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Abstract
Fine-tuning is the process of extending the training of

pre-trained models on specific target tasks, thereby signif-
icantly enhancing their performance across various appli-
cations. However, fine-tuning often demands large mem-
ory consumption, posing a challenge for low-memory de-
vices that some previous memory-efficient fine-tuning meth-
ods attempted to mitigate by pruning activations for gra-
dient computation, albeit at the cost of significant compu-
tational overhead from the pruning processes during train-
ing. To address these challenges, we introduce PreBackRa-
zor, a novel activation pruning scheme offering both com-
putational and memory efficiency through a sparsified back-
propagation strategy, which judiciously avoids unnecessary
activation pruning and storage and gradient computation.
Before activation pruning, our approach samples a proba-
bility of selecting a portion of parameters to freeze, utilizing
a bandit method for updates to prioritize impactful gradi-
ents on convergence. During the feed-forward pass, each
model layer adjusts adaptively based on parameter activa-
tion status, obviating the need for sparsification and stor-
age of redundant activations for subsequent backpropaga-
tion. Benchmarking on fine-tuning foundation models, our
approach maintains baseline accuracy across diverse tasks,
yielding over 20% speedup and around 10% memory reduc-
tion. Moreover, integrating with an advanced CUDA kernel
achieves up to 60% speedup without extra memory costs or
accuracy loss, significantly enhancing the efficiency of fine-
tuning foundation models on memory-constrained devices.

1. Introduction
Nowadays, Transformer-based models [50] have achieved
remarkable results in various domains of deep learning [19,
20]. The trend towards scaling up these models for en-
hanced performance necessitates substantial data and com-
putational resources, often beyond the reach of many
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researchers [44]. Consequently, fine-tuning pre-trained
Transformer models, which are a prominent example of
foundation models [5], has become a prevalent strategy.
This approach allows for adapting and continuing the train-
ing of these models at reduced costs while retaining high
performance. Despite the advantages, fine-tuning founda-
tion models on low-end devices, such as personal com-
puters with consumer-level GPUs and other edge devices,
presents considerable challenges. These challenges stem
primarily from the limited memory and computational ca-
pacity of such devices, restricting the feasible model and
batch sizes during fine-tuning. This limitation often re-
sults in prolonged training periods or compromised perfor-
mance. Our paper aims to address this issue by exploring
efficient methodologies for fine-tuning Transformer models
on consumer-level devices, striving to balance performance
with training efficiency.

One pervasive challenge in fine-tuning models is ef-
fectively managing the training pipeline within the con-
fines of limited device memory [41]. Beyond loading
trainable parameters, memory usage in model training in-
cludes storing intermediate tensors like gradients and ac-
tivations. These elements are crucial in backpropagation
and become particularly memory-intensive with large in-
put batch sizes or model scales. Although efficient train-
ing techniques, such as low-precision and pruning, have
been proposed to save memory on model parameters and
are widely adopted [23, 31], recent research has shifted fo-
cus towards reducing memory consumption of activations,
identified as a primary memory bottleneck [7]. Notably,
since activations are stored solely for backward computa-
tion, recent studies on activation reduction [8, 24, 37] have
proposed an asymmetric backpropagation pipeline. This ap-
proach maintains a dense forward pass and compresses acti-
vations only for gradient computation during backpropaga-
tion. Among these, BACKRAZOR by Jiang et al. [24] em-
ploys top-k pruning in the forward pass to sparsify activa-
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tions, thereby reducing memory requirements for their stor-
age. This method then re-densifies them during the back-
ward pass for gradient computation, achieving significant
memory savings. However, since activation pruning meth-
ods do not retain the original activations, they typically re-
quire additional computations to determine optimal pruning
locations, in order to maintain accuracy. This introduces
a trade-off between memory reduction and computational
overhead, necessitating a careful balance. Furthermore, it
presents a challenge in enhancing the efficiency of current
computation-intensive activation pruning methods.

In our work, addressing this unresolved challenge, we
present PREBACKRAZOR, a memory and computation-
efficient activation pruning scheme. It aligns with the asym-
metric sparsified backpropagation approach, where sparsi-
fied activations are preserved solely for the backpropaga-
tion process. PREBACKRAZOR operates by dynamically
freezing non-essential activation coordinates, thus minimiz-
ing the necessity for their sparsification and storage. This
method effectively reduces computational load, thereby
boosting the overall computation efficiency. Before initi-
ating each iteration’s forward pass, we strategically assign
a dropout probability to every activation coordinate. This
probability is informed by the gradient values associated
with these coordinates, derived from prior iterations. This
process enables us to selectively freeze certain coordinates
during the ensuing backward pass. The chosen probabilities
aim to preserve those gradients that are crucial for model
convergence. To continuously refine this probability distri-
bution, we utilize a bandit method, an approach inspired by
JOINTSPAR [30]. Consequently, during the forward pass,
we bypass the pruning and storage of activations that are
deemed non-essential for backpropagation. This method ef-
fectively diminishes the computational burden typically as-
sociated with activation pruning, while simultaneously up-
holding memory efficiency and training accuracy.

