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(a) Real-World Image Restoration Results

(b) Controllable Image Restoration with Textual Prompts
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Figure 1. Our SUPIR model demonstrates remarkable restoration effects on real-world low-quality images, as illustrated in (a). Addition-

ally, SUPIR features targeted restoration capability driven by textual prompts. For instance, it can specify the restoration of blurry objects

in the distance (case 1), define the material texture of objects (case 2), and adjust restoration based on high-level semantics (case 3).

Abstract
We introduce SUPIR (Scaling-UP Image Restoration),

a groundbreaking image restoration method that harnesses
generative prior and the power of model scaling up. Lever-
aging multi-modal techniques and advanced generative
prior, SUPIR marks a significant advance in intelligent and
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realistic image restoration. As a pivotal catalyst within
SUPIR, model scaling dramatically enhances its capabil-
ities and demonstrates new potential for image restora-
tion. We collect a dataset comprising 20 million high-
resolution, high-quality images for model training, each en-
riched with descriptive text annotations. SUPIR provides
the capability to restore images guided by textual prompts,
broadening its application scope and potential. Moreover,
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we introduce negative-quality prompts to further improve
perceptual quality. We also develop a restoration-guided
sampling method to suppress the fidelity issue encountered
in generative-based restoration. Experiments demonstrate
SUPIR’s exceptional restoration effects and its novel capac-
ity to manipulate restoration through textual prompts.

1. Introduction
The development of image restoration (IR) has greatly el-

evated expectations for both the perceptual effects and the

intelligence of IR results. IR methods based on generative

priors [42, 49, 65, 79] leverage powerful pre-trained gener-

ative models to introduce high-quality generation and prior

knowledge into IR, bringing significant progress in these as-

pects. Continuously improving the capabilities of the gener-

ative prior is key to achieving better IR results, with model

scaling being a crucial and effective approach. There are

many tasks that have obtained astonishing improvements

from scaling, such as SAM [44] and large language mod-

els (LLMs) [7, 71, 72]. This further drives our pursuit

of constructing large-scale, intelligent IR models that can

produce ultra-high-quality images. However, due to engi-

neering constraints such as computing resources, model ar-

chitecture, training data, and the cooperation of generative

models and IR, scaling up IR models is challenging.

In this work, we introduce SUPIR (Scaling-UP IR), the

largest-ever IR method, aimed at exploring greater poten-

tial in restoration visual effects and intelligence. Specifi-

cally, SUPIR employs StableDiffusion-XL (SDXL) [61] as

a powerful generative prior, which contains 2.6 billion pa-

rameters. To effectively deploy this model in IR, we de-

sign and train a large-scale adaptor that incorporates a novel

component named the ZeroSFT connector. To maximize

the benefits of model scaling, we collect a dataset of over

20 million high-quality, high-resolution images, each ac-

companied by detailed descriptive text. We utilize a 13-

billion-parameter multi-modal language model to provide

image content prompts, greatly improving the accuracy and

intelligence of our method. The proposed SUPIR model

demonstrates exceptional performance in a variety of IR

tasks, achieving the best visual quality, especially in com-

plex and challenging real-world scenarios. Additionally, the

model offers flexible control over the restoration process

through textual prompts, vastly broadening the possibility

of IR. Fig. 1 illustrates the effects by our model.

Our work goes far beyond simply scaling. While pur-

suing an increase in model scale, we face a series of com-

plex challenges. First, existing adaptor designs either too

simple to meet the complex requirements of IR [57] or are

too large to train together with SDXL [92]. To solve this

problem, we trim the ControlNet and designed a new con-

nector called ZeroSFT to work with the pre-trained SDXL,

aiming to efficiently implement the IR task while reducing

computing costs. In order to enhance the model’s ability

to accurately interpret the content of low-quality images,

we fine-tune the image encoder to improve its robustness to

variations in image degradation. These measures make scal-

ing the model feasible and effective, and greatly improve its

stability. Second, we collect 20 million high-quality, high-

resolution images with descriptive text annotations, provid-

ing a solid foundation for the model’s training. We employ a

counter-intuitive approach by integrating poor-quality sam-

ples into our training process. This allows us to enhance

visual effects by utilizing prompts to guide the model away

from negative qualities. Finally, powerful generative prior

is a double-edged sword. Uncontrolled generation may re-

duce restoration fidelity, making IR no longer faithful to the

input image. To address the issue of low fidelity, we intro-

duce the concept of restoration-guided sampling. By inte-

grating these strategies with efficient engineering practices,

we not only facilitate the scaling up of SUPIR but also push

the frontiers of advanced IR.

