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Abstract

In the realm of AI, data serves as a pivotal resource.
Real-world hyperspectral images (HSIs), bearing wide
spectral characteristics, are particularly valuable. How-
ever, the acquisition of HSIs is always costly and time-
intensive, resulting in a severe data-thirsty issue in HSI re-
search and applications. Current solutions have not been
able to generate a sufficient volume of diverse and reliable
synthetic HSIs. To this end, our study formulates a novel,
generalized paradigm for HSI synthesis, i.e., unmixing be-
fore fusion, that initiates with unmixing across multi-source
data and follows by fusion-based synthesis. By integrating
unmixing, this work maps unpaired HSI and RGB data to
a low-dimensional abundance space, greatly alleviating the
difficulty of generating high-dimensional samples. More-
over, incorporating abundances inferred from unpaired
RGB images into generative models allows for cost-effective
supplementation of various realistic spatial distributions in
abundance synthesis. Our proposed paradigm can be in-
strumental with a series of deep generative models, filling
a significant gap in the field and enabling the generation of
vast high-quality HSI samples for large-scale downstream
tasks. Extension experiments on downstream tasks demon-
strate the effectiveness of synthesized HSIs. The code is
available at HSI-Synthesis.github.io.

1. Introduction
Hyperspectral image (HSI), with its high-resolution spec-
tral information, holds great potential to revolutionize myr-
iad research fields [8, 34, 38]. However, a confluence
of factors including prohibitive collection costs, limited
sensor availability, intricate data management, and envi-
ronmental constraints have conspired to render HSI data
scarce [11, 27, 49]. This scarcity of HSI data, coupled with
the complexity and time-intensive nature of HSI acquisi-
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Figure 1. Comparisons of existing HSI synthesis techniques.
(a) Physical modeling-based methods. (b) Affine transformation-
based methods. (c) Spectral reconstruction-based methods. (d)
The proposed paradigm (multi-source-based).

tion and pre-processing, is a significant impediment to the
construction of comprehensive HSI datasets and the overall
advancement of AI in HSI [15, 42].

In light of the burgeoning demand for high-quality data,
the advent of synthetic or artificially generated data is a wel-
come innovation [35, 47]. It offers a viable solution to the
chronic data shortage, and the domain of HSI synthesis has
seen an influx of research interest [14]. Existing studies can
be broadly categorized into three groups:
1. Physical modeling-based HSI synthesis [12, 17, 21] (re-

fer to Fig. 1 (a)) mainly focus on mimicking physical
phenomena, such as the Bidirectional Reflectance Distri-
bution Function (BRDF) or the Gaussian Mixture Model
(GMM). Despite its meticulous manual design, it often
produces unreliable HSIs due to too ideal assumptions.

2. Affine transformation-based HSI synthesis [16, 36] (re-
fer to Fig. 1 (b)) involves enriching data through a series
of affine transformations, including rotation, scaling, and
shearing. It serves to augment the quantity of training
samples, albeit without enriching their diversity.

3. Spectral super-resolution-based HSI synthesis [1, 4] (re-
fer to Fig. 1 (c)) attempts to expand the spectral dimen-
sion from multi-spectral or RGB images. Regrettably,
they are hard to accurately reconstruct the spectral sig-
natures and are unable to generate new samples.

While these techniques have their merits, they also grapple
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with significant limitations such as lack of authenticity, re-
stricted diversity, and inability to produce new HSI samples.

Generative AI, encompassing techniques such as Varia-
tional Autoencoder (VAE) [31, 32, 37], Generative Adver-
sarial Network (GAN) [3, 9, 13, 22], Normalizing Flow
(Flow) [25, 30], and Denoising Diffusion Probabilistic
Model (Diffusion) [7, 19, 24, 33], offers an appealing al-
ternative. These techniques have been the bedrock of nu-
merous synthetic data architectures, covering images, au-
dio, and text data [20, 28, 43, 48]. Nonetheless, the high
dimensionality of spectral signatures makes HSI synthesis
via generative AI a challenging task. Up to now, to the best
of our knowledge, few publicly available research has ap-
peared on this task.

