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Abstract

Multimodal Large Language Models (MLLMs) have re-
cently demonstrated impressive capabilities in multimodal
understanding, reasoning, and interaction. However, ex-
isting MLLMs prevalently suffer from serious hallucination
problems, generating text that is not factually grounded in
associated images. The problem makes existing MLLMs un-
trustworthy and thus impractical in real-world (especially
high-stakes) applications. To address the challenge, we
present RLHF-V, which enhances MLLM trustworthiness
via behavior alignment from fine-grained correctional hu-
man feedback. Specifically, RLHF-V collects human pref-
erence in the form of segment-level corrections on halluci-
nations, and performs dense direct preference optimization
over the human feedback. Comprehensive experiments on
five benchmarks in both automatic and human evaluation
show that, RLHF-V can enable substantially more trustwor-
thy MLLM behaviors with promising data and computation
efficiency. Remarkably, using 1.4k annotated data sam-
ples, RLHF-V significantly reduces the hallucination rate
of the base MLLM by 34.8%, outperforming the concur-
rent LLaVA-RLHF trained on 10k annotated data. The final
model achieves state-of-the-art performance in trustwor-
thiness among open-source MLLMs, and shows better ro-
bustness than GPT-4V in preventing hallucinations aroused
from over-generalization.

1. Introduction
The recent success of Multimodal Large Language Models
(MLLMs) marks a significant milestone in AI research [2, 4,
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11, 12, 19, 27, 29, 42, 51]. By connecting visual signals and
Large Language Models (LLMs), MLLMs show unprece-
dented capabilities in multimodal understanding, reasoning,
and interaction [28, 29, 44]. The models are typically pre-
trained on large-scale image-text data to learn the founda-
tional multimodal knowledge and capabilities [2, 4, 12, 19].
To steer the model behavior, most MLLMs are further fine-
tuned with instruction tuning (also known as supervised
fine-tuning), which supervises models to clone the behav-
ior from demonstration data, enabling MLLMs to engage
users in various open-world tasks [4, 11, 25, 27, 47].

However, current MLLM behaviors are not well aligned
with human preferences. A glaring issue is their tendency
to produce hallucinations — responses that are not factu-
ally grounded in the associated images [21, 25, 29, 37].
This typically includes descriptions of non-existing visual
contents and errors in descriptions. As shown in Figure 1,
current MLLMs can hallucinate about objects, attributes,
numbers, positions, actions, etc. Quantitatively, our hu-
man evaluation shows that the problem is prevalent among
state-of-the-art MLLMs, where even the most advanced
GPT-4V [29] contains obvious hallucinations in 45.9% re-
sponses. The problem makes existing MLLMs untrust-
worthy and thus impractical in real-world (especially high-
stakes) applications, such as guiding visually impaired in-
dividuals [29] or autonomous driving systems [43].

We argue that the problem arises from the lack of posi-
tive/negative human feedback in instruction-tuned models,
making it challenging to learn the precise behavior bound-
aries to exclude hallucination. To address the problem, we
propose RLHF-V, a novel framework that aligns MLLM be-
havior by learning from human feedback. However, sim-
ply applying traditional Reinforcement Learning from Hu-
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The image features a large clock
tower with a clock face on each of
its sides … The clocks on the tower
display the time as 11:50. The
tower is adorned with orange and 
pink flags, adding a festive touch …

The image shows a clock tower … 
The clock reads approximately
11:20 … There are also some flags
flying in the top left corner of the 
image … There are several people
scattered throughout the scene…

The image shows a clock tower … 
The clock reads approximately
15:26 … There are also some flags
flying in the top right corner of the 
image … There are trees in the 
background behind the buildings…

The image features a large clock
tower with a clock face on its front 
side  …  The clock on the tower
displays the time as 15:26. There 
are red, green, yellow and blue 
flags, adding a festive touch …
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···
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Figure 1. The RLHF-V framework for MLLM behavior alignment from human feedback. (1) Given the input image and prompt, we obtain
outputs from MLLMs and collect human feedback in the form of fine-grained segment-level corrections on hallucinations. (2) During
human preference learning, we perform dense direct preference optimization over the fine-grained correctional human feedback.

man Feedback (RLHF) is fraught with two key challenges:
(1) Annotation ambiguity. Helpful and engaging responses
about rich image content are typically long and complex,
making it usually non-obvious to decide which response is
preferable. As shown in Figure 1 (responses A and B), an-
notators usually face dilemmas when presenting responses
with respective advantages and flaws. Besides, even if la-
beled with a clear preference, the optimal response remains
unknown (e.g., the exact time of the clock). (2) Learning
efficiency. The coarse-grained ranking feedback makes it
difficult to accurately allocate credit to the desirable behav-
iors. Considering the linguistic complexity and variance
of responses, the desirable behavior often requires a large
amount of labeled data to learn [10, 31, 37]. Moreover, mis-
allocation of credit to the non-robust bias correlated with the
data usually leads to reward hacking and behavior degener-
ation problems [5, 39].