2. Related Work
Image Restoration. The goal of IR is to convert de-

graded images into high-quality degradation-free images

[22, 26, 86, 88, 95, 96]. In the early stage, researchers

independently explored different types of image degrada-

tion, such as super-resolution (SR) [13, 19, 20], denoising

[11, 87, 89], and deblurring [14, 58, 70]. However, these

methods are often based on specific degradation assump-

tions [25, 50, 56] and therefore lack generalization ability

to other degradations [29, 52, 94]. Over time, the need for

blind IR methods that are not based on specific degrada-

tion assumptions has grown [5, 10, 25, 34, 35, 46–48, 91].

In this trend, some methods [78, 90] synthesize real-world

degradation by more complex degradation models, and are

well-known for handling multiple degradation with a single

model. DiffBIR [49] unifies different restoration problems

into a single model. In this paper, we adopt a similar set-

ting to DiffBIR and use a single model to achieve effective

processing of various severe degradations.

Generative Prior. Generative priors are adept at captur-

ing the inherent structures of the image, enabling the gener-

ation of images that follow natural image distribution. The

emergence of GANs [23, 39, 40, 62] has underscored the

significance of generative priors in IR. Various approaches

employ generative priors, including GAN inversion [2, 4,

27, 55, 60], GAN encoders [9, 100], or using GAN as the

core module for IR [77, 84]. Beyond GANs, other genera-

tive models can also serve as priors [10, 36, 54, 73, 97–99].

Our work primarily focuses on generative priors derived

from diffusion models [31, 59, 63, 65, 68, 69], which excel

in controllable generation [15, 18, 32, 57, 92] and model

scaling [61, 64, 66]. Diffusion models have also been effec-

tively used as generative priors in IR [42, 49, 65, 75, 79].
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Figure 2. This figure briefly shows the workflow of the proposed SUPIR model.

However, these diffusion-based IR methods’ performance

is constrained by the scale of the used generative models,

posing challenges in further enhancing their effectiveness.

Model Scaling is an important means to further im-

prove the capabilities of deep-learning models. The most

typical examples include the scaling of language models

[7, 71, 72], text-to-image generation models [12, 37, 61,

65, 66, 82], and image segmentation models [44]. The

scale and complexity of these models have increased dra-

matically, now encompassing billions of parameters. This

increase in parameters has also resulted in significant per-

formance enhancements, showcasing the immense potential

of model scaling [38]. However, scaling up is a systematic

problem, involving model design, data collection, comput-

ing resources, and other limitations. Many other tasks have

not yet been able to enjoy the substantial performance im-

provements brought by scaling up. IR is one of them.

3. Method
An overview of the proposed SUPIR method is shown

in Fig. 2. We introduce our method from three as-

pects: Sec. 3.1 introduces our network designs and train-

ing method; Sec. 3.2 introduces the collection of training

data and the introduction of textual modality; and Sec. 3.3

introduces the diffusion sampling method for IR.

3.1. Model Scaling Up
Generative Prior. There are not many choices for the

large-scale generative models. The only ones to consider

are Imagen [66], IF [16], and SDXL [61]. Our selection

settled on SDXL for the following reasons. Imagen and IF

prioritize text-to-image generation and rely on a hierarchi-

cal approach. They first generate small-resolution images

and then hierarchically upsample them. SDXL aligns with

our objectives by directly generating high-resolution images

without a hierarchical design, effectively using its parame-

ters to improve image quality rather than focusing on text

interpretation. Additionally, SDXL employs a Base-Refine
strategy. In the Base model, diverse but lower-quality im-

ages are generated. Subsequently, the Refine model, utiliz-

ing training images of significantly higher quality but lesser

diversity than those used by the Base model, enhances the

images’ quality. Given our approach of training with a vast

dataset of high-quality images, the dual-phase design of

SDXL becomes redundant for our objectives. We opt for

the Base model, which has a greater number of parameters,

making it an ideal generative prior.

