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Abstract

Conventional image outpainting methods usually treat
unobserved areas as unknown and extend the scene only
in terms of semantic consistency, thus overlooking the hid-
den information in shadows cast by unobserved areas, such
as the invisible shapes and semantics. In this paper, we
propose to extract and utilize the hidden information of un-
observed areas from their shadows to enhance image out-
painting. To this end, we propose an end-to-end deep ap-
proach that explicitly looks into the shadows within the im-
age. Specifically, we extract shadows from the input image
and identify instance-level shadow regions cast by the un-
observed areas. Then, the instance-level shadow represen-
tations are concatenated to predict the scene layout of each
unobserved instance and outpaint the unobserved areas. Fi-
nally, two discriminators are implemented to enhance align-
ment between the extended semantics and their shadows.
In the experiments, we show that our proposed approach
provides complementary cues for outpainting and achieves
considerable improvement on all datasets by adopting our
approach as a plug-in module.

1. Introduction

Given an image of a complex scene, as shown in
Fig. 1(a), what will its right-side unobserved area look like?
Humans can, without much effort, infer the appropriate cat-
egories and rough shapes of invisible semantics (e.g. ob-
jects) and further imagine an adequately realistic overall
appearance. One critical cue humans utilize to reason in-
visible semantics is the shadows cast in the image. In this
regard, we identify the shadows of each visible object, on
top of which the shadows cast by the unobserved areas are
found. According to their shapes and relative spatial layout,
we may reasonably infer that there is a person in the un-
observed area, as shown in Fig. 1(b), which aligns with its
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(b) Alignment Result

(c) Misalignment Result

(d) Disjoined Shadows  (e) Overlapped Shadows  (f) Semantics Attached ‘

Figure 1. Given the image of a complex scene in (a) for outpaint-
ing, the extension needs to align with visible semantics. For ex-
ample, the result shown in (b) is more aligned with the visible se-
mantics from a global shadowing direction compared to the result
shown in (c). For better alignment, we overcome the challenges of
shadow extraction in complex scenes, such as disjoined shadows
(d), overlapped shadows (e), and shadows attaching unexpected
semantic information (f), respectively.

shadow and the given scene. However, existing outpainting
methods [7, 26, 57, 58, 69, 74] overlook shadows in the im-
age, leading to inferior results, as shown in Fig. 1(c), where
misalignment exists between the extension and its shadows
from the shadowing direction in the scene.

Even though prior efforts on Shape-from-Shadow [22,
32, 36, 60] also aim to extract hidden information, such as
the shapes, of the semantics from their shadows in simple
scenes with an ideal light source and a given semantic cate-
gory, they cannot perform complex image outpainting with
unknown semantics, due to there are three challenges of
shadow extraction in complex scenes. 1) Given the complex
spatial layout of the instances, the shadows are usually oc-
cluded by other instances, resulting in disjoined shadows of
a single object, as shown in Fig. 1(d), which leads to inaccu-
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rate perception or misinterpretation of invisible semantics.
2) Given the complex illumination of the scene, the shadows
cast by different semantics may overlap, thus causing infor-
mation loss for the unobserved area, as shown in Fig. 1(e).
3) Given the complex spatial layout of the scene, the shad-
ows usually contain semantic information about the planes
on which they are cast, which may lead to shadow-irrelevant
understanding, as shown in Fig. 1(f).

To perform image outpainting by utilizing the hidden in-
formation in the shadows, we propose a novel approach that
explicitly looks into the correlation between shadows from
the unobserved area and the visible semantics, the shadows
with semantic removal, and the consistency between local
and global alignment.

Specifically, as depicted in Fig. 2, given an input image,
we first conduct shadow extraction to obtain those shadow
regions belonging to unobserved instances. Then, we uti-
lize the shadow representations from unobserved instances
to predict the scene layout of these instances, and then con-
catenate them with the shadow representation of instances
in unobserved areas for layout-to-image processing. Then,
the instance-level shadow representations are concatenated
to predict the scene layout of each unobserved instance and
outpaint the unobserved areas for the outpainting image. Fi-
nally, two discriminators are implemented to enhance align-
ment between the extended semantics and their shadows.