RLHF-V addresses these challenges by introducing two
key innovations: (1) At the data level, we propose to col-
lect human feedback in the form of fine-grained segment-
level corrections. As shown in Figure 1, we ask human
annotators to directly correct the hallucinated segments
from model responses, providing a clear, dense, and fine-
grained human preference, as well as optimal responses.
This strategy also avoids linguistic variance and non-robust
bias, ensuring that the feedback is accurately allocated to
the desirable behaviors, thereby enhancing learning effi-
ciency and preventing reward hacking problems. (2) At
the method level, we propose dense direct preference op-
timization (DDPO), a new variant of DPO [33] that ad-
dresses the traditional RLHF objective in an equivalent sim-
ple and efficient supervised fashion. DDPO directly op-
timizes the policy model against dense and fine-grained
segment-level preference, where the hallucinated segments
receive stronger feedback to be factually grounded.

Comprehensive experiments on five benchmarks show

that, RLHF-V can substantially enhance the trustworthiness
of MLLMs with promising data and computation efficiency.
Using 1.4k preference data, RLHF-V significantly reduces
the object hallucination rate of the base MLLM by 34.8%,
surpassing the concurrent LLaVA-RLHF [37] trained on
10k preference data. We also show that RLHF-V achieves
better robustness than the strong GPT-4V [29] in preventing
hallucinations aroused from over-generalization.

The contribution of this work can be summarized as
threefold: (1) We present RLHF-V, a novel framework that
aligns MLLM behavior through fine-grained correctional
human feedback. (2) We collect high-quality human pref-
erence data to provide human-aligned learning signals for
MLLMs. (3) We conduct comprehensive experiments to
demonstrate the effectiveness of the proposed framework,
achieving state-of-the-art performance in trustworthiness
among open-source MLLMs.

2. Human Preference Collection
The goal of human preference data is to distinguish human-
preferred high-quality responses from inferior ones, provid-
ing human-aligned learning signals to steer the MLLM be-
haviors. We first provide an analysis of underlying factors
of human preference data, based on which we motivate the
human preference collection procedure of RLHF-V.

Human Preference Data: Underlying Factors and
Challenges. Given the input x (including the image and
the prompt), denote the difference between a preferred out-
put yw and an inferior output yl as Y . The difference Y can
be essentially decomposed into three factors:

Y = Yp + Ys + Yn, (1)

where Yp is the truly preferred behavior such as being trust-
worthy and helpful, Ys denotes the shallow non-robust bias
correlated with the data but unrelated to human judgment

13808



(e.g., yw contains more usage of specific words), and Yn

is the random noise factor denoting the linguistic variance
of natural language (e.g., different ways of expressing the
same meaning). Yp is the factor we want to learn from the
difference Y , while fitting to Ys can lead to reward hack-
ing problems and thus should be avoided. The linguistic
variance Yn does not bias the preference learning but makes
the learning more difficult, demanding more labeled data
to learn to the preferred factor Yp, and thus should also be
avoided if possible.

The common RLHF practices in LLMs collect human
preference Y in the form of ranking labels, indicating the
overall relative quality of responses [30, 31, 39]. According
to the above analysis, the practice faces several key chal-
lenges: (1) Annotation ambiguity. It can be non-obvious to
annotate which response is superior using an overall rank-
ing label due to the fine-grained nature of Yp, especially for
complex responses. As shown in Figure 1, annotators usu-
ally cannot agree on assigning an overall ranking to differ-
ent responses with respective advantages and flaws. We ob-
serve the issue leads to unsatisfactory annotation quality of
existing RLHF data. Moreover, even if labeled with a clear
preference, the optimal responses for the questions typically
remain unknown. (2) Learning efficiency. During reinforce-
ment learning, it can be challenging and data-demanding to
precisely allocate the sparse and coarse-grained credit from
Y through the linguistic variance Yn to the preferred behav-
ior Yp. Misallocation to the non-robust bias factor Ys will
lead models to collapse to exploit trivial rewards [5, 39].