Degradation-Robust Encoder. In SDXL, the diffusion

generation process is performed in the latent space. The im-

age is first mapped to the latent space through a pre-trained

encoder. To effectively utilize the pre-trained SDXL, our

LQ image xLQ should also be mapped to the same latent

space. However, since the original encoder has not been

trained on LQ images, using it for encoding will affect the

model’s judgment of LQ image content, and then misun-

derstand artifacts as image content [49]. To this end, we

fine-tune the encoder to make it robust to the degradation

by minimizing: LE = ‖D(Edr(xLQ)) − D(Edr(xGT ))‖22,
where Edr is the degradation-robust encoder to be fine-

tuned, D is the fixed decoder, xGT is the ground truth.

Large-Scale Adaptor Design. Considering the SDXL

model as our chosen prior, we need an adaptor that can

steer it to restore images according to the provided LQ in-

puts. The Adaptor is required to identify the content in

the LQ image and to finely control the generation at the

pixel level. LoRA [32], T2I adaptor [57], and ControlNet

[92] are existing diffusion model adaptation methods, but

none of them meet our requirements: LoRA limits genera-

tion but struggles with LQ image control; T2I lacks capac-

ity for LQ image content identification; and ControlNet’s

direct copy is challenging for the SDXL model scale. To

address this issue, we design a new adaptor with two key

features, as shown in Fig. 3(a). First, we keep the high-level

design of ControlNet but employ network trimming [33] to

directly trim some blocks within the trainable copy, achiev-

ing an engineering-feasible implementation. Each block

within the encoder module of SDXL is mainly composed

of several Vision Transformer (ViT) [21] blocks. We iden-

tified two key factors contributing to the effectiveness of

ControlNet: large network capacity and efficient initializa-

tion of the trainable copy. Notably, even partial trimming

of blocks in the trainable copy retains these crucial char-

acteristics in the adaptor. Therefore, we simply trim half

of the ViT blocks from each encoder block, as shown in
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Figure 3. This figure illus-

trates (a) the overall archi-

tecture of the used SDXL

and the proposed adap-

tor, (b) a trimmed trainable

copy of the SDXL encoder

with reduced ViT blocks for

efficiency, and (c) a novel

ZeroSFT connector for en-

hanced control in IR, where

Xf and Xs denote the input

feature maps from the De-

coder and Encoder shortcut,

respectively, Xc is the input

from the adaptor, and Xfo

is the output. The model is

designed to effectively use

the large-scale SDXL as a

generative prior.

Fig. 3(b). Second, we redesign the connector that links the

adaptor to SDXL. While SDXL’s generative capacity deliv-

ers excellent visual effects, it also renders pixel-level con-

trol challenging. ControlNet employs zero convolution for

generation guidance, but relying solely on residuals is insuf-

ficient for the control required by IR. To amplify the influ-

ence of LQ guidance, we introduced a ZeroSFT module, as

depicted in Fig. 3(c). Building based on zero convolution,

ZeroSFT encompasses an additional spatial feature transfer

(SFT) [76] operation and group normalization [81].

3.2. Scaling Up Training Data
Image Collection. The scaling of the model requires a

corresponding scaling of the training data [38]. But there

is no large-scale high-quality image dataset available for IR

yet. Although DIV2K [3] and LSDIR [1] offer high im-

age quality, they are limited in quantity. Larger datasets

like ImageNet (IN) [17], LAION-5B [67], and SA-1B [44]

contain more images, but their image quality does not meet

our high standards. To this end, we collect a large-scale

dataset of high-resolution images, which includes 20 mil-

lion 1024×1024 high-quality, texture-rich images. A com-

parison on the scales of the collected dataset and the ex-

isting dataset is shown in Fig. 3. We also included an addi-

tional 70K unaligned high-resolution facial images from the

FFHQ-raw dataset [40] to improve the model’s face restora-

tion performance. In Fig. 5(a), we show the relative size of

our data compared to other well-known datasets.

