original view and the transformed view
into the network, we obtain two sets of output RBoxes. The
transform self-supervision loss is calculated between these
two sets so that the output RBoxes are trained to follow the
same transformation applied to the input.

In the subsequent subsections, these modules are further
detailed, with the loss function described in Sec. 3.3.
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Figure 3. Two settings of obtaining basic patterns (see Sec. 3.1) and the illustration of training images overlaid with synthetic patterns.
SetRC: Rectangles and circles with curve textures. SetSK: One simple sketch pattern for each category (see Table 3 for ablation).

3.1. Synthetic Pattern Knowledge Combination
In single point-supervised OOD, we do not know the exact
size/angle of the labeled object. Yet we can generate a new
one – with a similar texture and known bounding box. Based
on this idea, we sample around each labeled point, extract
its neighbor color feature, spread them to basic patterns, and
overlay them on the input image. These patterns are then
used to enable the training of the regression subnet.

Basic patterns. 1) SetRC (point supervision). It con-
sists of rectangles and circles with white filling and black
edges, sized 160×160, 160×80, 160×40, 80×80, 80×40,
and 80×20. The above preset is used to keep the size of
generated patterns in a reasonable range. 2) SetSK (point
supervision with one-shot samples). It consists of one sketch
pattern for each category (e.g. only fifteen for DOTA-v1.0).
The patterns are manually cropped from the first several train-
ing images and are adjusted to “white surfaces and black
edges”. It takes just about ten minutes to obtain all fifteen
patterns for the DOTA-v1.0 dataset.

In the meanwhile, curve patterns can be overlaid on the
shapes to improve the diversity (in SetRC, see Fig. 3). Two
types of textures are used: 1) One to four equally spaced
lines parallel to bounding boxes. 2) The curve defined by
the following polar coordinate equation:

ρ = (1− k) |cosn(2θ)|+ k (1)

where n is a random number in [0, 8], and k is a random
number in [0.1, 0.6], both from uniform distribution. The
two types of textures are adopted each with a probability of
0.5. Several example patterns are displayed in Fig. 3.

Color sampling. The face color Cface and the edge color
Cedge around each labeled point are extracted as follows:{

Cface = mean (I0)
Cedge = sum (dI1)

(2)

where I0 and I1 are the neighbors around a labeled point.
We simply use 5× 5 for I0 and 33× 33 for I1. Here d is the
gradient of I1 indicating the edge intensity of each pixel (the

sum of d is uniformed to 1).
Recolor. We use a gray-scale image as the basic pattern,

which can be denoted as P , with its value in the range (0, 1).
The recolor step can be expressed as:

Precolor = PCface + (1− P )Cedge (3)

This formula maps the extracted color Cface and Cedge to
the basic pattern. By this means, the diversity of the patterns
is significantly enriched, so that the trained regression subnet
can better estimate the RBox of the real data.

Random augmentation. The recolored patterns are first
augmented with the random flip, resize, and rotation. After-
ward, they are moved to a random position inside the image
border. To avoid overlapping patterns, NMS (Non-Maximum
Suppression) is then applied so that the IoU (Intersection
over Union) between patterns is less than 0.05.

The random resize can be formulated as:
sbase = exp (σbaserandn())
w = sbase exp (σwrandn())w0

h = h0

w0
exp (σrrandn())w

(4)

where randn() generates random numbers from the standard
normal distribution; w0 and h0 are the original pattern sizes;
w and h are the resized ones; sbase is a base scale for all
patterns in the same image; σbase, σw, and σr control the
variation of scale, width, and ratio, set to 0.4 by default.

For the other augmentation i.e. random flip and rotation,
the probability is set to 0.5 and 1, respectively.

In particular, to avoid the real objects being completely
occluded, we use transparent blending:

t(x, y) = exp
(
−ax2 − by2

)
× t1 + t0 (5)

where t(x, y) is the opacity channel of the synthetic pattern;
x and y are coordinates in range [−1, 1]; a and b are random
numbers in [0.1, 2] from uniform distribution; t0 = 0.1 and
t1 = 0.9 keep the opacity between 10% to 100%.

In addition, some of the patterns will be randomly se-
lected to produce a set of tightly arranged patterns through
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translation, which can also be observed in Fig. 3.
Finally, these generated patterns are overlaid on the orig-

inal image and their known bounding boxes are used for
training, providing the knowledge for box regression.