Our experiments, conducted on a single RTX 4090 GPU,
have shown significant improvements in training efficiency
and memory management during the fine-tuning of Vision
Transformer (ViT) and BERT models. For ViT, an exten-
sive comparative analysis using the CIFAR datasets [26]
revealed that our method, PREBACKRAZOR, outperforms
traditional activation pruning techniques like BACKRAZOR
in terms of computational efficiency. Notably, PREBACK-
RAZOR achieves an up to 1.7× increase in training speed
for linear layers, without incurring additional memory over-
head. Furthermore, our carefully tailored adaptation of the
FLASHATTENTION kernel has significantly accelerated the
fine-tuning process, ensuring efficient memory usage. This
customized integration results in an impressive 1.7× boost
in training speed, maintaining a balanced computational
budget without sacrificing accuracy. In the context of BERT
fine-tuning, our approach also results in a modest improve-

ment in time efficiency and final accuracy.
In summary, our main contributions are three-fold:

• We propose a novel activation pruning pipeline to further
reduce the computational overhead of previous methods.
In addition, we establish the convergence analysis for the
proposed algorithm.

• We design improved activation storage schemes that
jointly reduce the compute and memory. We employ ban-
dit methods to update gradients across activation coordi-
nates of the model layers adaptively. This selective up-
date mechanism efficiently manages activation pruning
and gradient computation, thereby reducing memory and
computational costs based on BACKRAZOR’s asymmet-
ric activation-self-sparsified backpropagation.

• We conduct experiments on fine-tuning Transformer-
based ViT and BERT, adapt the current code library,
and combine the state-of-the-art FLASHATTENTION 2
CUDA [16] kernels to boost the training, making the
pipeline more welcome by nowadays consumer-level de-
vices. Our experiments show that our method reduces
over 30% of training time without loss of accuracy.

2. Related Work
In this section, we briefly review existing memory and
computation-efficient fine-tuning methods.

Memory-efficient fine-tuning methods. In memory-
limited environments, strategies like partitioning and com-
pression leverage trade-offs in computation, communica-
tion, and storage to reduce memory usage. Gradient
accumulation lowers memory usage at the cost of in-
creased communication, while gradient checkpointing [12]
achieves memory savings through recomputation. CPU of-
floading [42], GPU partitioning [41], and FLASHATTEN-
TION [16, 17] balance memory optimization against com-
munication overhead. Several memory-efficient optimiz-
ers [32, 43, 49] have been proposed to approximate back-
propagation to minimize stored information. Recent ap-
proaches include computing only forward passes with es-
timated gradients [34] and integrating gradient computation
with parameter updates [33]. Additionally, low or mixed-
precision training [27, 35] and other sparse backpropa-
gation methods [13] have been integrated, trading some
numerical accuracy for enhanced memory or communica-
tion efficiency. There are also related works focusing on
communication cost reduction in distributed systems that
use these memory-efficient methods for gradient compres-
sion [1, 4, 45], which is different from our settings. Addi-
tionally, while quantization [9, 18] and pruning [47] meth-
ods are commonly employed to compress gradients and
model weights, our research concentrates on the pruning of
activations. In the realm of activation footprint reduction,
Cai et al. [7] suggest freezing layer weights while updat-
ing biases and adding lightweight residual modules. Other
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methods involve compression of activations [2, 11, 54].
To maintain accuracy, recent research proposes asymmetric
sparsified backpropagation which stores compressed activa-
tions, using original dense inputs for forward computation
and retrieving activations for backward gradient computa-
tions. They employ techniques like low-precision compres-
sion [8, 37], or utilizing top-k masks for pruning activa-
tions [24].

Computation-efficient fine-tuning methods. Existing
computation-efficient fine-tuning methods include PEFT,
knowledge distillation [22], few-shot learning [52], as well
as quantization and pruning implementations. Our research
primarily focuses on techniques that dynamically adjust
training and seamlessly integrate with our sparse backprop-
agation pipeline. In the realm of computation-efficient fine-
tuning methods, we find adaptive learning rates [25, 49] rel-
evant for their role in facilitating faster convergence [10,
46, 56]. Also, dynamic sparse algorithms [29, 36] are no-
table for introducing sparsity during training. For the as-
pect of sparse backpropagation, the implementation of top-
k masking over gradients by Sun et al. [48] to induce
sparsity in backpropagation is in line with our approach to
asymmetric pruning. Structured sparsity patterns [21, 55]
and layer freezing techniques [6, 40], along with selective
weight freezing strategies [28], offer valuable insights into
reducing computational load. We also draw specific ele-
ments from the JOINTSPAR algorithm [30], which selec-
tively drops gradient vectors, a principle we adapt to target
the computational challenges in activation pruning.

3. Rethink the Backpropagation Redundancy
In this section, we first present explanations of the mem-
ory cost of activations, and the asymmetric self-sparsified
activations as introduced in BACKRAZOR algorithm [24].
Then we show the memory and computation redundancy in
the current backpropagation scheme.

3.1. Preliminary

Consider the nonconvex optimization problem of fine-
tuning foundation models: minθ∈Θ L(θ), where L is the
training loss calculated with the model’s weight θ, and Θ
is the parameter space. Without loss of generality, the for-
ward pass of a given neural network with n layers can be
expressed as follows:

f(x0;θ) = fn(fn−1(. . . f0(x0;θ0) . . . ;θn−1;θn), (1)
L = L(f(x0;θ), y) (2)

where x0 represents the input features at the 0-th layer, and
y corresponds to the input label. The functions fi and pa-
rameters θi are associated with the model’s i-th layer. The
expression f(x0;θ) indicates the model’s final prediction.