Multi-Modality Language Guidance. Diffusion models

are renowned for their ability to generate images based

on textual prompts. We believe that textual prompts can

also aid IR: (1) Understanding image content is crucial for

IR. Existing frameworks often overlook or implicitly han-

dle this understanding [24, 29]. By incorporating textual

Low-Quality Input w/o Negative samples

No
Negative 
prompt

Use
Negative 
prompt

w/ Negative samples

Ours

Figure 4. CFG introduces artifacts without negative training sam-

ples, hindering visual quality improvement. Adding negative sam-

ples allows further quality enhancement through CFG.

prompts, we explicitly convey the understanding of LQ im-

ages to the IR model, facilitating targeted restoration of

missing information. (2) In cases of severe degradation,

even the best IR models struggle to recover completely lost

information. In such cases, textual prompts can serve as a

control mechanism, enabling targeted completion of miss-

ing information based on user preferences. (3) We can also

describe the desired image quality through text, further en-

hancing the perceptual quality of the output. See Fig. 1(b)

for some examples. To this end, we make two main mod-

ifications. First, we revise the overall framework to incor-

porate the LLaVA multi-modal LLM [51] into our pipeline,

as shown in Fig. 2. LLaVA takes the degradation-robust

processed LQ images x′
LQ = D(Edr(xLQ)) as input and

explicitly understands the content within the images, out-

putting in the form of textual descriptions. These descrip-

tions are then used as prompts to guide the restoration. This

process can be automated during testing, eliminating the

need for manual intervention. Secondly, following the ap-

proach of PixART [12], we also collect textual annotations

for all the training images, to reinforce the role of textual

control during the training of out model. These two changes

endow SUPIR with the ability to understand image content

and to restore images based on textual prompts.
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Negative-Quality Samples and Prompt. Classifier-free

guidance (CFG) [30] provides another way of control by

using negative prompts to specify undesired content for the

model. We can use this feature to specify the model NOT

to produce low-quality images. Specifically, at each step

of diffusion, we will make two predictions using positive

prompts pos and negative prompts neg, and take the fusion

of these two results as the final output zt−1:

zpost−1 = H(zt, zLQ, σt, pos), z
neg
t−1 = H(zt, zLQ, σt, neg),

zt−1 = zpost−1 + λcfg × (zpost−1 − znegt−1),

where H(·) is our diffusion model with adaptor, σt is the

variance of the noise at time-step t, and λcfg is a hyper-

parameter. In our framework, pos can be the image de-

scription with positive words of quality, and neg is the neg-

ative words of quality, e.g., “oil painting, cartoon, blur,
dirty, messy, low quality, deformation, low resolution, over-
smooth”. Accuracy in predicting both positive and neg-

ative directions is crucial for the CFG technique. How-

ever, the absence of negative-quality samples and prompts

in our training data may lead to a failure of the fine-tuned

SUPIR in understanding negative prompts. Therefore, us-

ing negative-quality prompts during sampling may intro-

duce artifacts, see Fig. 4 for an example. To address this

problem, we used SDXL to generate 100K images cor-

responding to the negative-quality prompts. We counter-

intuitively add these low-quality images to the training data

to ensure that negative-quality concept can be learned by

the proposed SUPIR model.

3.3. Restoration-Guided Sampling
Powerful generative prior is a double-edged sword, as too

much generation capacity will in turn affect the fidelity of

the recovered image. This highlights the fundamental dif-

ference between IR tasks and generation tasks. We need

means to limit the generation to ensure that the image recov-

ery is faithful to the LQ image. We modified the EDM sam-

pling method [41] and proposed a restoration-guided sam-

pling method to solve this problem. We hope to selectively

guide the prediction results zt−1 to be close to the LQ image

zLQ in each diffusion step. The specific algorithm is shown

in Algorithm 1, where T is the total step number, {σt}Tt=1

are the noise variance for T steps, c is the additional text

prompt condition. τr, Schurn, Snoise, Smin, Smax are five

hyper-parameters, but only τr is related to the restoration

guidance, the others remain unchanged compared to the

original EDM method [41]. For better understanding, a sim-

ple diagram is shown in Fig. 5(b). We perform weighted

interpolation between the predicted output ẑt−1 and the LQ

latent zLQ as the restoration-guided output zt−1. Since the

low-frequency information of the image is mainly generated

in the early stage of diffusion prediction [65] (where t and

σt are relatively large, and the weight k = (σt/σT )
τr is

also large), the prediction result is closer to zLQ to enhance

Algorithm 1 Restoration-Guided Sampling.