Fine-grained Correctional Human Preference Collec-
tion. To address the challenges, we propose to collect fine-
grained human preferences in the form of segment-level
corrections. As shown in Figure 1, given a flawed output yl
from MLLMs, we ask human annotators to directly correct
the hallucinated segments, resulting in a factually optimal
output yw. The annotation simultaneously yields a segment-
level incremental preference pair (yw, yl). The simple pro-
cedure effectively addresses the challenges: (1) The an-
notation of incremental correction in segments is clearer
and more operable for human labelers. (2) The dense and
fine-grained feedback is directly allocated to the preferred
behavior Yp, excluding the linguistic variance Yn and the
non-robust bias Ys, therefore improving learning efficiency
and preventing reward hacking problems. In experiments,
we find that the procedure greatly improves the annotation
quality and data efficiency, enabling our model to surpass
concurrent models trained on an order of magnitude more
labeled preference data (see Section 4.3).

In practice, we obtain a total of 1.4k prompts as in-
put from existing instruction tuning dataset [47] and im-
age description prompts generated by GPT-4, and get the
responses from Muffin [47] for human annotation. The re-
sponses after annotation contain 64.4 words and 2.65 cor-

rected segments on average. We observe that the correc-
tions are diverse in hallucination types, including objects
(41.2%), positions (20.3%), numbers (16.5%), attributes
(10.0%), actions (5.3%) and miscellaneous types (6.8%).

3. Method
We introduce the RLHF-V approach that learns the fine-
grained correctional human feedback by dense direct pref-
erence optimization. In addition, we also mitigate existing
sources of hallucination in MLLM training by addressing
the vision-language mismatch problem.

3.1. Dense Direct Preference Optimization

To leverage the dense and fine-grained human feedback, we
present DDPO, a new variant of direct preference optimiza-
tion [33] for directly optimizing the MLLM policy against
dense human preference. The prevalent RLHF approaches
involve fitting a reward model on the preference data, and
then training the critique, policy and value models to maxi-
mize the reward without deviating too far from the reference
model [10, 31, 39]. This procedure requires training multi-
ple LLMs with extensive sampling and training, which suf-
fers from complex procedures and high computation cost.

Direct Preference Optimization (DPO) [33] solves this
reinforcement learning objective in a simpler equivalent
supervised fashion. Here we briefly introduce the DPO
method, and refer readers to the original paper for more
details. The key observation of DPO is that the reward
function r(x, y) can be analytically expressed by its opti-
mal policy model π∗(y|x) and reference model πref(y|x),
and therefore we can directly optimize the policy model un-
der proper forms on the preference data. Specifically, the
reward model r(x, y) can be represented as:

r(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x), (2)

where β is a constant and Z(x) is the partition function.
Based on this observation, the policy model can be directly
optimized on the human feedback data:

L = −E(x,yw,yl)

[
log σ(r(x, yw)− r(x, yl))

]
= −E(x,yw,yl)

[
log σ(β log

π∗(yw|x)
πref(yw|x)

− β log
π∗(yl|x)
πref(yl|x)

)
]
,

(3)

where the reference model πref(y|x) is usually implemented
by an instruction-tuned base model we want to improve, and
is kept fixed during DPO training. Only the policy model
π∗(y|x) is updated. We note that DPO is more simple, ef-
ficient and stable in aligning MLLM behaviors compared
with traditional RLHF approaches.

Leveraging dense and fine-grained segment-level feed-
back requires the model to evaluate the reward of segment-
level actions. However, DPO is designed for learning pref-
erence in the form of overall response ranking labels:
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log π(y|x) =
∑
yi∈y

log p(yi|x, y<i), (4)

where yi is the i-th token of the response y. We argue that
compared with unchanged segments yu, corrected segments
yc more directly reveal human judgment in hallucination,
and thus should contribute more to the overall action eval-
uation. Therefore, we propose to score the response as a
weighted aggregation of the fine-grained segments:1

log π(y|x) = 1
N

[ ∑
yi∈yu

log p(yi|x, y<i) + γ
∑

yi∈yc

log p(yi|x, y<i)
]
, (5)

where γ > 1 is a weighting hyperprameter, and larger
γ means more contribution from the corrected segments.
N = |yu|+ γ|yc| is a normalizing factor, preventing longer
responses from getting higher scores. In this way, corrected
segments are highlighted to receive stronger human prefer-
ence feedback to be factually grounded. In experiments, we
find that DDPO can better exploit the fine-grained human
feedback, leading to more trustworthy responses.

3.2. Mitigating Hallucination from VL Mismatch

DDPO reduces hallucination by learning from human feed-
back. From another cause-and-effect view, we examine the
mainstream MLLM training paradigm, and identify sources
of hallucinations in training MLLMs. Based on the obser-
vations, we motivate a more trustworthy training recipe.