In this section, the symbol L stands for the loss between the
prediction and the label, computed using the specified loss
function L. We define the activation xi as the output of the
(i− 1)-th layer, i.e., xi = fi−1(xi−1;θi−1).

Denoting h
(x)
i (xi,θi) and h

(θ)
i (xi,θi) as the derivatives

of xi+1 with respect to xi and θi respectively. Normally,
the backward process can be defined as:

∂L

∂xi
=

∂L

∂xi+1

∂xi+1

∂xi
=

∂L

∂xi+1
h
(x)
i (xi,θi), (3)

∂L

∂θi
=

∂L

∂xi+1

∂xi+1

∂θi
=

∂L

∂xi+1
h
(θ)
i (xi,θi). (4)

For instance, considering a linear layer with parameters
θi, which consist of a weight matrix Wi and a bias vector
bi, its forward pass function for computing the output xi+1

is expressed as xi+1 = xiW
⊤
i +bi. All of the variables xi,

Wi, and bi are retained for gradient computation before
the layer produces the output xi+1. Subsequently, during
the backward pass of this layer in the loss backpropagation
process, the gradients are calculated as:

∂L

∂xi
=

∂L

∂xi+1

∂xi+1

∂xi
=

∂L

∂xi+1
Wi, (5)

∂L

∂Wi
= (

∂L

∂xi+1
)⊤xi, (6)

∂L

∂bi
=

∂L

∂xi+1
. (7)

Here, the activation xi is involved in computing the gra-
dient for updating the weight Wi. Consequently, the acti-
vation value must be stored in memory during the forward
pass. This storage occupies a significant portion of mem-
ory, often exceeding the memory required for saving the
weights. Additionally, the size of the activations increases
linearly with the batch size.

Jiang et al. [24] propose BACKRAZOR, a method that
only prunes the activation saved for backpropagation and
keeps it dense in the forward pass. The activation xi is
pruned and stored in the context as a sparse version x̃i. The
backward process with pruned activations turns into:

∂L

∂xi
=

∂L

∂xi+1
h
(x)
i (x̃i,θi), (8)

∂L

∂θi
=

∂L

∂xi+1
h
(θ)
i (x̃i,θi). (9)

As for their activation pruning, a straightforward top-k
pruning method is applied, which identifies and removes the
k smallest magnitude values within the activation. Denoting
v as the total number of values of the activation, to introduce
a targeted sparsity level, a fixed parameter λ is set (e.g.,
λ = 0.9), and the pruning budget is determined by setting
k = λv. Consequently, all activation values below the k-th
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Figure 1. Sparsity vs computation time cost between BackRa-
zor (element-wise, self-sparsified) and proposed PreBackRazor
(column-wise, joint-sparsified).

smallest value are zeroed out. After this pruning operation,
the pruned activation is stored as a binary bitmap, known
as the mask. This mask indicates the positions of the non-
zero elements. Additionally, a dense matrix is maintained
to retain the values of the non-zero elements.

3.2. Rethink the sparsity in BACKRAZOR

Redundancy in full-gradient computation. Common
backpropagation activation sparsification schemes involve
restoring compressed activations, saved within the model
context, back to their dense format during backpropagation.
In the case of BACKRAZOR, this process entails densifying
the sparse matrix to its original shape for gradient computa-
tion. Consequently, the full gradient is computed using the
full-size activation, and the sparsity of the pruned activation
is not utilized to expedite computation.

Computation overhead in pruning. A prevalent prun-
ing approach involves generating an element-wise self-
sparsified top-k mask to eliminate smaller values. This
method, when employed for activation pruning, incurs ad-
ditional computational costs. These costs include sorting
to find the k-th smallest activation value and performing
element-wise comparisons across all activation elements to
construct a sparse tensor. Collectively, these operations
contribute to significant computational overhead, poten-
tially extending training time beyond that of traditional fine-
tuning. Such a trade-off for memory reduction may not be
justifiable. Exploring alternative sparsity patterns and prun-
ing schemes, such as column-wise and joint-sparse could
lead to the discovery of faster algorithms, potentially re-
placing the current self-sparsified top-k activation pruning
method and thus reducing computation costs.

Inspired by the observed inefficiencies in existing meth-
ods, we sought to investigate whether alternative sparsity
patterns could offer reduced computation. Specifically, we
compared the performance of column-wise sparsity with
element-wise sparsity within the same linear layer, across
various sparsity ratios, as depicted in Figure 1. Our find-

xd

θd

Forward

Backward

xd+1

Prune
Zd

Feed Forward Backpropagation

Weight Update JointSpar Update
Save for Backward JointSpar Dropping

pd

Figure 2. Pipeline of the proposed PreBackRazor.

ings indicate notable up to 1.7× speedups, aligning with
our initial hypothesis. Additionally, the column-wise ac-
tivation sparsity pattern facilitates the use of existing joint
sparse algorithms, which leverage gradient information to
generate sparse masks previous to the BACKRAZOR prun-
ing pipeline. This approach incurs lower computational
costs. Given that the original sparsity is unstructured and
of a low ratio, the integration of a structured sparsity pat-
tern also holds promise for further acceleration, leverag-
ing modern sparse computation software and hardware ad-
vancements [14, 21, 39].