Input: H, {σt}Tt=1, zLQ, c
Hyper-parameter: τr , Schurn, Snoise, Smin, Smax

1: sample zT ∼ N (0, σ2
T I)

2: for t ∈ {T, . . . , 1} do
3: sample εt ∼ N (

0, S2
noiseI

)
4: γt ←

{
min

(
Schurn

N
,
√
2− 1

)
if σt ∈ [Smin, Smax]

0 otherwise

5: kt ← (σt/σT )τr , ẑt ← zt +
√

σ̂2
t − σ2

t εt, σ̂t ← σt + γtσt

6: ẑt−1 ← H (
ẑt, zLQ, σ̂t, c

)
7: dt ← (ẑt − (ẑt−1 + kt(zLQ − ẑt−1)))/σ̂t

8: zt−1 ← ẑt + (σt−1 − σ̂t) dt
9: end for

1010 1011 1012 1013
Pixel Numbers 

Ours
SA-1B
IN21k

IN1K
LSDIR
DIV2K

Da
ta

se
t

(a) zLQ

ẑt−1

zt−1

(σt/σT )
τr (zLQ − ẑt−1)

(b)

Figure 5. (a) We show the relative size of our data compared

to other well-known datasets. Compared with SA-1B [44], our

dataset has higher quality and more image diversity. (b) We

demonstrate our restoration-guided sampling mechanism.

fidelity. In the later stages of diffusion prediction, mainly

high-frequency details are generated. There should not be

too many constraints at this time to ensure that detail and

texture can be adequately generated. At this time, t and σt

are relatively small, and weight k is also small. Therefore,

the predicted results will not be greatly affected Through

this method, we can control the generation during the diffu-

sion sampling process to ensure fidelity.

4. Experiments
4.1. Model Training and Sampling Settings
For training, the overall training data includes 20 million

high-quality images with text descriptions, 70K face im-

ages and 100K negative-quality samples, together their cor-

responding prompts. To enable a larger batch size, we crop

images into 512×512 patches during training. We train

our model using a synthetic degradation model, following

the setting used by Real-ESRGAN [78], the only difference

is that we resize the produced LQ images to 512×512 for

training. We use the AdamW optimizer [53] with a learning

rate of 0.00001. The training process spans 10 days and is

conducted on 64 Nvidia A6000 GPUs, with a batch size of

256. For testing, the hyper-parameters are T=100, λcfg=7.5,

and τr = 4. Our method is able to process images with the

size of 1024×1024. We resize the short side of the input im-

age to 1024 and crop a 1024×1024 sub-image for testing,

and then resize it back to the original size after restoration.

Unless stated otherwise, prompts will not be provided man-

ually – the processing will be entirely automatic.
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Figure 6. Qualitative comparison with different methods. Our method can accurately restore the texture and details of the corresponding

object under challenging degradation. Other methods fail to recover semantically correct details such as broken beaks and irregular faces.
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0.3492

PSNR:
19.28
SSIM:
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0.3951

StableSR

Prefered by metrics Prefered by human

Low-Quality Input

Figure 7. These examples show the misalignment between metric

evaluation and human evaluation. SUPIR generates images with

high-fidelity textures, but obtains lower metrics.

4.2. Comparison with Existing Methods

Our method can handle a wide range of degradations, and

we compare it with the latest methods with the same ca-

pabilities, including BSRGAN [90], Real-ESRGAN [78],

StableSR [75], DiffBIR [49] and PASD [85]. Some of them

are constrained to generating images of 512×512 size. In

our comparison, we crop the test image to meet this require-

ment and downsample our results. We conduct comparisons

on both synthetic data and real-world data.