3.2. Transform Self-supervision
Our training flowchart has two parameter-shared branches
(see Fig. 2), namely the original branch and the transformed
branch (i.e. with a transformed input). The self-supervision
is performed between the two branches to supervise each
other. The input of the transformed branch can be set as:

Itrs = transform (Iori) (6)

where Iori is the input of the original branch; Itrs is the input
of the transformed branch; transform (·) is a transformation
randomly selected from flip, rotate, and scale. The probabil-
ity of scale is set to 30%, and the proportion between rotate
and flip is set to 95:5 adopted from [56].

The output RBoxes of the two branches are defined as:{
Bori = (xori, yori, wori, hori, θori)
Btrs = (xtrs, ytrs, wtrs, htrs, θtrs)

(7)

where Bori is the output RBoxes of original branch; Btrs is
those of transformed branch.

The two branches supervise each other by minimizing the
loss between Bori and Btrs so that the transformation between
Bori and Btrs is trained to follow the same transformation
being applied to the input image.

It should be noted that only the output RBoxes assigned to
real objects (i.e. point-annotated ones) are involved in trans-
form self-supervision, whereas synthetic ones are directly
supervised by their known bounding boxes.

Flip. When the input image is vertically flipped, the angle
of output RBoxes is also supposed to be flipped. Therefore,
the self-supervised loss can be expressed as:

Lflp (Bori, Btrs) = smoothL1 (mod(θtrs + θori), 0) (8)

where θori is the output angle of original branch; θtrs is the
output angle of transformed branch; mod(x) = (x + π/2
mod π)− π/2 limits the difference in range [−π/2, π/2).

Rotate. When the input image is rotated by R, the an-
gle of output RBoxes is supposed to be likewise rotated.
Therefore, the self-supervised loss can be expressed as:

Lrot (Bori, Btrs) = smoothL1 (mod(θtrs − θori),R) (9)

where θori, θtrs, and mod(x) share the same definition as Eq.
(8); R is the rotation angle being applied to the input image
in range (0.25π, 0.75π) adopted from [56].

Scale. When the input image is scaled by s, the center
and the size of output RBoxes should be likewise scaled.
Therefore, the self-supervised loss can be expressed as:

Lsca (Bori, Btrs) = GIoU (r2h(Bori)× s, r2h(Btrs)) (10)

where Bori and Btrs are outputs of the original and trans-
formed branches; r2h (·) is the function to get the circum-
scribed HBoxes of RBoxes, s is the scaling factor being
applied to the input image in range (0.5, 1.5).

3.3. Loss Functions
The predicted RBoxes and the corresponding ground-truths
are denoted as Bpred and Bgt.

Loss from point supervision. Point annotations are used
to train the classification and the center of RBoxes:{

Lcls = Lcls (Mpointcpred,Mpointcgt)
Lcen = L1 (Mpointxypred,Mpointxygt)

(11)

where Mpoint is a mask to select those RBoxes that are as-
signed to annotated points; cpred and xypred are the predicted
classification scores and centers; cgt and xygt are the labels
and coordinates of annotated points; Lcls is the classification
loss defined by backbone oriented detector.

Loss from knowledge combination. Knowledge from
synthetic patterns is combined to learn the box regression:

Lbox = Lbox (MboxBpred,MboxBgt) (12)

where Mbox is a mask to select those RBoxes that are as-
signed to synthetic boxes; Lbox is the loss function depending
on the backbone oriented detector.

Loss from transform self-supervision. The loss is cal-
culated between the original and transformed branches and
the loss function is selected corresponding to the type of
transformation being applied to the input image:

Lss = Lflp/rot/sca (MoriMpointBpred,MtrsMpointBpred) (13)

where Lflp/rot/sca is defined by Eqs. (8, 9, 10); Mori and Mtrs
are the masks to select those RBoxes from the original branch
or transformed branch.

Overall loss. The overall loss of the proposed network is
the weighted sum of the above losses:

Ltotal = ωclsLcls + ωcenLcen + ωboxLbox + ωssLss (14)

where ωcls, ωcen, ωbox are set to 1, 0.1, 1 by default, and ωss
is set to 0.3 (flip/rotate) or 0.02 (scale).

3.4. Label Assignment
Currently, available detectors largely rely on FPN (Feature
Pyramid Network) [22]. For example, Rotated FCOS [36]
usually uses five feature layers, with large and small objects
assigned to different ones. While point annotations do not
provide any size information, they do not apply to such an
FPN-based assignment strategy.

In terms of YOLOF [5] that barely uses a one-level fea-
ture, it uses five preset anchors with sizes 32, 64, 128, 256,
and 512. Therefore its anchor assignment strategy is also
incompatible with point annotations.