4. Methodology
In this section, we first propose the PREBACKRAZOR
method. After that, we introduce the bandit method from
JOINTSPAR algorithm [30] that we use to adjust the prob-
ability of dropping computations. Lastly, we examine the
convergence of our proposed method.

4.1. Overall pipeline of PREBACKRAZOR

Our jointly sparsified activation pruning approach, PRE-
BACKRAZOR, employs asymmetric backpropagation,
maintaining dense computations in the forward pass while
pruning activations for the backward pass, as depicted
in Fig. 2. Inspired by the JOINTSPAR algorithm [30],
our method goes a step further by incorporating gradient
sparsity into the activation pruning, aiming to significantly
boost computational efficiency. In PREBACKRAZOR,
we manage a probability distribution over activation
coordinates to selectively prune redundant indices. This
process effectively reduces the computation of related
gradients and halts the updating of corresponding weights,
thereby enhancing training efficiency and minimizing
computational requirements. The decision-making process
hinges on the analysis of gradient norms, leveraging the
joint sparsity of gradients and activations. This approach
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prioritizes the retention of the most impactful gradient
coordinates for weight updates. The implementation details
of this method are outlined in Algorithm 1.

Algorithm 1 PREBACKRAZOR

1: Initialize all p0 = s/D
2: for t = 1 to T do
3: Sample x0,y from D
4: for i = 1 to n do ▷ Forward
5: Instantiate Zt,d, with P (Zt,d = 1) = pt,d
6: Determine St = {d : Zt,d = 1}
7: xi = fi(xi−1,θi)
8: mask = a binary bitmap of size D
9: for parameter θ[d] of θi do

10: if d ∈ St then
11: maskd =True
12: end if
13: end for
14: x̃i−1=Sparsify(xi−1, mask)
15: SaveForBackward(x̃i−1, mask, θi)
16: end for
17: Compute loss L = L(xn+1,y)
18: for i = n− 1 to 1 do ▷ Backward
19: Densify(x̃i−1, mask)
20: ∂L

∂xi
= ∂L

∂xi+1
h
(x)
i (x̃i,θi)

21: for parameter θ[d] with d ∈ St do
22: ∂L

∂θ[d]
= ∂L

∂xi+1
h
(θ)
i (x̃i,θ[d])

23: end for
24: pt+1 = Update(pt,St,{gt,[d]}d∈St )
25: end for
26: end for

For a given input activation xi in the i-th layer of the
model, we decompose the activations column-wise, repre-
sented as xi = [xi,1, · · · ,xi,d, · · · ,xi,D], where d and D
respectively denote the d-th coordinate out of all D column
indices. Considering a linear layer, its weight parameter θ
is similarly decomposed into [θ[1], · · · ,θ[d], · · · ,θ[D]]. To
differentiate from the layer-wise parameter set θi (as dis-
cussed in Section 3.1), we use square brackets to denote
each coordinate, represented as θ[d]. The gradient of the
loss with respect to θ[d] is denoted by gt,d, and we define
gt,[d] as a vector with all elements zero except the d-th ele-
ment: gt,[d] = [0, · · · , gt,d, · · · , 0], with gt being the sum
of all such vectors, gt =

∑D
d=1 gt,[d].

At each iteration t, a probability distribution pt =
[pt,1, · · · , pt,d, · · · , pt,D] is maintained over the joint co-
ordinates of the parameters [θ[1], · · · ,θ[d], · · · ,θ[D]] and
activations [x1, · · · ,xd, · · · ,xD]. For each coordinate, a
Bernoulli random variable Zt,d is sampled with P (Zt,d =
1) = pt,d and P (Zt,d = 0) = 1− pt,d, deciding whether to
include (Zt,d = 1) or exclude (Zt,d = 0) the gradient of θd
during backpropagation.

Initially, each pt is set uniformly to s
D , aligning with the

desired sparsity budget s, where s signifies the number of
columns involved in the backward process. At the onset
of each iteration t, the Bernoulli random variable Zt,d is
sampled to form the active set St of coordinates that retain
gradients in activations. Post gradient computation in back-
propagation, this gradient information informs the update
of the probability distribution, employing a bandit method
which we will introduce in the subsequent section.

Integrating the FLASHATTENTION kernel. The fine-
tuning of Transformer-based models on consumer-grade de-
vices presents a unique opportunity to leverage modern,
efficient kernels for improved training efficiency. In our
approach, we have adapted and integrated the FLASHAT-
TENTION kernel, substituting the original, more segmented
sparsified attention implementation in BACKRAZOR. To
address the increased memory usage resultant from this in-
tegration, we have incorporated PREBACKRAZOR within
the FLASHATTENTION function. This inclusion not only
facilitates pruning but also employs recomputation strate-
gies to mitigate precision loss. We designate this enhanced
methodology as PREBACKRAZOR++. This innovative ap-
proach ensures memory usage remains on par with BACK-
RAZOR, while markedly accelerating the training process.
We further combine JOINTSPAR over model parameters
with our method as the PREBACKRAZOR++JOINTSPAR
for best memory and computation efficiency. Details on im-
plementation are omitted here for brevity.

4.2. Bandit method for gradient sparsification

To update the probability distribution pt over D coordinates
at each iteration t, we utilize a bandit method akin to that in
JOINTSPAR [30], originally introduced by Auer et al. [3],
as detailed in Algorithm 2.