Synthetic Data. To synthesize LQ images for testing, we

follow previous works [45, 94] and demonstrate our effects

on several representative degradations, including both sin-

gle degradations and complex mixture degradations. Spe-

cific details can be found in Tab. 1. We selected the fol-

lowing metrics for quantitative comparison: full-reference

metrics PSNR, SSIM, LPIPS [93], and the non-reference

metrics ManIQA [83], ClipIQA [74], MUSIQ [43]. It can

be seen that our method achieves the best results on all

non-reference metrics, which reflects the excellent image

quality of our results. At the same time, we also note the

disadvantages of our method in full-reference metrics. We

present a simple experiment that highlights the limitations

of these full-reference metrics, see Fig. 7. It can be seen

that our results have better visual effects, but they do not

have an advantage in these metrics. This phenomenon has

also been noted in many studies as well [6, 26, 28]. We ar-

gue that with the improving quality of IR, there is a need

to reconsider the reference values of existing metrics and

suggest more effective ways to evaluate advanced IR meth-

ods. We also show some qualitative comparison results in

Fig. 6. Even under severe degradation, our method consis-

tently produces highly reasonable and high-quality images

that faithfully represent the content of the LQ images.
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Degradation Method PSNR SSIM LPIPS↓ ManIQA ClipIQA MUSIQ

Single:

SR (×4)

BSRGAN 25.06 0.6741 0.2159 0.2214 0.6169 70.38

Real-ESRGAN 24.26 0.6657 0.2116 0.2287 0.5884 69.51

StableSR 22.59 0.6019 0.2130 0.3304 0.7520 72.94

DiffBIR 23.44 0.5841 0.2337 0.2879 0.7147 71.64

PASD 24.90 0.6653 0.1893 0.2607 0.6466 71.39

SUPIR (ours) 22.66 0.5763 0.2662 0.4738 0.8049 73.83

Single:

SR (×8)

BSRGAN 22.26 0.5212 0.3523 0.2069 0.5836 67.04

Real-ESRGAN 21.79 0.5280 0.3276 0.2051 0.5349 63.80

StableSR 21.27 0.4857 0.3118 0.3039 0.7333 71.74

DiffBIR 21.86 0.4957 0.3106 0.2845 0.7080 70.26

PASD 21.97 0.5149 0.3034 0.2412 0.6402 70.20

SUPIR (ours) 20.68 0.4488 0.3749 0.4687 0.8009 73.16

Mixture:

Blur (σ=2) +
SR (×4)

BSRGAN 24.97 0.6572 0.2261 0.2127 0.5984 69.44

Real-ESRGAN 24.08 0.6496 0.2208 0.2357 0.5853 69.27

StableSR 22.26 0.5721 0.2301 0.3204 0.7488 72.87

DiffBIR 23.28 0.5741 0.2395 0.2829 0.7055 71.22

PASD 24.85 0.6560 0.1952 0.2500 0.6335 71.07

SUPIR (ours) 22.43 0.5626 0.2771 0.4757 0.8110 73.55

Mixture:

SR (×4)+
Noise (σ=40)

BSRGAN 17.74 0.3816 0.5659 0.1006 0.4166 51.25

Real-ESRGAN 21.46 0.5220 0.4636 0.1236 0.4536 52.23

StableSR 20.88 0.4174 0.4668 0.2365 0.5833 63.54

DiffBIR 22.08 0.4918 0.3738 0.2403 0.6435 65.97

PASD 21.79 0.4983 0.3842 0.2590 0.5939 69.09

SUPIR (ours) 20.77 0.4571 0.3945 0.4674 0.7840 73.35

Mixture:

Blur (σ=2) +
SR (×4)+
Noise

(σ=20)+
JPEG (q=50)

BSRGAN 22.88 0.5397 0.3445 0.1838 0.5402 64.81

Real-ESRGAN 22.01 0.5332 0.3494 0.2115 0.5730 64.76

StableSR 21.39 0.4744 0.3422 0.2974 0.7354 70.94

DiffBIR 21.79 0.4895 0.3465 0.2821 0.7059 69.28

PASD 21.90 0.5118 0.3493 0.2397 0.6326 70.43

SUPIR (ours) 20.84 0.4604 0.3806 0.4688 0.8021 73.58

Table 1. Quantitative comparison. Red and blue colors represent

the best and second best performance. ↓ represents the smaller the

better, and for the others, the bigger the better.