In general, current MLLMs learn multimodal capabili-
ties in a supervised learning paradigm, where the model out-
puts are supervised against the ground-truth text associated
with the image. In such a paradigm, hallucinations can be
introduced by mismatches between images and text data. In
practice, the mismatch can come from: (1) low-quality text
in pre-training and instruction tuning data, and (2) careless
image augmentation during training. We specify the issues
and solutions in the following.

Addressing Low-quality Text Influence. Current pre-
training data of MLLMs are automatically crawled from the
Web [6, 7, 35], which inevitably suffers from severe noise
in the text even after extensive post-processing. Supervising
MLLMs against such data is essentially teaching them to
hallucinate (e.g., describing elements not present in the im-
age, or producing inconsistent descriptions with the image).
Similarly, most existing visual instruction tuning datasets
are generated by ChatGPT/GPT-4 according to intermediate
text annotations [25, 27, 47], which inevitably introduces
hallucination into instruction data. While it can be difficult
to repair existing pre-training and instruction-tuning data,
we find that the influence can be countered by simply post-
training MLLMs on high-quality visual question-answering

1For denotation simplicity, without confusion we also use yu and yc to
denote the set of tokens in unchanged and corrected segments respectively.

datasets. Intuitively, human-labeled datasets can provide
accurate learning signals to calibrate model behaviors from
hallucinations, and also enhance instruction-following ca-
pabilities. In our experiments, we find that simply fine-
tuning the model on VQAv2 [14] can significantly reduce
the hallucination rate (see Section 4.3).

Mitigating Untrustworthy Image Augmentation. The
vision-language mismatch can also come from the image
domain. Data augmentation is widely adopted to improve
the data diversity and model robustness in various multi-
modal models [11, 19, 32, 41, 47]. However, we note that
such augmentation must be performed with care in training
MLLMs. The key problem is that some image augmen-
tation operations can significantly change the semantics of
images, which may make the augmented image inconsis-
tent with the associated text. For example, during augmen-
tation, random cropping can make the objects mentioned in
the text absent from the image. This can make the model
describe non-existing objects, with wrong numbers, and in
wrong positions. In our model training, we exclude image
cropping in data augmentation, which improves the trust-
worthiness of MLLMs (see Section 4.3).

4. Experiments
In this section, we empirically investigate the effectiveness
of RLHF-V in aligning MLLM behaviors. In addition to
evaluating the trustworthiness and helpfulness of conversa-
tion, we also analyze the data efficiency and scalability as
well as the robustness.

4.1. Experimental Settings

We first introduce the experimental settings, including eval-
uation, baselines, and implementation details.

Evaluation. We evaluate the models from two perspec-
tives, including trustworthiness reflecting the hallucination
degree, and helpfulness reflecting the general interaction
quality. Similar to [37], we find binary classification eval-
uation (i.e., answering yes/no) [13, 21] cannot well reflect
the MLLM behaviors in open-ended long-form interactions.
We thus adopt benchmarks that directly evaluate the long-
form responses, which are more closely related to the prac-
tical usage scenarios of MLLMs. For trustworthiness, we
perform evaluation on three benchmarks:

(1) Object HalBench [34] is a widely adopted bench-
mark for assessing object hallucination in detailed image
descriptions. It compares the objects in the model out-
put with object labels exhaustively annotated for COCO
images [23] to detect object hallucination. We report the
response-level hallucination rate (i.e., the percentage of re-
sponses that have hallucinations), as well as the mention-
level hallucination rate (i.e., the percentage of hallucinated
object mentions among all object mentions).
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Model Object HalBench ↓ MHumanEval ↓ MMHal-Bench LLaVA Bench VQAv2

Resp. Mention Object Position Number All Info. Resp.↓ Conv. Detail Comp. testdev

LLaVA [27] 63.0 29.5 46.6 21.2 19.9 80.8 31.9 70.8 85.4 74.3 96.3 -
Muffin [47] 50.5 24.5 33.6 16.4 26.0 74.7 33.4 68.8 89.3 79.7 97.7 -
LRV [25] 32.3 22.3 43.2 11.6 19.2 82.9 22.2 78.1 61.7 47.3 55.0 -
LLaVA-RLHF [37] 38.1 18.9 37.7 17.8 18.5 72.6 39.9 65.6 93.8 74.3 111.4 -
InstructBLIP [11] 25.9 14.3 30.8 15.1 17.1 63.7 29.5 64.4 83.2 67.6 90.6 -
Qwen-VL-Chat [4] 43.8 20.0 34.9 16.4 15.8 61.0 38.5 52.1 81.9 77.1 92.3 79.5
LLaVA 1.5 [26] 46.3 22.6 30.8 17.8 17.1 61.0 39.2 52.1 81.6 75.5 95.2 80.0