Our contribution is therefore a novel framework desig-
nated to achieve image outpainting by utilizing the shad-
ows, which is the first attempt to the best of our knowledge.
This is accomplished by extracting the desired shadow in-
formation, followed by scene layout expansion and layout-
to-image conversion to produce image outpainting. The
whole pipeline is end-to-end trainable. By adopting our
proposed framework as a plug-in module, the outpainting
methods [69] have achieved considerable quantitative and
qualitative performance improvement on all datasets.

2. Related Work

We briefly review the prior works related to ours, includ-
ing shadow processing and image outpainting.
Shadow Processing. Conventional shadow processing
method reconstructs the surface shape of a single object,
under ideal illuminance, from its shadow and visual infor-
mation [40]. Then, a sequence of methods [1, 2, 13, 14, 31,
62, 66] is developed to improve its performance by involv-
ing carefully designed prior knowledge in the model. Then,
due to the strong adaptability of deep learning, learning-
based methods [22, 32] are proposed to deal with compli-
cated environments, such as objects with non-Lambertian
reflectance [32]. Moreover, shadows are utilized as cues for
scene geometry information extraction [21, 23, 30, 36, 43—
45, 47, 48, 67, 68], segmentation [12], object detection
[9, 16, 17], and tracking [41]. Recently, a generative method

[36] has been proposed to predict the shape of a single invis-
ible object, with a specific category, from its shadow. How-
ever, none of the existing methods can infer the scene layout
of the semantics from their shadows in complex scenes.
Image Outpainting. Conventional image outpainting
methods extend the image with the background texture
and partially observed objects towards specific direc-
tions [5, 34, 37, 52, 73, 74]. Then, information on the
image margin is utilized to enable the outpainting in
any direction [28, 56, 64]. Recently, the extrapolation
of segmentation information has been adopted in the
outpainting process [26] to add novel semantics in the
extending areas. Meanwhile, the scene graph of the image
is utilized to introduce new semantics by learning the se-
mantic co-occurrence with Graph Neural Networks (GNN)
[19, 33, 49, 50, 59, 69, 72]. Conventional outpainting
commonly uses Generative Adversarial Networks (GAN)
[15] for image conversion. However, due to the stability
of diffusion, diffusion models [3, 18, 42, 51, 55] are being
recognized as a promising family of generative models
that have proven to be state-of-the-art sample quality for
a variety of image generation benchmarks [8, 61, 70],
including class-conditional image generation [10, 75],
text-to-image generation [27, 51, 53, 71], image-to-image
translation [24, 38, 54], layout-to-image generation [6, 76].
However, none of the existing methods takes advantage of
the shadows to enhance the outpainting.

3. Method

In this section, we detail the working scheme of the pro-
posed approach which comprises three stages, as shown in
Fig. 2. In Stage 1, we utilize the pretrained model of shadow
detection and instance shadow detection to grain rough
instance-level shadow regions. Meanwhile, a pretrained
shadow removal model is to remove unexpected semantic
information from the shadows for the purified shadow fea-
ture. Then, we calculate the connectivity between shadow
regions to merge disjoined shadows and perform overlapped
segmentation on the shadows to restore overlapped shadows
of instances. After iterative optimization, we obtain refined
instance-level shadow regions. In Stage 2, the instance-
level shadow representations are concatenated to predict the
scene layout of each unobserved instance and outpaint the
unobserved areas. In Stage 3, two discriminators are imple-
mented to enhance alignment between the extended seman-
tics and their shadows.

3.1. Stage 1: Shadow Extraction

Given the input image I, we first adopt a pretrained
shadow detection model [77] to extract all shadow areas:

M = Detection([), (1
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Figure 2. Illustration of the proposed approach. € denotes concatenation.

where M, denotes the mask of the shadow areas, respec-
tively. Then, a pretrained instance shadow detection model
[63] is introduced to identify the shadow areas for the visi-
ble semantics in image I by:

M? = Instance_Detection(T). 2

where M7 denotes the instance-level mask of the shadow
areas cast by the visible semantics. Consequently, a binary
area-level mask of shadows cast by the unobserved area can
be obtained with MY = M, — M/?. Thus, we obtain a rough
instance-level shadow region.