Metrics BSRGAN Real-ESRGAN StableSR DiffBIR PASD Ours

CLIP-IQA 0.4119 0.5174 0.7654 0.6983 0.7714 0.8232
MUSIQ 55.64 59.42 70.70 69.69 71.87 73.00

MANIQA 0.1585 0.2262 0.3035 0.2619 0.3169 0.4295

(a) Quantitative comparison on 60 real-world LQ images.

Negative Prompts
PSNR SSIM LPIPS↓ ManIQA ClipIQA MUSIQ

Samples Positive Negative

� 22.90 0.5519 0.3010 0.3129 0.7049 68.94

� � 22.31 0.5250 0.3108 0.4018 0.7937 72.00

� � 20.63 0.4747 0.3603 0.4678 0.7933 73.60

� � � 20.66 0.4763 0.3412 0.4740 0.8164 73.66

� � 21.79 0.5119 0.3139 0.3180 0.7102 72.68

(b) Ablation study of quality prompts and negative training samples.

Connector PSNR SSIM LPIPS↓ ManIQA ClipIQA MUSIQ

Zero Convolution [92] 19.47 0.4261 0.3969 0.4845 0.8184 74.00

ZeroSFT 20.66 0.4763 0.3412 0.4740 0.8164 73.66

(c) Ablation study of zero convolution and the proposed ZeroSFT.

Table 2. Real-world comparison results and ablation studies.

r=1 r=2 r=3 r=4 r=5 r=6 No
r

20.5

21.0

21.5

22.0

22.5

PSNR

PSNR

0.46

0.48

0.50

0.52

SSIM

SSIM

r=1 r=2 r=3 r=4 r=5 r=6 No
r0.40

0.42

0.44

0.46

0.48

MANIQA

ManIQA 0.77

0.79

0.81

0.83
CLIP-IQA

Clip-IQA

3.25%
StableSR

2.00%
DIffBIR

10.58%
PASD

84.17%
SUPIR

(a) (b)
Figure 8. (a) These plots illustrate the quantitative results as a

function of the variable τr . “No τr” means not to use the proposed

sampling method. (b) The results of our user study.

Restoration in the Wild. We also test our method on

real-world LQ images. We collect a total of 60 real-world

LQ images from RealSR [8], DRealSR [80], Real47 [49],

and online sources, featuring diverse content including an-

imals, plants, faces, buildings, and landscapes. We show

Low-Quality Input Zero Convolution Connector Our ZeroSFT Connector

Figure 9. We compare the proposed ZeroSFT with zero convolu-

tion. Directly using zero convolution results in redundant details.

The low-fidelity details can be effectively mitigated by ZeroSFT.

the qualitative results in Fig. 10, and the quantitative results

are shown in Tab. 2a. These results indicate that the im-

ages produced by our method have the best perceptual qual-

ity. We also conduct a user study comparing our method

on real-world LQ images, with 20 participants involved.

For each set of comparison images, we instructed partici-

pants to choose the restoration result that was of the highest

quality among these test methods. The results are shown

in Fig. 8, revealing that our approach significantly outper-

formed state-of-the-art methods in perceptual quality.

4.3. Controlling Restoration with Textual Prompts
After training on a large dataset of image-text pairs and

leveraging the feature of the diffusion model, our method

can selectively restore images based on human prompts.

Fig. 1(b) illustrates some examples. In the first case, the

bike restoration is challenging without prompts, but upon

receiving the prompt, the model reconstructs it accurately.

In the second case, the material texture of the hat can be

adjusted through prompts. In the third case, even high-level

semantic prompts allow manipulation over face attributes.

In addition to prompting the image content, we can also

prompt the model to generate higher-quality images through

negative-quality prompts. Fig. 11(a) shows two examples.

It can be seen that the negative prompts are very effective in

improving the overall quality of the output image. We also

observed that prompts in our method are not always effec-

tive. When the provided prompts do not align with the LQ

image, the prompts become ineffective, see Fig. 11(b). We

consider this reasonable for an IR method to stay faithful to

the provided LQ image. This reflects a significant distinc-

tion from text-to-image generation models and underscores

the robustness of our approach.