To address these issues, this work raises a novel
paradigm for HSI synthesis, unmixing before fusion. In
our observation, similar scenes have salient and common
low-rank characteristics, empowering a small scale of end-
members to describe the entire scene with high efficiency,
and the diversity of various scenes can also be manifested in
their abundance maps. Noteworthy, existing HSIs are lim-
ited in quantity and quality, the incorporation of unpaired
RGB images that cover similar scenes is feasible and eco-
nomical. Motivated by this, we customize the concept of
unmixing for multi-source data, decomposing unpaired HSI
and RGB images that record similar scenes into fixed end-
members and varied abundances. Further, we propose a fu-
sion within these abundances to jointly learn various and
realistic spatial distributions of real scenes. Notably, our
work differs from existing unmixing-based fusion ideas for
paired data [44, 46] in several aspects, whether it comes to
data, fusion rules, or objectives.

Hence, in this paper, we assume that multi-source data
recording similar scenes share endmembers. Building upon
this, we have tailored the unmixing and integrated ex-
ternal RGB data, developing the unmixing before fusion
paradigm. Specifically, we first decompose unpaired HSI
and RGB data into fixed endmembers and unique abun-
dances. Then, we synthesize diverse abundance maps via
fusion-based deep generative models. Finally, we fuse the
estimated HSI endmembers and synthetic abundance maps
to generate new HSIs that closely resemble real-world data.

Our main contributions are summarized below:
• Formulate a generalized paradigm for multi-source-based

HSI synthesis, incorporating a series of deep generative
models to produce diverse and abundant HSI samples.

• Bridge the dimensional gap between RGB and HSIs in
the abundance space and incorporate multi-source data to
alleviate the issue of limited sample availability.

• Pioneer to synthesis abundance (low-dimensional) in-
stead of HSI sample (high-dimensional), mitigating the
intricacies tied to high-dimensional sample synthesis.

Extensive experiments, especially extension on downstream
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Figure 2. Illustration of the unmixing and reconstruction process
on (a) an HSI, and (b) an unpaired RGB image.

tasks, have revealed that the proposed paradigm promises
to surmount the limitations of HSI data scarcity, paving the
way for substantial advancements in the field.

2. Motivation
2.1. Why unmixing?

A recognized fact is that a single pixel in HSIs, even within
modern imaging systems, can span tens of meters and rep-
resent a blend of different substances. The Linear Mixing
Model (LMM) [5] is a powerful tool for unmixing that de-
composes each pixel in HSIs into a blend of pure spectral
signatures, or “endmembers”. Each endmember signifies a
distinct material or component present within the scene, of-
fering a comprehensive elucidation of the image’s composi-
tion [29]. The real charm of LMM lies in its “abundances”
or coefficients, which denote the proportion of each end-
member within a pixel, constructing an in-depth portrayal
of the pixel’s composition.

Denote YHSI ∈ RB×W×H as an HSI, which contains B
channels in the spectral domain, and W × H pixels in the
spatial domain. Its unmixing process based on LMM can be
articulated as follows :

YHSI = ÊHSI · ÂHSI + ϵ, (1)

where ÊHSI ∈ RB×k represents the endmembers, ÂHSI ∈
Rk×W×H denotes the abundances, B signifies the total
number of spectral bands, k corresponds to the number of
endmembers, and W and H record the spatial size.

According to Eq. (1), an HSI cube, marked by high spec-
tral dimensions reaching into the hundreds, is unmixing into
two unique, low-dimensional features: endmembers and
abundances. Noteworthy, these two unravel intricate struc-
tures hidden with HSIs with a straightforward physical in-
terpretation [10]. Intriguingly, as shown in Fig. 2(a), the
unmixing progress guided by LMM is reversible, which en-
ables us to reconstruct the original HSI ŶHSI. In this case,
we provide a novel perspective for HSI synthesis. If we fo-
cus on generating abundance and sharing the specific end-
member, the whole HSI could be easily reconstructed. It
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significantly streamlines the HSI synthesis and sidesteps the
challenges in dealing directly with high-dimensional data.