Meanwhile, to obtain the shadow areas without the se-
mantic information from the cast planes, we introduce a
pretrained shadow removal model [39] and obtain the se-
mantically purified shadow image I? by:

I? = M, ® (I — Shadow_Removal([)), 3)

where ® denotes the Hadamard product.

After obtaining the shadow image of semantic removal
IP, we can use a convolutional net to extract the shadow
feature without semantics:

FP = ConvNet(I?), FP ¢ RW>xHxd, )

where the ConvNet consists of 8 Residual Blocks and pre-
serves the resolution of the output representation to be the
same as the input image. W, H denotes the width and height
of the input image. d denotes the dimension of the shadow
feature map.

Considering that the formation of shadows is influenced
by the illumination conditions in the given scene, which
can be a cue in addressing the issues of disjoined shad-
ows and overlapped shadows, we concatenate the image [
and the shadow mask M, and fed it into a Convolutional
Neural Network (CNN) to obtain the illumination feature
Fillm o R(W/16)x(H/16)xd jn the scene as a cue for the
shadow regions optimization.

3.1.1 Shadow Merging Operation

In complex scenes, due to the presence of instances that
can occlude shadows, it can result in an instance having
multiple disjointed shadows, as shown in Fig. 3.

To classify a single instance with disjoined shadows, we
first treat each connected component in M} as a shadow
region weight mask. Let M¥ = {m%} € RW>xHx1 4 ¢
[1, N,] be the shadow weight masks that don’t belong to
any visible instances, where NV,, denotes the number of con-
nected components in M. For the rough instance-level
mask of visible instances in M, let M* = {M;} €
RWXHX1 4 € [1, N,] be each shadow weight mask of vis-
ible instance, where N, denotes the number of visible in-
stances. Consequently, we grain the initial instance-level
shadow region M:

)

(6)

For each shadow region, we extract the correspond-
ing region-level shadow feature F' by the feature map by

N =N, + N,
M={m,} ={M", M"},z€[1,N],
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(b) the disjoined shadow
of the visible instance

(a) the disjoined shadow
of the unobserved instance

Figure 3. Samples of disjoined shadows caused by occlusion in
complex scenes. (a) The shadow of an unobserved object is ob-
structed, creating two disjointed shadow regions. The red boxes
indicate the disjoined shadows. (b) Due to the defect of the in-
stance shadow detector, a portion of the shadow of the instance
was not classified as a single instance. The blue boxes indicate
the detected corresponding pair, and the yellow box indicates the
undetected shadow region.

element-wise multiplying the shadow feature without se-
mantics F? and the shadow weight mask M. Then, we use
the max pooling operation to resize these features to match
the size of the illumination feature. Thus, we obtain the
cropped feature F by:

F=FPOM,F ¢ RV*Hxd @)
F = maxpool(F), F ¢ RW/16)x(H/16)xd = (g)

To improve the computation of connectivity between
shadow regions, we combine the cropped features F' of two
regions along with the illumination feature by concatenat-
ing them together. This concatenated input is fed into an
encoder F.onnect, and then passed through a sigmoid ac-
tivation function for connectivity between two shadow re-
gions:

F:{fm}ame[laN]’ )
fii.j) = Econnect (concat(fi, f;, F™™)),i #j  (10)
Connectivity; ;) = Sigmoid(f_(i’j)),i #£7 (11)

When the connectivity between two shadow regions is
higher than a hand-setting threshold «, these two shadow
regions are considered to be the shadows of the same ob-
ject, accordingly merging their weight masks. Conversely,

they stay unchanged. Finally, we obtain the updated shadow
features F"P?et after merging operation:

Fupdate _ {fm} c RWXHXd7m c [1,Nm], (12)

where N™ denotes the number of instances after merging.

3.1.2 Shadow Splitting Operation

In complex scenes, due to the complex spatial layout in
the scene, it is common to have overlapped shadows be-
tween instances, as shown in Fig. 4.

-
(a) overlapped with shadows
cast by the unobserved instances

(b) overlapped with shadow
cast by the visible instances
Figure 4. Samples of overlapping shadows in complex scenes.
The red boxes indicate the overlapped shadows. (a) The shadows
of multiple unobserved instances overlap. (b) The shadows of un-
observed instances overlap with the shadows of visible instances.