RLHF-V 12.2 7.5 21.9 7.5 14.4 55.5 40.0 52.1 93.1 75.3 91.6 80.0

GPT-4V [29] 13.6 7.3 22.6 12.3 11.0 45.9 47.6 31.3 96.0 102.5 106.7 77.2*

Table 1. Main experimental results on hallucination. We report hallucination rates in different granularities, including response-level
(Resp.) and mention-level (Mention), and response-level hallucination rates in different types. We also show scores on informativeness
(Info.), multimodal conversation (Conv.), detailed description (Detail), and complex reasoning (Comp.). * denotes zero-shot results on
VQAv2.2 The best and second best open-source results are shown in bold and underlined respectively.

(2) MMHal-Bench [37] evaluates hallucinations and re-
sponse informativeness. It employs GPT-4 to compare
model output with human response and several object labels
to decide the scores. In experiments, we find that GPT-4
cannot reliably detect hallucinations due to the incomplete-
ness of MMHal-Bench text annotations. We therefore only
report the informativeness score from GPT-4, and assess
response-level hallucination rate by human evaluation.

(3) MHumanEval. The above evaluations are either
limited to common object hallucination or dominated by
short-form question answering (i.e., questions that can be
sufficiently answered by a few words). To provide a more
reliable and comprehensive evaluation over diverse halluci-
nation types, we present MHumanEval benchmark, which
covers both long-form image descriptions, and short-form
questions. The benchmark contains 146 samples collected
from Object HalBench (50) and MMHal-Bench (96). Given
model responses, we ask human annotators to label the hal-
lucinated segments and hallucination types of the segments,
including objects, positions, numbers and others. We report
the response-level hallucination rate on these types.

For helpfulness, we adopt two benchmarks: (1) LLaVA
Bench [27] is a widely adopted benchmark for assessing
multimodal conversation, detailed description and complex
reasoning capabilities. It scores model output against ref-
erence response via GPT-4. (2) VQAv2 [14] is a popular
dataset for short-form visual question answering.

Baselines. We compare our model with state-of-the-
art baselines. (1) General baselines. We adopt Qwen-
VL-Chat [4], LLaVA [27], LLaVA 1.5 [26], Muffin [47],
and InstructBLIP [11] as representative general baselines.
These models are mostly pre-trained on large-scale multi-

2Due to limited instruction-following capability, most MLLMs need to
be specifically fine-tuned to produce short-form VQA answers, and there-
fore cannot achieve reasonable zero-shot performance on VQAv2.

modal data, and fine-tuned on high-quality instruction data,
achieving strong performance across various multimodal
tasks. (2) Baselines tailored for hallucination problems.
LRV [25] is fine-tuned on 400k instruction data generated
by GPT-4, and mitigates hallucination by limiting the re-
sponse length. The concurrent LLaVA-RLHF [37] employs
the strong 13B Vicuna v1.5 [50] (fine-tuned from LLaMA-
2 [39]) as LLM backbone. It trains the reward model on
10k human-labeled preference data, and performs proximal
policy optimization [36] on 72k factually augmented data.
(3) Commercial Baseline. We also include GPT-4V [29]
as a strong reference, evaluating the gap between the open-
source models and state-of-the-art commercial models.

Implementation Details. We implement the RLHF-V
framework based on Muffin [47]. The model uses BEiT-
3 [41] as the visual module, and 13B Vicuna v1.0 [9] (fine-
tuned from LLaMA [38]) as the LLM backbone. The hyper-
parameter β is 0.5, and the weighting coefficient γ is 5. We
train the model with DDPO for 7 epochs, with image resolu-
tion 448, learning rate 5e-7 and batch size 32. The training
of RLHF-V is computationally efficient, which takes less
than 1 hour on 8 A100 GPUs in total.