To mitigate this problem, we propose a classification-
score-based assignment rule. Instead of assigning ground-
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truths to the anchor with the highest IoU, we assign them
(including both labeled points and synthetic boxes) to the
one that produces the highest classification score.

Specifically, YOLOF is used as the backbone detector.
The anchor stride is 16 and all five anchors are set to a fixed
size (64×64 for the DOTA dataset and 128×128 for others).
Then the matching scores between anchors and ground-truths
can be calculated as:

score =

{
0, L1 (xypred, xygt) > 32

Lcls (cpred, cgt) , otherwise
(15)

where xypred and xygt are the center coordinates of predicted
boxes and ground-truths; cpred and cgt are the predicted clas-
sification scores and ground-truth labels.

Afterward, following the setting of YOLOF, we use K-
nearest to find four positive anchors with the highest scores
for each ground truth. The improvement of the above design
is verified in the ablation study (see Sec. 4.3).

3.5. Inference Phase
Although using a synthetic pattern generation module and
two branches in training (see Fig. 2), Point2RBox does not
require these operations in inference. Due to the parameter
sharing of the two branches, the inference only involves the
forward propagation of the backbone, the classification head,
and the regression head. Thus, it has a similar inference
speed compared to the backbone detector that it is based on.

4. Experiments
Experiments are carried out on NVIDIA RTX4090/A100
GPUs using PyTorch 1.13.1 [33] and the rotation detection
tool kits: MMRotate 1.0.0 [60]. All the experiments fol-
low the same hyper-parameters (learning rate, batch size,
optimizer, etc.).

4.1. Settings and Datasets
We use the FPN-free detector YOLOF [5] with a fixed anchor
size (64 for DOTA and 128 for DIOR/HRSC) as the baseline
method for developing our Point2RBox. Such a choice
is mainly upon the fact that positive samples (annotated
with points) cannot be assigned to different FPN layers or
different anchors based on their annotated sizes.

Average precision (AP) is adopted as the primary metric
to compare our methods with existing alternatives. Unless
otherwise specified, all the listed models are configured
based on ResNet50 [14] backbone. All models are trained
with AdamW [28], with an initial learning rate of 5e-5 and a
mini-batch size of 4. Besides, we adopt a learning rate warm-
up for 500 iterations, and the learning rate is divided by ten
at each decay step. “1x” and “6x” schedules indicate 12 and
72 epochs for training, and “RR” denotes random rotation
augmentation. “1x” is used for the DOTA and DIOR datasets
and “6x+RR” for HRSC. Random flipping and shifting are

always adopted by default. For a fair comparison, all results
are evaluated without multi-scale technique [60].

DOTA [40]. DOTA-v1.0 contains 2,806 aerial images—
1,411 for training, 937 for validation, and 458 for testing,
as annotated using 15 categories with 188,282 instances in
total. The categories are defined as: Plane (PL), Baseball
Diamond (BD), Bridge (BR), Ground Track Field (GTF),
Small Vehicle (SV), Large Vehicle (LV), Ship (SH), Ten-
nis Court (TC), Basketball Court (BC), Storage Tank (ST),
Soccer-Ball Field (SBF), Roundabout (RA), Harbor (HA),
Swimming Pool (SP), and Helicopter (HC). We follow the
default preprocessing in MMRotate: The high-resolution
images are split into 1,024 × 1,024 patches with an overlap
of 200 pixels for training, and the detection results of all
patches are merged to evaluate the performance.

DIOR [6]. DIOR-RBox is an aerial image dataset re-
annotated with RBoxes based on its original HBox-annotated
version DIOR [18]. There are 23,463 images and 190,288
instances with 20 classes. DIOR-RBox has a high variation
in object size with high intra-class diversity.

HRSC [27]. It contains ship instances both on the sea
and inshore, with arbitrary orientations. The training, vali-
dation, and testing set includes 436, 181, and 444 images,
respectively. With preprocessing by MMRotate, images are
scaled to 800 × 800 for training/testing.

4.2. Main Results
DOTA-v1.0. Table 1 shows that Point2RBox outperforms
currently available two-stage solution – Point-to-HBox-to-
RBox, even if the Point-to-HBox-to-RBox is powered by the
state-of-the-art methods P2BNet [4] (Point-to-HBox) and
H2RBox-v2 [56] (HBox-to-RBox).