In this work, each overlapped shadow is decoupled into
two intersecting graph spaces. After concatenating the
cropped feature F' and illumination feature F*'*™ we input
them into the Overlapping BiLayers [25]. Then, we grain
two weight masks M|, and M/, each weight mask repre-
sents the shadow region of an individual instance. Then,
we can obtain the ”de-overlapped” shadow feature f of an
instance by element-wise multiplying the weight mask M’
with the purified shadow feature F?:

M, M, € RW>xHx1 (13)
0= M,®FP, fi =M, o FP, (14)
0 s 1 s

when the ratio of the combined area of two weight masks
to the source area is higher than a hand-setting threshold
a9, it is considered an overlapped shadow and needs to be
split. Conversely, it stays unchanged. Finally, we obtain the
updated shadow features F“P?t¢ after splitting operation:

Fupdate _ {fm} c ]RWXHXd7m c []_,NS]’ (15)

where N* denotes the number of instances after splitting.

3.1.3 Iterative Optimization

In complex scenes, it is common to encounter situations
where disjoined shadows and overlapped shadows co-occur.
Therefore, we utilize an iterative combination of merging
and splitting operations to optimize the categorization of
all shadow regions in the image. Thus, the issues of dis-
joined shadows and overlapped shadows, shown in Fig. 3
and Fig. 4, are addressed. Specifically, the iterative shadow
optimization is summarized as Algorithm 1.

3.2. Stage 2: Outpaiting with Shadows

After obtaining the refined instance-level shadow regions
M from Stage 1, we grain the cropped shadow representa-
tions f* of unobserved instances by:

f* = maxpool(M" ® FP), M"“ € M, (16)
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Algorithm 1: Iterative Shadow Optimization

Input : rough instance-level shadow weight mask
Output: refined instance-level shadow weight mask

1 MO« M

2 fort =11tT do

3 | M® «— ShadowMerging(M (*—1)

4 | M® + ShadowSplitting(M (1))

s | if[[M® — MED|| < ¢ then

6 break

7

which are concatenated to predict the categories and layouts
of new instances and outpaint the unobserved areas.

For scene layout expansion, given a partial input image
with the partial scene graph and the corresponding layout,
we use GNN [11] to reveal the scene layout L, of new
instances. Specifically, we pass the shadow representations
f_ “ from the unobserved instances through an encoder Ej,,
and then concatenate the output with the node features f"
of the masked instances from the encoder of GNN.

fh :concat(fh,Eh(f_“)) a7

For layout to image, given an input image / with an ex-
panded scene layout L.;;,, we use layout-to-image model
[76] to perform layout to image conversion. Specifically,
we pass the shadow representations f* from the unobserved
instances through an encoder Fj, and then concatenate the
output with scene layout features f' of the expanded in-
stance from the encoder of the layout-to-image module.

fl = concat(fl,El(f“)) (18)

Note that we focus on the design of extracting shadow
representation, so producing high-accuracy predictions for
scene layout and high-quality image outputs is not within
the main scope of this work. Thus, the graph-based and
diffusion-based designs can be replaced with any scene lay-
out expansion and layout-to-image modules if desirable.

3.3. Stage 3: Alignment Discriminator

In stage 2, we outpaint the partial input image I into the
extended image [z with introduced instances. To enhance
alignment between unobserved area and visible semantics,
we adopt the pretrained instance shadow detector [63] to
first extract the mask M7 of the unobserved area and its
corresponding shadow from Iy, and then feed it into a lo-
cal shadow-instance alignment discriminator to ensure the

generated alignment is visually real. This is calculated as
follows:

. 1 AV
Iilgl V(LD) = 2E$din,ta(x)[(LD('r) b) ] (19)

+ Ezwpz(Z)[(LD(Mg' © G(Z)) - CL)2L

1
2

ngn V(G) = %IEZNPZ(Z) [(LD(ME ® G(2)) — ¢)?], (20)

where LD denotes the local alignment discriminator. G
denotes the generator for outpainting. @ and b denote the
ground truth real and fake labels, respectively. ¢ denotes the
value that G wants LD to believe for the fake data.