4.2. Main Results

The main experimental results are reported in Table 1, from
which we observe that: (1) RLHF-V achieves state-of-
the-art performance in trustworthiness among open-source
models, outperforming strong general models and models
tailored for hallucination. The framework significantly re-
duces the hallucination rate of the base model Muffin by
75.8% relative points for common objects on Object Hal-
Bench, and by 34.8% for overall objects on MHumanEval.
The improvement is consistent in different granularities
including response-level and mention-level hallucinations,
and different hallucination types including objects, posi-
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Model

Living Room Kitchen Bathroom Street

∆
book, person, bed bottle, bowl, cup toilet, sink, bottle person, car, motorcycle

chair, couch, remote person, chair, knife toothbrush, person, cup traffic light, handbag, truck

Ha Hs ∆ Ha Hs ∆ Ha Hs ∆ Ha Hs ∆

LLaVA-1.5 [26] 25.2 41.8 +16.6 18.9 23.9 +5.0 22.4 30.4 +8.0 20.6 28.0 +7.4 +9.2
LLaVA-RLHF [37] 23.7 34.5 +10.8 13.1 17.4 +4.3 18.2 19.5 +1.4 18.3 22.7 +4.4 +5.2
QWEN-VL [4] 24.5 34.5 +10.0 16.4 20.8 +4.4 21.6 17.5 -4.1 22.5 32.0 +9.5 +5.0
RLHF-V 5.5 8.0 +2.5 3.8 5.9 +2.1 4.1 4.0 -0.1 2.3 4.6 +2.3 +1.7

GPT-4V [29] 8.2 19.4 +11.2 4.6 5.7 +1.1 5.9 13.3 +7.5 4.2 4.6 +0.4 +5.0

Table 2. Experimental results of hallucination from over-generalization on Object HalBench. For each scene, we report the hallucination
rate of the top 10 frequent objects on average on the full benchmark (Ha) and under the scene (Hs). Top 6 frequent objects are listed for
each scene for brevity. ∆: hallucination rate difference, ∆: average difference across the scenes.
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Figure 2. Hallucination rate and number on MHumanEval (all
types) with respect to the amount of preference data. We report
the results of different models trained on different RLHF data.

tions, and numbers. The reduction is more significant on
the more challenging long-form answers on Object Hal-
Bench and MHumanEval. The results show that RLHF-V
can effectively learn from fine-grained correctional human
feedback to enable more trustworthy MLLM behaviors. (2)
RLHF-V achieves promising performance in response help-
fulness, where the results on MMHalBench, LLaVA Bench
and VQAv2 are strong and comparable to the base model.
This shows that RLHF-V can enhance the trustworthiness
of MLLMs without sacrificing their helpfulness.

4.3. Analysis

In this section, we conduct analyses on the framework con-
sidering the following research questions: (1) How does
RLHF-V’s performance scale with feedback data amount?

(2) What is the advantage of fine-grained correctional pref-
erence data over traditional overall ranking data? (3) Can
RLHF-V’s data and method be adopted to enhance the trust-
worthiness of other MLLMs? (4) How does human feed-
back alleviate hallucinations intuitively?

Scaling feedback data leads to promising results. We
report the hallucination rate and numbers of hallucinated
segments on MHumanEval under different amounts of feed-
back data in Figure 2. We observe that the hallucination
rate and number of RLHF-V show a significant and rapid
decrease as the data amount grows. This shows that fine-
grained correctional human feedback provides effective and
efficient learning signals for MLLM behavior alignment.
Based on this tendency, we expect better performance can
be achieved with an increasing amount of feedback data.
We leave this for future work.

Fine-grained correctional human feedback enables
better learning efficiency. To quantify the advantage of
fine-grained correctional human feedback, we replace our
data with the 2.2k human preference data on hallucination
from LLaVA-RLHF, which gives overall ranking labels fol-
lowing common RLHF practices. From the experimental
results in Figure 2, we observe that model equipped with our
data shows a more significant and rapid reduction in halluci-
nation rate and number. Notably, using only 200 preference
data, our model achieves comparable hallucination rate to
the model that uses an order of magnitude more labeled data
from LLaVA-RLHF. The superior data efficiency is due to
(1) better data quality since label ambiguity is minimized,
and (2) more direct feedback on hallucinated segments, ex-
cluding non-robust bias and linguistic variance.