2.2. Why fusion?

Another challenge encountered in HSI synthesis is the lim-
ited training samples in both quantity and quality. To over-
come this issue, we suggest the integration of unpaired RGB
data, which are more easily accessible, as auxiliary infor-
mation. RGB images, essentially composed of the primary
colors of red, green, and blue, offer a unique perspective and
a wide range of spatial details. As illustrated in Fig. 2(b),
under the assumption of multi-source data recorded similar
scenes share endmembers, the LMM-based unmixing pro-
cedure can also be applied to unpaired RGB images, repre-
sented by YRGB ∈ R3×W×H . The equation for the unmix-
ing procedure is as follows:

YRGB = ÊRGB · ÂRGB + ϵ, (2)

where ÊRGB ∈ R3×k signifies the endmembers, ÂRGB ∈
Rk×W×H is the abundances with three color channels.

Interestingly, if we assume a consistent quantity (k) of
shared endmembers, then the abundance in HSIs (ÂHSI) and
RGB (ÂRGB) will have an identical shape, i.e., k×W ×H .
This suggests the possibility of finding an alignment in the
abundance space between unpaired HSI and RGB.

Based on this, we propose blending the abundances from
unpaired HSI and RGB images to significantly boost HSI
synthesis. Incorporating multi-source data empowers the
model to learn various and realistic spatial distributions of
real scenes at a low cost, which helps to extract more stable
and generalizable features from it. It also maximizes the
use of readily available RGB data, setting the stage for more
comprehensive and reliable HSI synthesis.

3. Unmixing before Fusion as a paradigm
To ensure the most accurate representation of objects’ spa-
tial characteristics - while preserving the integrity of their
spectral signatures - we propose a pioneering solution, aptly
named “Unmixing before Fusion”. This innovative ap-
proach, visually encapsulated in Fig. 3, promises to revo-
lutionize our understanding and application of HSIs. A de-
tailed exploration of this transformative approach follows.

3.1. Unmixing across multi-source data

As previously delineated, the unmixing process facilitates
the alignment between two distinct data modalities, HSI and
RGB. This alignment is contingent upon the consistent as-
sumption of endmembers’ quantity. While traditional HSI
unmixing networks have proven to be effective, their us-
ability is intrinsically limited due to their dependence on
unsupervised training in a singular HSI scenario. It poses
a significant impediment to the unmixing across modalities
with a different count of spectral channels.

𝑬𝑯𝑺𝑰   ⋅    𝑨𝑭𝒖𝒔𝒊𝒐𝒏    ϵ 𝒀𝑭𝒖𝒔𝒊𝒐𝒏
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Figure 3. Illustration of the proposed “Unmixing before Fusion”
pipeline, a novel paradigm for generating synthetic HSIs. It in-
volves unmixing the abundances from the HSIs and external RGB
images, fusing them to generate a greater variety of synthesized
abundance maps, and ultimately, generating new HSI samples
guided by the LMM.

To this end, we propose a unique unmixing approach, as
illustrated in Fig. 3, that capacitates an HSI-trained unmix-
ing model, U(·), to infer the abundance within RGB data
with robust precision. Given the HSI YHSI, we first train
the unmixing net U(·) to acquire the endmembers ÊHSI and
abundance maps ÂHSI, following:

ÊHSI, ÂHSI = U(Ψ(YHSI)), (3)

where Ψ(·) here symbolizes the band selection operation
to extract representative three-band data Ybs (corresponding
to RGB) from HSIs. Notably, the reconstruction target is
Ŷ , not Ybs. The fractional abundance maps Â should be
governed by the abundance non-negative constraint (ANC)
and the abundance sum-to-one constraint (ASC) [2].

Our proposed unmixing model, U(·), deviates from
the conventional symmetrical encoder-decoder structure,
adopting an unsymmetrical one instead. The encoder
comprises several residual spectral attention modules
(RSA) [39] and culminates in a softmax layer. Conversely,
the decoder merely includes a 1 × 1 convolutional layer,
which simulates the LMM. The weights of the decoder rep-
resent the estimated endmembers ÊHSI. Such a design en-
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Figure 4. Example results of unmixing across multi-source data.
It is trained on the Chikusei dataset (HSI) and inferred on the AID
dataset (RGB).

sures that the output of the encoder precisely reflects the
spatial distribution of abundances while enabling the weight
of the decoder to indicate endmembers with corresponding
physical significance.