Then, the mask Mg that consists of all semantics and
their shadows in Ig is extracted, and we feed it into a
global alignment discriminator to ensure the newly gener-
ated alignment is consistent with the existing ones. This is
calculated as follows:

min V(GD) = }E

GD 9 szda,ta(x)[(GD(x) - b)Q}

21

+ 5Eanp. (9 (GD(ME © G(2)) - a)?)],

N =

ménV(G) = %Empz(z) (GD(Mg ® G(2)) — ¢)?], (22)

where G D denotes the global alignment consistency dis-
criminator.

In summary, shadow extraction, scene layout expan-
sion, and layout-to-image module are end-to-end trained
together, thus the visual authenticity loss may facilitate
shadow representation learning. Therefore, the final objec-
tive function of our approach is:

L =ML+ XL gan + AL gan, (23)

where A1, A2 and A3 denote the balancing weights. L; de-
notes the loss adopted from the base model. L¢ ., and
L& o 4 denote the alignment loss from the local alignment
and global consistency.

4. Implementation Details

This section provides details of the training settings and
module implementations.
Training Settings. Our approach is implemented using Py-
Torch [46] on four NVIDIA-RTX A6000 GPUs. During
the training process, we adopt the Adam optimizer, 0.001
for the local discriminator and the global discriminator, and
0.01 for all modules in shadow representation extractors.
The batch size is set to 32 and the size of the input images
is 256 x 256. The training is manually stopped.
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Shadow Detection Models. We adopt the popular shadow
segmentation method [77] as the shadow detector, which is
able to segment the shadow areas in the image. Further-
more, we adopt the state-of-the-art instance shadow detec-
tion method [63] as our instance shadow detector, which is
able to detect the shadow instances and their corresponding
object in the image. However, it is unable to detect shadows
cast by unobserved objects.

Alignment Discriminator. We adopt diffusion timestep-
dependent discriminators from Diffusion-GAN [65]. It not
only can minimize the divergence between real and diffused
data at the end of the process, but also minimizes the diver-
gence between the diffused real data distribution and the
diffused generator distribution over several timesteps. In
training, the balancing weight A; is set to be 0.5, A2 and A3
are set to 0.25. Note that the architecture of the discrimina-
tor can be adjusted based on the specific type of layout-to-
image module being implemented.

Scene Layout Expansion. We adopt GTWE [11] to pre-
dict the categories and layout of unobserved instances si-
multaneously. GTWE has the same aforementioned hyper-
parameters as [69], which are the attention hidden size
datten = 512, feed forward size dyy = 2048, multi-head
number Npeqq = 4, and dropout = 0.1.

Layout to Image. We adopt LayoutDiffusion [76] for bet-
ter outpainting the unknown areas with the condition of lay-
outs predicted by GTWE. Note that LayoutDiffusion can not
take the visible semantics as guidance to outpaint the un-
known areas. Thus, we follow RePaint [38] to modify the
standard denoising process for conditioning on the given
image content. In each step, we sample the known region
from the input and the outpaint painted part from the DDPM
[18] output.

5. Experiments

In this section, we provide our experimental setups and
both the objective and subjective results. Since we are not
aware of any existing work that performs the same task as
we do, we mainly focus on showing the promise of the pro-
posed approach. Specifically, we evaluate the effectiveness
of our approach by conducting experiments with an image
outpainting pipeline proposed by [69]. Our goal is, again,
to show the possibility of learning effective shadow repre-
sentations thus enhancing complex scene extension, rather
than trying to beat the state-of-the-art shadow detection and
outpainting method. Other modules with the same function-
ality, provided they are end-to-end trainable, can be adopted
in our approach to achieve potentially better performance.

5.1. Datasets

We evaluate our proposed approach on two common
datasets, Visual Genome (VG) [29] and COCO-stuff [4],
which gives an adequate amount of scene layouts.

Visual Genome [29] dataset collects 108,077 images with
dense annotations of objects, attributes, and relationships.
Following the setting of SG2Im [20], we divide the data
into 80%, 10%, and 10% for the train, val, and test set, re-
spectively. We select the object and relationship categories
occurring at least 2000 and 500 times in the train set, re-
spectively, leaving 178 objects and 45 relationship types,
and select the images with 3 to 30 bounding boxes and ig-
noring all small objects. Finally, the training/validation/ test
set will have 62565 / 5062 / 5096 images, respectively.