RLHF-V generalizes to enhance other MLLMs. To
investigate the generalization capability of the framework,
we adopt RLHF-V’s data and approach to align the be-
havior of LLaVA [27], a representative and widely used
MLLM. Experimental results show that RLHF-V effec-
tively reduces the hallucination count of LLaVA by 13.8
relative points, as well as the hallucination rate by 5.9
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Model MHumanEval ↓ MHB↓ VQAv2

Obj. Pos. Num. All Resp. testdev

Muffin [47] 33.6 16.4 26.0 74.7 68.8 -

RLHF-V 21.9 7.5 14.4 55.5 52.1 80.0
w/ vanilla DPO 21.9 11.6 11.6 57.5 54.2 80.0
w/ IT-VQA only 34.3 17.1 17.1 65.1 58.3 80.0
w/ untrust aug. 18.5 13.7 14.4 59.6 54.2 77.1

Table 3. Ablation results on different components. MHB:
MMHal-Bench, IT-VQA: instruction tuning on VQAv2, untrust
aug.: untrustworthy data augmentation.

relative points. We also apply RLHF-V to stronger base
models and build the OmniLMM-12B [1] which achieves
new SoTA results on multiple hallucination benchmarks.
For example, OmniLMM-12B exhibits only 4.5% mention-
level hallucination on the Object HalBench. Moreover,
OmniLMM-12B also shows leading performance among
comparable-sized models on multiple benchmarks (1637 on
MME-Perception [13], 71.1 on SeedBench-I [17]). The re-
sults demonstrate that RLHF-V is applicable across differ-
ent MLLMs to improve trustworthiness.

RLHF-V reduces hallucination from correlation and
over-generalization. Without proper positive/negative hu-
man feedback, MLLMs can over-generalize to produce
highly correlated and plausible concepts, which leads to
hallucinations. For example, a prevalent hallucination case
observed across different MLLMs is claiming the presence
of person as long as they see an image of street. To quan-
tify the problem, we select a set of representative scenes
{living room, kitchen, bathroom, street}. For each scene,
we identify the corresponding images in COCO by lexically
matching the captions with the scene name. Then we obtain
the top 10 frequent objects in the scene from the COCO
object annotations. We compare the response-level hallu-
cination rate for these objects (1) on average across all test
samples, and (2) on samples under the target scene. Mod-
els prone to over-generalization will expect a significant in-
crease in the hallucination rate (∆).

From the experimental results in Table 2, we observe
that: (1) All models including GPT-4V show a substan-
tial increase in the hallucination rate, which demonstrates
the over-generalization hypothesis. (2) RLHF-V exhibits
the smallest change in the hallucination rate, which is
even more robust than GPT-4V. The reason for the robust-
ness is that RLHF-V provides crucial positive/negative fine-
grained correctional human feedback for MLLMs, which
helps to learn clear behavior boundaries between reason-
able generalizations and over-generalizations. (3) RLHF-V
achieves the lowest hallucination rates for these common
objects both on average and under common scenes.

Ablation Study. To investigate the contribution of each
component, we perform an ablation study. From the experi-

mental results in Table 3, we can observe that: (1) Learning
human feedback with vanilla DPO leads to performance de-
grades, showing the advantage of DDPO in exploiting the
fine-grained human preference. (2) Fine-tuning on VQAv2
leads to a significant reduction in hallucination rates com-
pared with the base model. This reveals the value of tra-
ditional human-annotated datasets from a new perspective
of hallucination mitigation. (3) Including untrustworthy
data augmentation (i.e., image cropping) in training hurts
the performance on both hallucination and VQAv2. This
shows that careless data augmentation can be a double-
edged sword in training MLLMs.

Case Study. To provide an intuitive understanding and
comparison of different models, we provide qualitative re-
sults in Figure 3. We show cases in two representative sce-
narios: (1) Short-form QA (i.e., questions that can be suf-
ficiently answered in a few words). Our model typically
maintains a good balance between helpfulness and clarity.
(2) Long-form QA (i.e., questions that require long text to
answer). We observe that MLLMs are significantly more
prone to hallucinations in long-form QA, whereas RLHF-V
introduces significantly fewer hallucinations while deliver-
ing a comparable amount of effective information.

5. Related Work

Multimodal Large Language Models. Recent trends in
multimodal learning have witnessed the success of build-
ing MLLMs by connecting visual encoders with pow-
erful LLMs [8, 16, 18, 45, 49]. The current MLLM
training paradigm typically involves two stages: (1) Pre-
training. Models are pretrained on large-scale image-text
pairs [4, 11, 19, 42, 47] or interleaved data [2, 3, 16] to
learn the semantic mapping between visual and text sig-
nals. (2) Instruction Tuning. To enable the model with
instruction-following capability, MLLMs are further fine-
tuned on visual instruction data, including collections of
existing human-annotated datasets [11, 20, 26], and gen-
erated data from ChatGPT/GPT-4 [20, 25, 27, 47]. Despite
the success, current MLLMs suffer from serious hallucina-
tion problems [21, 24, 25, 37]. Notably, even after extensive
efforts, GPT-4V has still been found to be prone to halluci-
nations, making basic factual errors confidently [29].