Since point annotations cannot be assigned to different
FPN layers or different anchors by size, our Point2RBox is
based on the FPN-free method YOLOF-A1 [5]. The perfor-
mance gap between Point2RBox and the RBox-supervised
YOLOF-A1 baseline is 9.67% (40.27% vs. 49.94%), proving
the effectiveness of combining knowledge from synthetic
patterns for point-supervised oriented object detection.

Barely using synthetic patterns (i.e. SetRC), Point2RBox
achieves AP50 of 34.07%. While one sketch pattern for
each category is cooperated (only fifteen patterns in total, i.e.
SetSK), the performance is further boosted to 40.27%. By
utilizing a stronger backbone CSPNeXt-l [29], Point2RBox
obtains 41.05% on DOTA-v1.0.

In the last row of Table 1, we additionally explore a two-
stage training pipeline. In the first stage, Point2RBox-SK
(based on YOLOF-A1) is trained to generate pseudo RBoxes
labels. These pseudo labels enable the anchor-based assign-
ment in the second stage (based on YOLOF-A5), which
improves the performance to 44.90%.

DIOR. Table 2 shows that Point2RBox achieves AP50 of
24.66% and 27.34% in RC and SK settings respectively.
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Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC AP50

RBox-supervised
RepPoints (2019) [53] 86.7 81.1 41.6 62.0 76.2 56.3 75.7 90.7 80.8 85.3 63.3 66.6 59.1 67.6 33.7 68.45
RetinaNet (2017) [23] 88.2 77.0 45.0 69.4 71.5 59.0 74.5 90.8 84.9 79.3 57.3 64.7 62.7 66.5 39.6 68.69
GWD (2021) [48] 89.3 75.4 47.8 61.9 79.5 73.8 86.1 90.9 84.5 79.4 55.9 59.7 63.2 71.0 45.4 71.66
FCOS (2019) [36] 89.1 76.9 50.1 63.2 79.8 79.8 87.1 90.4 80.8 84.6 59.7 66.3 65.8 71.3 41.7 72.44
S2A-Net (2022) [13] 89.2 83.0 52.5 74.6 78.8 79.2 87.5 90.9 84.9 84.8 61.9 68.0 70.7 71.4 59.8 75.81
YOLOF-A5 (2021) [5] 1 86.9 71.7 44.9 62.7 69.9 62.0 74.1 90.9 78.4 72.9 47.1 60.7 61.3 65.3 50.2 66.54
YOLOF-A1 (2021) [5] 1 68.7 52.3 25.2 36.8 50.6 47.8 58.7 81.6 64.5 65.4 16.9 56.0 30.0 51.4 43.5 49.94
HBox-to-RBox
Sun et al. (2021) [35] 51.5 38.7 16.1 36.8 29.8 19.2 23.4 83.9 50.6 80.0 18.9 50.2 25.6 28.7 25.5 38.60
BoxInst-RBox (2021) [37] 2 68.4 40.8 33.1 32.3 46.9 55.4 56.6 79.5 66.8 82.1 41.2 52.8 52.8 65.0 30.0 53.59
H2RBox (2023) [50] 88.5 73.5 40.8 56.9 77.5 65.4 77.9 90.9 83.2 85.3 55.3 62.9 52.4 63.6 43.3 67.82
H2RBox-v2 (2023) [56] 89.0 74.4 50.0 60.5 79.8 75.3 86.9 90.9 85.1 85.0 59.2 63.2 65.2 70.5 49.7 72.31
Point-to-RBox
Point2Mask-RBox (2023) [20] 2 4.0 23.1 3.8 1.3 15.1 1.0 3.3 19.0 1.0 29.1 0.0 9.5 7.4 21.1 7.1 9.72
P2BNet+H2RBox (2023) [4, 50] 3 24.7 35.9 7.1 27.9 3.3 12.1 17.5 17.5 0.8 34.0 6.3 49.6 11.6 27.2 18.8 19.63
P2BNet+H2RBox-v2 (2023) [4, 56] 3 11.0 44.8 14.9 15.4 36.8 16.7 27.8 12.1 1.8 31.2 3.4 50.6 12.6 36.7 12.5 21.87
Point2RBox-RC (ours) 4 62.9 64.3 14.4 35.0 28.2 38.9 33.3 25.2 2.2 44.5 3.4 48.1 25.9 45.0 22.6 34.07
Point2RBox-SK (ours) 4 53.3 63.9 3.7 50.9 40.0 39.2 45.7 76.7 10.5 56.1 5.4 49.5 24.2 51.2 33.8 40.27
Point2RBox-SK (CSPNeXt) 4 63.9 49.9 11.7 48.4 42.2 43.4 51.5 90.6 3.0 53.3 3.0 45.1 20.5 50.9 38.2 41.05
Point2RBox-SK (two-stage) 4,5 66.4 59.5 5.2 52.6 54.1 53.9 57.3 90.8 3.2 57.8 6.1 47.4 22.9 55.7 40.5 44.90
1 A5: Using five anchor sizes (16, 32, 64, 128, 256). A1: Using single anchor size (64). Our Point2RBox is based on YOLOF-A1.
2 -RBox: The minimum rectangle operation is performed on the output Mask to obtain the RBox.
3 Using P2BNet (2022) [4] for Point-to-HBox and then H2RBox-v2 (2023) [56] for HBox-to-RBox.
4 RC: Using rectangles and circles with curve textures as basic patterns. SK: Using one sketch pattern for each category as basic patterns.
5 two-stage: Point2RBox-SK (A1) is trained to generate pseudo RBoxes, which enable the anchor-based assignment in the second stage (A5).