The loss function of the proposed unmixing net is tripar-
tite: the mean absolute error (MAE) loss LMAE to ensure
the pixel-wise reconstruction accuracy, the spectral angle
distance (SAD) loss LSAD to govern the fidelity of spectral
signatures, and the endmembers total variation (ETV) loss
LETV to preserve the spectral smoothness of the extracted
endmembers. The total loss function L can be expressed as:

L = LMAE + α · LSAD + β · LETV

= ||Y, Ŷ ||1 + α · arccos( (Y, Ŷ )

||Y ||2||Ŷ ||2
) + β ·

C∑
i

(ei+1 − ei),

(4)
where ei represents the value of ith band in each spectral
vector of endmembers, and α and β are used to balance
convergency for each item. α and β are setting as 0.1 and
1e − 3, empirically. By optimizing our network using this
loss function, we can ensure stable and desirable unmixing
results to a significant degree.

Our proposed paradigm is predicated on the claim that
data, whether HSI or RGB, recording similar scenarios can
be represented by a finite set of fixed endmembers and cus-
tomized abundance maps. Here, the term “endmembers”
refers to the typical compositional constituents in a given
scene, a departure from the traditional unmixing concept of
pure pixels composed of a singular material. This funda-
mental idea provides a low-dimensional space to align data
in different modalities and enhances the applicability of our
unmixing network across a range of modalities.

Next, leveraging the robustly trained unmixing network,
we apply it to external RGB datasets that fall within the
same scenario category. This allows us to infer their abun-
dance, denoted as ÂRGB. following:

ÂRGB = U(YRGB; ÊHSI). (5)

The efficacy of our method is corroborated by the example
results, which are depicted in Fig. 4.

Algorithm 1: Unmixing across multi-source data

Input: YHSI ∈ RB×W×H ; YRGB ∈ R3×W×H

Output: ÊHSI ∈ RB×k; ÂHSI ∈ Rk×W×H ;
ÂRGB ∈ Rk×W×H

/* Training on HSI data. */

1 Ybs = Ψ(YHSI) ▷ Band Selection (Ybs ∈ R3×W×H );
2 while not converged do
3 ÊHSI, ÂHSI = U(Ybs) ;
4 θ ← L(θ); ▷ Refer to Eq. (4);
5 end
6 return U(y; θ); ÊHSI; ÂHSI;
/* Inferring on RGB data. */

7 return ÂRGB = U(YRGB, ÊHSI; θ)

Algorithm 2: Fusion-based synthesis

Input: ÂHSI; ÂRGB; ÊHSI

Output: ÂFusion ∈ Rk×W×H ; ŶFusion ∈ RB×W×H

/* Synthesizing abundances. */

1 âFusion = G(ÂRGB, ÂHSI); ▷ Training ;
2 ÂFusion ∼ âFusion; ▷ Sampling ;
/* Synthesizing HSI samples. */

3 return ŶFusion = ÊHSI · ÂFusion + ϵ

3.2. Fusion-based synthesis

The act of projecting HSIs into an abundance space notably
reduces the complexity associated with the generation tasks.
The rapid technological advancements have given rise to an
array of advanced and effective generative models. How-
ever, it should be underscored that the primary objective of
this paper is not to design an exceptional generative model
but rather to propose a practical and insightful pipeline.

With the estimated abundances ÂRGB and ÂHSI, we have
the capability to synthesize abundance utilizing a generative
model, denoted as G(·). We can synthesize abundances by:

ÂFusion = G(ÂRGB, ÂHSI), (6)

where G(·) here is not limited to a specific type but can
encompass any variety. In the subsequent experiments,
we have employed various generative models, involving
VDVAE [6], StyleGAN3 [23], and DDPM [19], and cus-
tomized them from the image space to the abundance space
as G(·) to provide a comprehensive understanding. Imple-
mentation details can be found in suppl. material.

After obtaining the generated synthetic abundance maps
ÂFusion, our attention returns to the original LMM model. In
fact, the generation of synthetic HSI is also a fusion process
of multi-modal information, i.e., synthetic abundance maps
ÂFusion from given HSIs and RGB images, and endmembers
estimated from HSIs ÊHSI. Mathematically, the final step
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Figure 5. The false-color image of HSIs synthesized by existing techniques and typical generative models under the proposed paradigm.

can be formulated as:

ŶFusion = ÊHSI · ÂFusion + ϵ, (7)

where ŶFusion ∈ RC×W×H indicates the synthetic HSI,
ÊHSI ∈ RC×k represents the estimated endmembers, and
ÂFusion ∈ Rk×W×H symbolizes the generated abundance
maps. The detailed designs and the procedure of the pro-
posed paradigm are in Algorithms 1 and 2. Examples of
synthesized HSIs are presented in Fig. 5.