Reducing Hallucination for MLLMs. Like LLMs [22,
48], MLLMs also exhibits the problem of generating un-
faithful contents. Some preliminary efforts have been made
to alleviate hallucination problems in MLLMs. LRV [25]
generates instruction data with negative responses, and
mitigates hallucination by limiting the response length.
VIGC [40] iteratively refines the instruction data for bet-
ter instruction tuning. Woodpecker [46] proposes to post-
edit hallucinations by merging the output of MLLMs and a
more accurate expert VQA model using GPT-3.5. The post-
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At what time is this photo taken?

The scene appears to be taken during the daytime, as the sunlight can be seen streaming in through the large window in the 
kitchen. The bright lighting creates a welcoming and inviting atmosphere, making the kitchen feel more spacious and vibrant.

The photo is taken during the daytime.

RLHF-V (This work)

InstructBLIP

The photo is taken during the daytime, as indicated by the presence of natural light and the absence of any artificial lighting. 
The sunlight streaming in through the windows and the overall brightness of the room suggest that the photo is taken during 
daylight hours. This could be either in the morning or afternoon, depending on the specific time of day and the position of the 
sun relative to the windows.
The presence of various objects in the room, such as bottles, cups, bowls, and a potted plant, further supports the 
idea that the photo is taken during the daytime. These objects are likely to be in use or placed in their respective 
locations during the daytime, as people tend to engage in more activities and prepare meals during the day.
In conclusion, the photo is taken during the daytime, as evidenced by the natural light, the absence of artificial lighting, and 
the presence of various objects in the room that are typically used during daylight hours.

LLaVA-RLHF

Short-form QA

What is this photo about? 
Please answer in detail.

The image depicts a small black dog sitting on a wooden floor in a living room, watching a television screen. The television 
appears to be mounted on the wall, and it's showing an image of another dog.

The image depicts a black dog sitting on the floor in front of a large TV screen. The TV screen is displaying an image of a dog,
which appears to be the same breed as the dog in the room. The dog seems to be engrossed in the TV program and is 
focused on the screen. There are several other dogs visible in the room, but they are not as close to the TV as the 
main subject. One dog is located near the left side of the TV, while another is positioned closer to the center of the 
room. A third dog can be seen towards the right side of the image. In addition to the dogs, there are two chairs in the 
room, one located near the left side of the TV and the other near the center of the room.

RLHF-V (This work)

InstructBLIP

The image features a black dog sitting on a hardwood floor in a room, watching a television. The TV is located on the left side 
of the room, and the dog is positioned near the center of the scene.
There are also two people in the room, one on the left side and the other on the right side, possibly watching the 
television along with the dog. Additionally, there are two remotes visible in the room, one near the center and the 
other on the right side. A chair can be seen in the room, placed on the right side, and a bowl is located on the left side 
of the room, possibly for the dog's food or water.

LLaVA-RLHF

Long-form QA

Figure 3. Qualitative results of different models on short-form QA and long-form QA. Correct answers, unreasonable extensions and
hallucinations are highlighted in color respectively.

editing procedure involves external tools and LLMs much
larger than the target MLLM online in multiple stages,
which leads to high inference costs and delays. Gunjal et
al. [15] distinguishes the inaccurate parts in responses via
human annotation, and internally discourages the halluci-
nated parts by direct preference optimization. However,
the positive behaviors for hallucinated parts are unknown,
making the human feedback not complete enough to learn
the behavior boundary. The concurrent LLaVA-RLHF [37]
employs the traditional RLHF approach [31] on MLLMs,
and augments the reward model with rich additional text
descriptions. It is therefore similarly challenged with la-
bel ambiguity, learning efficiency, and complex training.
In comparison, RLHF-V presents the first fine-grained cor-
rectional human feedback learning framework for behavior
alignment, and systematically addresses different halluci-
nation sources in training MLLMs, achieving strong perfor-
mance in trustworthiness.

6. Conclusion

Hallucination is a critical problem preventing practical ap-
plications of MLLMs in real-world scenarios. In this work,
we present RLHF-V, a novel framework that enhances the
trustworthiness of MLLMs by behavior alignment from

fine-grained correctional human feedback. Comprehensive
experimental results show that our model achieves state-of-
the-art performance in trustworthiness especially in chal-
lenging long-form responses while maintaining strong help-
fulness. In future, with the progress of more trustworthy
and capable MLLMs, we will explore collecting accurate
preferences from MLLMs, which can facilitate large-scale
preference learning. Besides, we note that the framework of
RLHF-V can potentially also help reduce the hallucinations
in LLMs, which we will explore in future.
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