Algorithm 2 Bandit [30] for Updating Distribution pt
1: Algorithm: UPDATE(pt,St,{gt,[d]}d∈St )
2: Input: pt: probability distribution, St: set of active parame-

ters, {gt,[d]}d∈St : gradients
3: for d = 1 to D do
4: if d ∈ St then
5: l̃t,d = − ∥gt,[d]∥

2

(pt,d)
2 + G2

p2min

6: else
7: l̃t,d = 0
8: end if
9: wt,d = pt,d exp (−αp l̃t,d/pt,d)

10: end for
11: pt+1 = argminq∈P DKL(q∥wt)
12: return pt+1

We introduce a set P as P = {p ∈ RD :
∑D

d=1 pd =
s, pd ≥ pmin,∀1 ≤ d ≤ D}, where pmin is a constant lower
bound. This set helps in guiding the update of the proba-
bility distribution. The sum of the probabilities across all
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parameters equals the desired sparsity budget s, with each
probability bounded below by a constant pmin. Note that
s and pmin are parameters defined by the user, adhering to
the conditions 0 < s ≤ D and 0 < pmin ≤ 1. Recall
that gt,[d] is defined as gt,[d] = [0, · · · , gt,d, · · · , 0], and
gt =

∑D
d=1 gt,[d]. The term αp denotes the step size, while

DKL(q∥w) represents the KL divergence between distribu-
tions q and w.

4.3. Theoretical results

In this section, we analyze the convergence of our proposed
method PREBACKRAZOR++JOINTSPAR in the context of
linear networks. We use gt to represent the gradient of the
loss function L with respect to the parameter θt at iteration
t, calculated using all samples in the training dataset. In
contrast, g̃t denotes the stochastic gradient computed using
a single training sample. To support our analysis, we adopt
the classical assumptions as detailed by Jiang et al. [24]:
Assumption 1. (1) The objective function L is Sd-smooth
with respect to θ[d]; (2) The gradient gt,[d] is upper bounded
by G, i.e., G ≥ ∥gt,[d]∥. ∀t, d; (3) The objective func-
tion L is bounded below by L∗; (4) For each iteration t,
the stochastic gradient g̃t adheres to the following: E[g̃t] =
gt, E[(g̃t − gt)

2
d] ≤ σ2

d,∀d ∈ {1, 2, . . . , D}, with D de-
noting the number of coordinates and the constant σ2

d rep-
resenting the variance corresponding to coordinate d.

Lemma 1 [24]. In the context of linear neural networks,
the gradient of parameters at iteration t can be decomposed
as g̃t = x̃tÃ

⊤
t , where x̃t denotes the precise activation, and

Ãt is referred to as the transformation matrix. After pruning
the activations, only the pruned activations x̃′

t are reserved
and used for backpropagation, and the gradient approxima-
tion becomes g̃′

t = x̃′
tÃ

⊤
t .

Theorem 1 (Convergence). Denote α as the step size. Un-
der Assumptions 1-4, the following bound holds:

E[
1

T

T∑
t=1

n∑
i=1

∥gt,i∥2] ≤
L(θ0)− L∗

αT

+
S∞α

2T

T∑
t=1

n∑
i=1

E[
D∑

d=1

∥gt,[d]∥2

pt,d
], (10)

where T is the total number of iterations, S∞ = maxd Sd,
θ0 is the initial model weights.

As the training progresses, the first term on the right-
hand side of the equation progressively diminishes to
zero, whereas the second term remains confined within the
bounds set by the bandit method. This theorem establishes
that our proposed method converges towards a bounded
neighborhood around a stationary point. While our theo-
retical analysis here is confined to linear networks, the ex-
tension to non-linear networks remains an area for future in-
vestigation. In the meantime, we have empirically validated

that our proposed method effectively accelerates the fine-
tuning of Transformer-based models. For those interested
in a more thorough exploration of the underlying mathe-
matics, the detailed derivation of these results is provided in
the appendix. Additionally, the proofs and analyses in [24]
and [30] offer further insight into these concepts.

5. Experiments
We perform experiments on PyTorch [38] with RTX 4090
GPU with 24GB of VRAM. We apply our method on top
of BACKRAZOR’s code library to report the performance
gains, following its training settings on ViT and BERT. We
report the actual memory allocation on GPU measured with
PyTorch CUDA tools. For better readability, we employ
the abbreviation JS to denote JOINTSPAR, and PREBR as a
shorthand for PREBACKRAZOR.

5.1. PREBACKRAZOR with Vision Transformer

Settings. For ViT training, we initiate the process by load-
ing the checkpoint of the ViT-B/16 model that has been
pre-trained on ImageNet-22K as our starting point. Sub-
sequently, we fine-tune the model using the CIFAR-10 and
CIFAR-100 datasets [26]. The fine-tuning process encom-
passes 20,000 steps and employs cosine learning rate decay,
with an initial 500 steps dedicated to learning rate warmup.
We utilize the standard SGD optimizer and conduct valida-
tion every 1,000 steps. The maximum learning rate is set at
0.01, and the batch size during training is 128.
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Figure 3. Fine-tuning PREBACKRAZOR++@90% vs. BACKRA-
ZOR@90% on CIFAR-100. (a) Training loss with wall-clock time.
(b) Validation accuracy with steps.