4. Experiments
We present a comprehensive evaluation of the proposed
paradigm through a range of experimental procedures, in-
cluding comparative, ablation, and expansion experiments.

4.1. Experimental settings

Datasets. In this research, we utilized multi-source datasets
to validate the robustness and generalizability of our pro-
posed method. We trained the unmixing model using the
Chikusei [45] HSI dataset 1. This HSI dataset measures
2517×2335×128 in size and covers a spectral range of 363
to 1018 nm. Following this, we used the AID [40] dataset 2

for abundance inference. The AID dataset is a conventional
RGB dataset used for scene classification, exhibiting scenes
similar to those found in the Chikusei dataset.
Metrics. The efficacy of synthetic HSI generation is pre-
dominantly evaluated on two primary criteria: diversity and
reliability. The assessment of diversity is inherently sub-
jective, hinging on the visual quality of the data generated.
Conversely, reliability is measured in terms of the quality of
the synthesized abundance and the generated HSI. Given the
novelty of the generated data and the absence of a reference,
evaluation metrics that do not require a ground truth, such
as the Fréchet Inception Distance (FID) [18], Precision-and-
Recall [26], are employed. To further corroborate the reli-

1https://naotoyokoya.com/Download.html
2https://captain-whu.github.io/AID/

ability of the inferred abundance from RGB, we introduce
supplementary quantitative evaluation metrics in the abla-
tion study, including the Root Mean Square Error (RMSE),
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index (SSIM), and Spectral Angle Distance (SAD).
Implementation details. Our experiment involved data
from two different modalities, HSI and RGB. We aimed
to ensure consistency in the physical meaning of the abun-
dance in both types of data. Therefore, we performed spec-
tral alignment, which resulted in the retention of 59 bands
from 400 to 700 nm in Chikusei. In the unmixing ex-
periment, the encoder was designed with 3 stacked RSA
modules. The encoder feature maps’ dimension was set
to [3, 32, 64, 128, 96, 48, 5] and concluded with a softmax
layer, which facilitated the satisfaction of the abundance
constraints of ASC and ANC. The decoder consisted of
a bias-free 1 × 1 convolution layer, which simulated the
LMM process. The initial learning rate for the unmixing
training was set to 1e − 4 and we employed the Adam
optimizer for 40 epochs. In the fusion generation experi-
ment, we extended the proposed paradigm to different types
of widely-used generative models, including VDVAE [6],
StyleGAN3 [23], and DDPM [19]. We used the official
implementations for all experiment codes, and the train-
ing hyperparameters were referred from the configuration
of synthesis experiments for datasets with a spatial size of
256× 256. All generative models were trained to converge
under the same computational resources. The experiments
were carried out using four NVIDIA 3090 GPUs.

4.2. With different generative models

Fig. 5 provides a false-color visualization of HSIs produced
by various algorithms. The GMM [50] produces results
that deviate significantly from the real-life scenario. This
discrepancy occurs because GMM uses ideal mathemati-
cal distributions and does not mimic the actual distribu-
tion of objects. On the other hand, the Multi-Stage Spec-
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Figure 6. Typical examples of synthesis abundances and generated
HSIs in different generative models under the proposed “Unmix-
ing before Fusion” paradigm.

Metrics FID ↓ Recall ↑ Precision ↑ Params Sampling

UBF+VDVAE 39.13 0.209 0.184 178.78M 0.15s
UBF+StyleGAN3 7.69 0.556 0.502 58.4M 0.03s

UBF+DDPM 8.23 0.509 0.484 99.7M 90s

Table 1. Quantitative evaluation for synthetic HSIs generated in
different generative models.

tral Transformer (MST++) [4] just produces HSIs that align
closely with the input RGB. However, their spatial qual-
ity is marginally subpar. Notably, spectral super-resolution
methods like MST++ do not generate new data. The lat-
ter three methods involve VDVAE [6], StyleGAN3 [23],
and DDPM [19] used in conjunction with the proposed
paradigm. Fig. 6 presents some representative examples of
the abundance synthesized and HSIs generated under these
three. Quantitative evaluation indicators for the generated
data are listed in Table 1. When comparing these models,
it is clear that both the GAN and Diffusion models have
a marked advantage over the VAE. The VDVAE tends to
produce results with blurry textures, low informational con-
tent, and overall poor quality. In contrast, the GAN and
Diffusion models can generate HSI samples that closely re-
semble the spatial distribution found in actual remote sens-
ing scenarios. It reveals that, when combined with our pro-
posed paradigm, advanced generative models can provide a
diverse, wide-ranging, and reliable set of HSI samples.