Table 1. Detection performance of each category on the DOTA-v1.0 and the mean AP50 of all categories.

Methods DIOR HRSC
RBox-supervised
RetinaNet (2017) [23] 54.60 84.49
GWD (2021) [48] 57.80 86.67
FCOS (2019) [36] 58.60 88.99
YOLOF-A5 (2021) [5] 1 48.01 89.44
YOLOF-A1 (2021) [5] 2 37.51 81.14
HBox-to-RBox
H2RBox (2023) [50] 57.00 7.03
KCR (2023) [61] - 79.10
H2RBox-v2 (2023) [56] 56.92 89.66
Point-to-RBox
Point2Mask-RBox (2023) [20] 13.77 29.95
P2BNet+H2RBox (2023) [4, 50] 22.59 -
P2BNet+H2RBox-v2 (2023) [4, 56] 23.61 14.60
Point2RBox-RC (ours) 24.66 78.77
Point2RBox-SK (ours) 27.34 79.40
Point2RBox-SK (CSPNeXt) 27.62 80.01
1 A5: Using five anchor sizes (16, 32, 64, 128, 256).
2 A1: Using single anchor size (128).

Table 2. AP50 on the DIOR and the HRSC datasets.

Compared with the state-of-the-art Point-to-HBox-to-
RBox solution (i.e. P2BNet [4] + H2RBox-v2 [56]), our
method uses a light-weight end-to-end paradigm, yet obtains
a competitive performance (27.34% vs. 22.30%).

HRSC. Table 2 shows that Point2RBox achieves 78.77%
in the SetRC and 79.40% in the SetSK. Notably, HRSC only
has one category, so we also use only one pattern cropped
from the first training image as the basic pattern for the
SK setting. A previous work KCR (2023) [61] combines
knowledge from RBox-annotated DOTA dataset to achieve
HBox-to-RBox on HRSC. Compared with that, our SetSK
method, under a more challenging Point-to-RBox setting,
outperforms KCR by 0.3% (79.40% vs. 79.10%).

Compared to RBox-supervised counterpart YOLOF-A1
[5], the performance gap on HRSC is only 1.74% (79.40%
vs. 81.14%). Finally, Point2RBox obtains 80.01% on HRSC
by further utilizing a stronger CSPNeXt-l [29] backbone.

Computational cost. Point2RBox is light-weight in three
folds: 1) end-to-end; 2) fewer parameters; 3) anchor/FPN-
free. Specifically, training Point2RBox-SK on DOTA takes
about 5 hours and the inference speed is about 112 fps on
our Intel i9-14900 + NVIDIA RTX4090 hardware.

4.3. Ablation Studies
Several ablation studies are performed on Point2RBox to
evaluate the impact of each proposed module.

Basic pattern settings. Table 4 studies the impact of
different strategies to obtain basic patterns for synthetic gen-
eration. The “Shape” column indicates using rectangles and
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Datasets Shape Curve Sketch AP50

DOTA [40]
✓ 29.72
✓ ✓ 34.07

✓ 40.27

DIOR [6]
✓ 22.23
✓ ✓ 24.66

✓ 27.34

HRSC [27]
✓ 75.01
✓ ✓ 78.77

✓ 79.40

Table 3. Ablation with different basic pattern settings.

circles with white filling and black edges; the “Curve” col-
umn indicates adding curve textures on the rectangles and
circles; the “Sketch” column indicates using one sketch pat-
tern for each category (see Sec. 3.1). The three rows in Table
4 correspond to the three cases displayed in Fig. 3

Even if using simplest rectangles and circles, we show
the knowledge can be well combined, resulting in AP50
of 75.01% on HRSC. When curve textures are added (i.e.
SetRC), the performance is further boosted to 78.77%, prov-
ing the effectiveness of using curve textures. Sketch pat-
terns (i.e. SetSK) provide more accurate semantic bound-
aries, leading to an improvement of 6.20%/2.68%/0.63% on
DOTA/DIOR/HRSC compared to the SetRC.