Convergence comparison. The results of fine-tuning PRE-
BACKRAZOR++ with parameter-wise JOINTSPAR in com-
parison to BACKRAZOR at a pruning rate of 90% on
CIFAR-100 are illustrated in Fig. 3. In Fig. 3a, the con-
vergence speed of PREBACKRAZOR@90%++JOINTSPAR
is comparable to that of BACKRAZOR@90%, with a slight
advantage in the early stages of training. Notably, we
observe a marginal improvement in accuracy, specifically
[0.33%, 0.05%], when adjusting the initial probabilities
of JOINTSPAR to [70%, 50%], respectively. This im-
provement is in contrast to the performance of BACKRA-
ZOR@90%, as illustrated in Fig. 3b.
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Table 1. Comparison of fine-tuning methods for ViT.

Method Memory Epoch Time Speedup CIFAR-100 CIFAR-10 CUB-200Allocated Reduction

FULL-FT 19980MB 1.0× 2min59s - 93.0 99.0 85.5

BACKRAZOR 7540MB 2.6× 6min19s 1.0× 92.1 98.6 86.6
(ours) PREBR++JS@70% 7440MB 2.7× 4min37s 1.4× 92.4 98.8 85.0
(ours) PREBR++JS@50% 6880MB 2.9× 4min02s 1.6× 92.1 98.6 85.6

Table 2. Performance of different attention implementations fine-tuning ViT on CIFAR-100.

Device Method Attention Type Memory Epoch Time Speedup Accuracy(%)

RTX 4090

FULL-FT vanilla 19980MB 2min59s - 93.0

BACKRAZOR BACKRAZOR 7540MB 6min19s 1.0× 92.1
(ours) PREBR++JS BACKRAZOR 6570MB 4min37s 1.4× 91.4
(ours) PREBR++JS FLASHATTENTION 7960MB 3min40s 1.7× 92.2
(ours) PREBR++JS sparse FLASHATTN 6880MB 4min02s 1.6× 92.1

RTX 2080 Ti
FULL-FT vanilla out of memory

BACKRAZOR BACKRAZOR 7780MB 19min47s 1.0× -
(ours) PREBR+JS BACKRAZOR 6870MB 15min13s 1.3× -

Speedup and memory reduction. In Tab. 1, we
present a comprehensive comparison among PREBACK-
RAZOR@90%++JOINTSPAR@[70%, 50%], BACKRA-
ZOR@90%, and FT-Full (fine-tuning the full network)
from the perspective of memory usage, speedup relative
to BACKRAZOR@90%, and final accuracy on CIFAR-100,
CIFAR-10 and CUB-200 for each method. Here we present
the average memory allocated by CUDA during training.
Compared with FT-full, BACKRAZOR@90% achieves a
noteworthy 2.6× reduction in memory usage. However,
it demands twice as much training time due to the ad-
ditional computations required for processing activations.
In contrast, PREBR++JS achieves superior computational
efficiency by avoiding unnecessary computations through
joint sparsification of gradients and activations. This leads
to significantly 1.6× faster training without incurring ad-
ditional memory costs or compromising accuracy. Addi-
tionally, Tab. 3 showcases the performance gains of for-
ward and backward computation achieved by transitioning
from a self-sparsified top-k pruning pattern to a column-
wise joint-sparse pattern as in Fig. 1. These measure-
ments are conducted on a linear layer characterized by in-
put tensors with the shape [128, 197, 768] and of type
float32. Tab. 4 illustrates the performance improvements
achieved by substituting the element-wise mask in BACK-
RAZOR with a column-wise mask. This approach, referred
to as PREBACKRAZOR-, employs a self-sparsified scheme
that eschews the use of the bandit method for predicting
pruning masks based on gradient information. Despite this,
PREBACKRAZOR- still delivers commendable results, in-
cluding a modest reduction in memory usage and over a
10% increase in speed, while preserving nearly identical ac-
curacy, particularly at a moderate pruning ratio of 80%.

Table 3. Acceleration on a linear layer.

Sparsity FWD time (ms) Speedup FWD + BWD (ms) Speedup
BACKRAZOR PREBR BACKRAZOR PREBR

0.1 4.23 3.14 1.34× 9.02 7.72 1.17×
0.2 4.35 4.24 1.03× 9.20 9.03 1.02×
0.3 4.45 4.35 1.02× 9.34 9.18 1.02×
0.4 7.97 4.45 1.79× 16.52 9.32 1.77×
0.5 8.94 7.97 1.12× 18.45 16.51 1.12×

Table 4. Comparison of self-sparsified sparsity patterns.