COCO-stuff [4] dataset augments a subset of the COCO
dataset [35] with additional semantic categories. Thus, a
total of 80 object categories (car, dog, etc.) and 91 semantic
categories (sky, snow, etc.) are available, with 118K / 5K
annotated images for training/validation. Following the set-
ting of SG2Im [20], the ground truth object coordinates in
the images are utilized for constructing the synthetic rela-
tionships, a total of six relationships are considered: left of,
right of, above, below, inside, and surrounding. In addition,
we use images in the train and val set with 3 to 8 objects that
cover more than 2% of the image. Finally, there are 25,210
train and 3,097 val images.

5.2. Quantitative and Qualitative Result

In this section, we evaluate the quantitative and quali-
tative effectiveness of our proposed approach to the image
outpainting task by adopting it as a plug-in module of the
SOTA method SGT [69]. The outpainting performance can
be divided into two steps, in which the first one focuses on
predicting the category and layout of the unobserved seman-
tic and then the second one aims to generate the outpaint-
ing images. Therefore, we evaluate our approach on both
the two steps. As can be seen from Tab. 1, by adopting
our approach as a plug-in module, SGT achieves signifi-
cant improvement in unobserved semantic prediction and
its relevant relationship estimation. Although our target is
to enhance only the semantic prediction, the accurately pre-
dicted semantics consequently strengthen the relationship
estimation, thus leading to overall improvement on all met-
rics. Then, as can be seen from Tab. 2, we achieve consid-
erable improvement in unobserved layout prediction, which
also explicitly impacts the alignment with visible semantics
in addition to the categories of instances. Moreover, in order
to evaluate the quality of outpainting images, we introduce
the FID metric and the results shown in Tab. 3.

Then, the visual results are shown in Fig. 5 and Fig. 6, it
can be found that our proposed approach is able to enhance
the outpainting in the unobserved area, which is achieved
by constraining both the shape and the semantic of the out-
painting to be aligned with its visible shadows.
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Input Image GT SGT SGT+

Input Image SGT SGT+

Figure 5. Visual results from SGT [69] on VG [29]. SGT+ denotes the result after adopting our approach as a plug-in module.

Input Image SGT+

Input Image GT SGT SGT+

Figure 6. Visual results from SGT [69] on COCO-stuff [4]. SGT+ denotes the result after adopting our approach as a plug-in module.

5.3. Multiple Instances Extension Comparison

To verify whether our approach can enhance alignment
with visible semantics in complex scenes, even with fewer
shadows. We increase the number of instances requiring
inference from unobserved areas to validate alignment be-
tween the extension and visible semantics shown in Fig 7.

Input Image

GT the number of instances INCreasing  —————
Figure 7. Qualitative comparison of multiple instances extension.
Each image adds one more instance from left to right.

As we can see, our method can effectively leverage
shadow information in complex scenes to infer a scene lay-
out that aligns well with the visible semantics. Specifically,
instances that its shadow is not in the visible area can still
align with visible semantics compared to the method with-
out incorporating our approach, which ensures a harmo-
nious generation of content with visible semantics.

5.4. Shadow Extension Comparison

As seen in Fig. 5 and Fig. 6, our visual results demon-
strate that outpainting with our module achieves excellent
alignment with visible semantics. However, there is an ad-
ditional issue we need to consider: the shadows of visible
instances can also affect the overall shadow consistency of
the image. Therefore, we have also conducted a comparison
specifically addressing this concern, as shown in Fig. 8.

Input Image GT SGT SGT+
Figure 8. Qualitative comparison of shadow extension on the vis-
ible instance. Red boxes show the differences in the extended
shadow of the visible instance.