Transform self-supervision. Table 4 studies the im-
pact of using different transformations in the transform self-
supervision (see Sec. 3.2). Rotation and flipping are adopted
together since they both act on the angle. According to the
results, when self-supervised by rotated and flipped views,
the performance is boosted by 4.29% on average, whereas in-
corporating scaling gains an additional 1.82% improvement.
The results prove that the transform self-supervision plays a
crucial role in the proposed training paradigm.

Annotation inaccuracy. Table 5 offsets the coordinates
of annotated points by a noise from the uniform distribution
[−σH,+σH], where H is the height of objects. Such a
setting is designed to simulate the noise in the real annota-
tion. When σ = 10%, AP50 on the DIOR dataset is even
improved to 30.82%. For some categories, e.g. basketball
court with a circle in the center, the network sometimes
takes the size of the central circle as the size of the basket-
ball court. Adding noise alleviates this issue, which may
explain the performance improvement. When σ = 20%, the
AP50 of Point2RBox drops by only 1.03% on average, which
demonstrates the robustness of our method.

Label assignment. With a fixed anchor size, AP50 of
using one/three/five anchors is 37.15%/39.48%/40.27% on
DOTA, which proves that using multiple anchors of the same
size (assigned based on classification score, see Sec. 3.4)
can improve performance to some extent.

Knowledge combination. Our method’s effectiveness
lies in spreading features near each labeled point to the gen-

Datasets Rotate Flip Scale AP50

DIOR [6]
21.34

✓ ✓ 24.97
✓ ✓ ✓ 27.34

HRSC [27]
73.18

✓ ✓ 78.13
✓ ✓ ✓ 79.40

Table 4. Ablation with the transform self-supervision.

Datasets σ = 0% σ = 10% σ = 20%
DOTA [40] 40.27 39.60 38.42
DIOR [6] 27.34 30.82 27.22

HRSC [27] 79.40 78.81 78.28

Table 5. Ablation with the inaccuracy in point annotations.

erated patterns, which narrows the gap between the synthetic
and real data. With this key recolor step removed (i.e. di-
rectly pasting augmented patterns like copy-paste), the AP50

is much lower (40.27% vs. 28.72%) on DOTA (SetSK).

5. Conclusion
This paper has presented Point2RBox, a weakly-supervised
oriented object detector that learns from the point annotation.
It adopts an end-to-end paradigm to directly obtain the RBox
prediction through knowledge combination from synthetic
visual patterns, which has the advantage of being concise and
cost-efficient over the two-stage alternatives (e.g. Point-to-
HBox-to-RBox or generating RBox pseudo labels from the
Mask). Supplemented with the transform self-supervision,
the performance is further improved.

Experiments are carried out with the following observa-
tions: 1) Point2RBox achieves point-supervised oriented
object detection in an end-to-end training manner. Upon
that, we show the knowledge from synthetic patterns can
be combined to estimate the size and angle of real objects.
2) Compared with KCR [61] that combines knowledge for
HBox-supervised setting, our method outperforms KCR by
0.3% (HRSC: 79.40% vs. 79.10%) under a more challeng-
ing point-supervised setting. 3) Our method outperforms
the state-of-the-art alternative (i.e. P2BNet [4] + H2RBox-
v2 [56]) by a large margin based on the same ResNet50
backbone (DOTA/DIOR/HRSC: 40.27%/27.34%/79.40% vs.
21.87%/22.30%/14.60%). With CSPNeXt-l [29] backbone,
the performance reaches 41.05%/27.62%/80.01%, proving
the super effectiveness of the proposed method.

Limitations. 1) Point2RBox gives a bad performance
on some categories (i.e. BR/BC/SBF), mainly due to their
non-unique boundaries. For instance, the central circle of
the basketball court is often mistaken as the boundary. 2)
Point2RBox can only be built upon FPN-free detectors (e.g.
YOLOF-A1) since points cannot be assigned to different
FPN layers/anchors based on their sizes.
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