Pruning Method Memory Epoch Time Accuracy(%)Ratio Peak Usage

- FULL-FT 19980MB 2min59s 93.0

90% BACKRAZOR 7540MB 6min19s 92.1
(ours) PREBR- 7220MB 5min25s 91.7

80% BACKRAZOR 8210MB 6min28s 92.9
(ours) PREBR- 8100MB 5min49s 92.9

Integration of the FLASHATTENTION kernel. We
present Tab. 2 that details the performance when switch-
ing between the original FLASHATTENTION kernel (with-
out memory savings), sparsified FLASHATTENTION (our
modified implementation), and no FLASHATTENTION (us-
ing BackRazor’s attention implementation). We use
(PRE)BACKRAZOR@90% with parameter-wise sparsified
JOINTSPAR@50% for these settings, note that the incor-
poration of JOINTSPAR is specifically aimed at offsetting
the dense FLASHATTENTION kernel’s memory usage. Ad-
ditionally, we evaluate the performance of these meth-
ods on RTX 2080 Ti GPU with 11GB of VRAM, with
(PRE)BACKRAZOR@90% and JOINTSPAR@30%. Note
that both FULL-FT and FLASHATTENTION-2 are not avail-
able for testing on RTX 2080 Ti as they exceed the VRAM
capacity and require Ampere architecture [15], respectively.
Our initiative to integrate the FLASHATTENTION kernel
into the training process aims to adapt a state-of-the-art
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solution for enhancing training on consumer-level devices.
This integration yields a significant speedup of 1.7× dur-
ing training, effectively mitigating the impact of additional
computation introduced when compared to vanilla imple-
mentation as in FULL-FT. However, the replacement of
BACKRAZOR’s sparsified attention implementation does
come with more memory costs up to 1GB. In response to
this challenge, we have customized FLASHATTENTION by
incorporating the PREBACKRAZOR method to prune the
gradients and activations. This customization serves to fur-
ther reduce activations and counterbalance the increased
memory usage, ultimately falling below the memory foot-
print of BACKRAZOR.

5.2. PREBACKRAZOR with BERT

Settings. For BERT training, we conduct fine-tuning on
the bert-base-uncased model based on BACKRAZOR adap-
tations that are implemented within Huggingface’s Trans-
formers Repository [53]. We note that the model cur-
rently does not support FLASHATTENTION-2 to the best of
our knowledge, from the involvement of an input attention
mask in its attention algorithm which is not compatible with
FLASHATTENTION kernel. We closely monitor and record
the model’s performance throughout 5 training epochs with
batch size [8, 32] on a single GPU, which is a common case
for fine-tuning on low-end devices. The selected fine-tuning
task is Recognizing Textual Entailment (RTE), part of the
GLUE benchmark [51]. The sparsity ratio for PREBACK-
RAZOR and BACKRAZOR is set to [80%, 90%].

Table 5. Performance of different fine-tuning schemes for RTE
from GLUE Benchmark with BERT base.

Batch Pruning Method Memory Finish Time Accuracy(%)Size Ratio Peak Usage

32

- FULL-FT 16625MB 2min50s 70.40

90% BACKRAZOR 11865MB 6min26s 66.43
(ours) PREBR 11871MB 6min24s 65.70

80% BACKRAZOR 12888MB 6min41s 65.70
(ours) PREBR 13006MB 6min19s 66.07

8

- FULL-FT 5575MB 4min28s 70.04

90% BACKRAZOR 4734MB 16min59s 66.43
(ours) PREBR 4747MB 16min05s 69.68

80% BACKRAZOR 4812MB 17min39s 69.31
(ours) PREBR 4840MB 16min36s 72.92

0 500 1000 1500
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0.00

0.25

0.50
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BackRazor@0.9
PreBackRazor@0.9
BackRazor@0.8
PreBackRazor@0.8
FullFineTuning

Figure 4. Training loss during fine-tuning BERT-base for RTE.

Performance. We provide a comparison Tab. 5 in which
we compare fine-tuning methods, including fine-tuning the
full model, element-wise BACKRAZOR, and column-wise
PREBACKRAZOR. Both pruning methods successfully re-
duce memory usage compared to the Full-FT approach. For
instance, at the pruning ratio of 90% and batch size of
32, BACKRAZOR and PREBR show similar memory us-
age significantly lower than Full-FT, yielding a saved mem-
ory of 28.6% (4.8GB). The wall clock time for both prun-
ing methods is higher compared to Full-FT. However, our
proposed PREBACKRAZOR tends to have a slightly shorter
time than BACKRAZOR in all cases, up to 9.7%× speedup.
For bs = 8 which is a common case for fine-tuning large
language models (LLM) on consumer-level devices, the in-
troduction of element-wise self-sparsified activation prun-
ing methods leads to an increased time cost of up to 5×,
which is not justified by the benefits obtained (12% mem-
ory reduction). PREBACKRAZOR demonstrates a slight im-
provement in convergence speed and reduction in loss com-
pared to PREBACKRAZOR as shown in Fig. 4, highlight-
ing its enhanced efficiency in fine-tuning, and outperforms
not only BACKRAZOR but also Full-FT at an 80% prun-
ing ratio, achieving the highest accuracy of 72.92%. Over-
all, while both pruning methods effectively reduce mem-
ory usage over Full-FT, PREBACKRAZOR tends to main-
tain or achieve slightly higher accuracy and speedup than
BACKRAZOR, demonstrates a better balance between mem-
ory efficiency, completion time, and accuracy, particularly
at lower batch sizes and higher pruning ratios.