4.4. Ablation Study
Connector. We compare the proposed ZeroSFT connec-

tor with zero convolution [92]. Quantitative results are

shown in Tab. 2c. Compared to ZeroSFT, zero convolu-

tion yields comparable performance on non-reference met-

rics and much lower full-reference performance. In Fig. 9,

we find that the drop in non-reference metrics is caused by

generating low-fidelity content. Therefore, for IR tasks, Ze-

roSFT ensures fidelity without losing the perceptual effect.

Training data scaling. We trained our large-scale model

on two smaller datasets for IR, DIV2K [3] and LSDIR [1].
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Low-Quality Input Real-ESRGAN StableSR DiffBIR PASD SUPIR (Ours)

Figure 10. Qualitative comparison on real-world LQ images. SUPIR successfully recovers structured buildings and lifelike rivers. It also

maintains the details existing in LQ, such as the horizontal planks in the beach chairs. Zoom in for better view.

Low-Quality Input No Negative 
Prompt

Use Negative 
Prompt

Low-Quality Input No Negative 
Prompt

Use Negative 
Prompt

Low-Quality Input No Prompt Text: some people 
at the beach

(b) Textual Prompt must align with the LQ image.

Not Working

(a) Two Examples Showing the Effect of Negative Prompt 

Figure 11. Influences of text prompts. (a) Negative prompts lead to detailed and sharp restoration results. (b) Given a positive prompt with

hallucinations, SUPIR avoids generating content absent in the LQ images. Zoom in for better view.

Low-Quality Input Trained on DIV2K Trained on LSDIR Trained on Our Data

Figure 12. Qualitative comparison for SUPIR training on datasets

with different scales. Zoom in for better view.

Low-Quality Input

Fidelity Realistic

r=0.5 r=3 r=6
Figure 13. The effect of the proposed restoration-guided sampling

method. A smaller τr makes the result more biased toward the

LQ image, which emphasizes the fidelity. A larger τr emphasizes

perceived quality, but with lower fidelity. Zoom in for better view.

The qualitative results are shown in Fig. 12, which clearly

demonstrate the importance and necessity of training on

large-scale high-quality data.

Negative-quality samples and prompt. Tab. 2b shows

some quantitative results under different settings. Here,

we use positive words describing image quality as “posi-

tive prompt”, and use negative quality words and the CFG

methods described in Sec. 3.2 as negative prompt. It can be

seen that adding positive prompts or negative prompts alone

can improve the perceptual quality of the image. Using both

of them simultaneously yields the best perceptual results. If

negative samples are not included for training, these two

prompts will not be able to improve the perceptual quality.

Fig. 4 and Fig. 11(a) demonstrate the improvement in image

quality brought by using negative prompts.

Restoration-guided sampling method. The proposed

restoration-guided sampling method is mainly controlled by

τr. The larger τr is, the fewer corrections are made to the

generation at each step. The smaller τr is, the more gen-

erated content will be forced to be closer to the LQ image.

Please refer to Fig. 13 for a qualitative comparison. When

τr = 0.5, the image is blurry because its output is limited

by the LQ image and cannot generate texture and details.

When τr = 6, there is not much guidance during genera-

tion. The model generates a lot of texture that is not present

in the LQ image, especially in flat area. Fig. 8(a) illustrates

the quantitative results of restoration as a function of the

variable τr. As shown in Fig. 8(a), decreasing τr from 6 to

4 does not result in a significant decline in visual quality,

while fidelity performance improves. As restoration guid-

ance continues to strengthen, although PSNR continues to

improve, the images gradually become blurry with loss of

details, as depicted in Fig. 13. Therefore, we choose τr = 4
as the default parameter, as it doesn’t compromise image

quality while effectively enhancing fidelity.

5. Conclusion
We propose SUPIR as a pioneering IR method, empowered

by model scaling, dataset enrichment, and advanced design

features, expanding the horizons of IR with enhanced per-

ceptual quality and controlled textual prompts.
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