As we can see, our shadow extension harmonizes the
generated with the visible semantics. However, the method
without incorporating our module randomly elongates or
abruptly truncates shadows, resulting in a lack of global
alignment among the semantic-shadow pairs in the scene.
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VG [29]

COCO-stuff [4]

Object Relationship Object Relationship
rAVG] Hit@ 1/31 rAVG] Hit@ 1/37 rAVG| Hit@ 1/31 rAVG] Hit@ 1/37
SGT 10.51  229/457  5.81 369/694 1054 264/523 292  257/66.4
+F? 9.61 246/470 523 37.7/724 1001 27.0/534 289 259/67.1
+[rillum 925 264/493 482 382/73.1 954 275/544 282 27.0/672
+LS can 10.1  23.1/465 524 374/713 1041 263/53.1 298  259/66.9
+LS oun 997  234/462 542 372/717 1075 267/529 293  263/66.5
SGT+ 893 27.9/504 459 394/752 883 284/553 273 28.3/68.4

Table 1. Quantitative evaluation and ablation study of scene graph expansion on VG [29] and COCO-stuff [4] datasets. T denotes the
higher is better, | the lower is better. SGT+ denotes the pipeline that adopts our approach as a plug-in module.

mloU VG COCO-stuff FID VG  COCO-stuff
SGT 22.7 32,6 SGT  20.12 19.12
+FP 25.4 34.8 +FP 19.89 19.02
+Fillum 26,4 36.2 +pillum 19,92 18.93
+L¢ cun 236 334 +LY o4y 1948 18.60
+LE qay 249 33.1 +LG Gay 1952 18.59
SGT+ 284 38.1 SGT+  19.47 18.38

Table 2. Quantitative evaluation Table 3. Quantitative evaluation
and ablation study on VG [29] and ablation study on VG [29]
and COCO-stuff [4] datasets, and COCO-stuff [4] datasets,
with mloU metric. with FID metric.

5.5. User Studies & Ablation Study

User Studies. For image outpainting, any appropriate gen-
eration should be treated to be correct, thus without a spe-
cific target output. Therefore, in order to further evaluate
the qualitative effectiveness of our approach, we conduct
two user studies, where 91 users are involved to evaluate
the outpainting correctness of our approach. In the first ex-
periment, we send each user 20 randomized selected pairs
of contents, in which the first one is the observed image
with filling black in the unobserved area and the second one
is the scene layout we predict to appear in the unobserved
area, we then ask the users whether the predicted semantic
could appear in the unobserved area. Finally, 89% of the
selected pairs are scored to be true, which denotes that our
proposed approach is able to predict the appropriate scene
layout for the unobserved semantics.

In the second experiment, we send each user 20 random-
ized selected pairs of images, where one of them comes
from SGT and the other one comes from adopting our ap-
proach as a plug-in module, we then ask the users which
one is better in visual authenticity. Finally, images from
ours achieve 87% better chosen, which shows the signifi-
cant quality enhancement produced by our approach.

Ablation Study. We evaluate the individual effectiveness of
the semantic removal, the illumination concatenation, the
local alignment discriminator, and the global consistency
discriminator in this experiment. The results show in Tab. 1,
Tab. 2 and Tab. 3. It can be seen that the most significant
enhancement in scene layout prediction comes from illu-
mination concatenation, which shows the importance of in-
corporating a comprehensive illumination understanding to
tackle the challenges of shadow extraction for obtaining ac-
curate predictions. Meanwhile, the semantic removal en-
hances the accuracy notably, which shows that the shadow-
irrelevant semantic information in the shadow areas leads to
unexpected and noisy shadow representations. And the two
discriminators achieve considerable enhancement in FID,
which shows the importance of ensuring the local alignment
between the unobserved semantics and its visible shadows
and the consistency among all semantic-shadow pairs.

6. Conclusion

In this paper, we proposed a novel approach that aims
to perform image outpainting by utilizing shadow informa-
tion, which has never been explored. This is accomplished
by extracting instance-level shadows cast by the unobserved
areas from the input image. Then, the instance-level shadow
representations are concatenated to infer the scene layout of
each instance and outpaint the unobserved areas. Finally,
two discriminators are implemented to enhance alignment
between the extended semantics and their shadows. Sub-
sequently, extensive objective and subjective experiments
are conducted which strongly proves the proposed approach
successfully captures semantic and geometry information
in the shadows. In future work, we will endeavor to learn
shadow representations from dynamic environments and in-
corporate more tasks like novel view synthesis and pedes-
trian trajectory prediction into the unified framework.
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