6. Conclusion
In this work, we reveal the inefficiency of the exist-
ing element-wise self-sparsified activation pruning method.
Based on this finding, we develop a computation and
memory-efficient activation pruning framework called
PREBACKRAZOR for jointly pruning activations and gra-
dients. We have demonstrated that integrating PREBACK-
RAZOR with efficient attention kernels can significantly en-
hance the accuracy of existing methods. In addition, we
also theoretically prove that our method has the same con-
vergence rate as BACKRAZOR. However, while PREBACK-
RAZOR has exhibited performance improvements in ViT
and BERT fine-tuning, its applicability to larger foundation
models warrants further investigation. Additionally, theo-
retical proofs and analyses for its effectiveness in such mod-
els require continued research efforts.
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pher Ré. Flashattention: Fast and memory-efficient exact at-
tention with io-awareness. Advances in Neural Information
Processing Systems, 35:16344–16359, 2022. 2

[18] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke
Zettlemoyer. Qlora: Efficient finetuning of quantized llms.
arXiv preprint arXiv:2305.14314, 2023. 2

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1

[21] Chao Fang, Wei Sun, Aojun Zhou, and Zhongfeng Wang.
Efficient n: M sparse dnn training using algorithm, archi-
tecture, and dataflow co-design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
2023. 3, 4

[22] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 3

[23] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Quantized neural networks:
Training neural networks with low precision weights and ac-
tivations. The Journal of Machine Learning Research, 18(1):
6869–6898, 2017. 1

[24] Ziyu Jiang, Xuxi Chen, Xueqin Huang, Xianzhi Du, Denny
Zhou, and Zhangyang Wang. Back razor: Memory-
efficient transfer learning by self-sparsified backpropagation.
Advances in Neural Information Processing Systems, 35:
29248–29261, 2022. 1, 3, 6

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 2, 6

[27] Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient op-
timizers with 4-bit states. arXiv preprint arXiv:2309.01507,
2023. 2

[28] Tianjian Li, Haoran Xu, Philipp Koehn, and Kenton Murray.
Efficiently harnessing parameter importance for better train-
ing. 2023. 3

[29] Junjie Liu, Zhe Xu, Runbin Shi, Ray CC Cheung, and Hay-
den KH So. Dynamic sparse training: Find efficient sparse

5891



network from scratch with trainable masked layers. arXiv
preprint arXiv:2005.06870, 2020. 3

[30] Rui Liu and Barzan Mozafari. Communication-efficient
distributed learning for large batch optimization. In Inter-
national Conference on Machine Learning, pages 13925–
13946. PMLR, 2022. 2, 3, 4, 5, 6

[31] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270, 2018. 1

[32] Kai Lv, Hang Yan, Qipeng Guo, Haijun Lv, and Xipeng Qiu.
Adalomo: Low-memory optimization with adaptive learning
rate. arXiv preprint arXiv:2310.10195, 2023. 2

[33] Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng
Guo, and Xipeng Qiu. Full parameter fine-tuning for large
language models with limited resources. arXiv preprint
arXiv:2306.09782, 2023. 2

[34] Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora. Fine-
tuning language models with just forward passes. arXiv
preprint arXiv:2305.17333, 2023. 2

[35] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory
Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael
Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed
precision training. arXiv preprint arXiv:1710.03740, 2017.
2

[36] Hesham Mostafa and Xin Wang. Parameter efficient train-
ing of deep convolutional neural networks by dynamic sparse
reparameterization. In International Conference on Machine
Learning, pages 4646–4655. PMLR, 2019. 3

[37] Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai,
and Bohan Zhuang. Mesa: A memory-saving training frame-
work for transformers. arXiv preprint arXiv:2111.11124,
2021. 1, 3

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
6

[39] Jeff Pool. Accelerating sparsity in the nvidia ampere archi-
tecture. GTC 2020, 2020. 4

[40] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha
Sohl-Dickstein. Svcca: Singular vector canonical correlation
analysis for deep learning dynamics and interpretability. Ad-
vances in neural information processing systems, 30, 2017.
3

[41] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward training
trillion parameter models. In SC20: International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis, pages 1–16. IEEE, 2020. 1, 2

[42] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi,
Olatunji Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li,
and Yuxiong He. {ZeRO-Offload}: Democratizing {Billion-
Scale} model training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 551–564, 2021. 2

[43] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive
learning rates with sublinear memory cost. In International

Conference on Machine Learning, pages 4596–4604. PMLR,
2018. 2

[44] Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian,
and Dacheng Tao. On efficient training of large-scale
deep learning models: A literature review. arXiv preprint
arXiv:2304.03589, 2023. 1

[45] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin
Jaggi. Sparsified sgd with memory. Advances in Neural In-
formation Processing Systems, 31, 2018. 2

[46] Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shixiang
Chen, Jingwei Sun, Jing Li, Guangzhong Sun, and Dacheng
Tao. Adasam: Boosting sharpness-aware minimization with
adaptive learning rate and momentum for training deep neu-
ral networks. Neural Networks, 169:506–519, 2024. 3

[47] Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
A simple and effective pruning approach for large language
models. arXiv preprint arXiv:2306.11695, 2023. 2

[48] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang.
meprop: Sparsified back propagation for accelerated deep
learning with reduced overfitting. In International Confer-
ence on Machine Learning, pages 3299–3308. PMLR, 2017.
3

[49] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-
rmsprop: Divide the gradient by a running average of its re-
cent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012. 2, 3

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1

[51] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R Bowman. Glue: A multi-task
benchmark and analysis platform for natural language un-
derstanding. arXiv preprint arXiv:1804.07461, 2018. 8

[52] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M
Ni. Generalizing from a few examples: A survey on few-shot
learning. ACM computing surveys (csur), 53(3):1–34, 2020.
3

[53] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
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