4.3. With/without unmixing

HSI reconstruction with/without unmixing. The efficacy
of our proposed HSI synthesis paradigm is contingent upon

Figure 7. The FID curves within the training process by different
generative models.
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(a) Comparison in HSI Reconstruction cross different HSI datasets.

(b) Comparison in HSI Reconstruction from HSI datasets to RGB datasets.

Reconstructed HSI
(in false-color)

Inferred abundance maps by scenario-based unmixing
Input HSI

Input RGB

Figure 8. Illustration of HSI reconstruction comparison based
on traditional AE or our scenario-based unmixing. The valida-
tion data comes from (a) the HSRS dataset (HSI) and (b) the AID
dataset (RGB), respectively.

robust unmixing. In order to substantiate the merits of un-
mixing, we undertook an ablation study. This study jux-
taposed the performance of HSI reconstruction, which in-
volved latent feature estimation based on a traditional au-
toencoder (AE), and abundance estimation utilizing unmix-
ing. The traditional AE used here has a symmetrical U-net
structure, while the unmixing network, due to the introduc-
tion of LMM, has an asymmetrical structure and its decoder
consists only of a linear layer. To ensure a fair comparison,
the encoders in both models are identical. Additionally, the
latent features in the AE and the abundance in the unmixing
model share an equivalent number of channels. The find-
ings presented in Fig. 8 offer compelling evidence of the
substantial benefits of the unmixing model. When viewing
this from a feature perspective, it is apparent that abundance
presents a more effective representation of the spatial distri-
bution of objects, providing a more explicit physical inter-
pretation. From a reconstruction performance perspective,
our HSI reconstructed based on unmixing has higher fidelity
in both spatial and spectral dimensions.
HSI synthesis with/without unmixing. Take DDPM as an
example, we compare the results generated in abundance
space, original HSI cube space, and latent feature space
in Fig. 9. The original HSI-based DDPM is trained on
the Chikusei dataset with 128 bands, but the generation of
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Generation space
(dimension)

Reconstruction quality Generation quality Cost
RMSE ↓ PSNR ↑ SSIM ↑ SAD ↓ FID ↓ Recall ↑ Precision ↑ Params Training steps

HSI Cube(128) - - - - - - - 393.24M -
Abundance(15) 0.022 36.48 0.944 4.56 49.15 0.11 0.08 100.85M 6.9 million
Abundance(8) 0.027 35.89 0.938 4.81 15.19 0.36 0.31 99.78M 4.5 million
Abundance(5) 0.034 34.26 0.931 5.47 8.23 0.50 0.48 99.76M 2.8 million
Abundance(3) 0.041 30.95 0.927 9.04 8.77 0.50 0.41 99.75M 2 million

Table 2. The quantitative performance on unmixing and synthesis under different numbers of endmembers, which equals the dimension of
the abundance maps.

(a) Original HSI-based DDPM

(b) Latent Feature-based DDPM

(c) Abundance-based DDPM

Generated HSI
(in false-color)

Synthetic Latent Feature Maps

Spectral profile
(sampled 3 pixels)Synthetic Abundance Maps

Generated HSI
(in false-color)

Generated HSI
(in false-color)

Spectral profile
(sampled 3 pixels)

Figure 9. Illustration of HSI generation comparison on diffusion
in different feature spaces.

meaningful images becomes exceptionally challenging due
to the high dimensionality of the data. After 5 million itera-
tions of the generator, the resulting image remains a random
noise without any meaningful interpretation, as depicted in
Fig. 9 (a). In contrast, the latent features-based DDPM pro-
vides some improvement in mitigating the curse of dimen-
sionality. Nevertheless, despite approximately 2 million dif-
fusion steps, the quality of the synthesized latent features
and the reconstructed HSI remains unsatisfactory. The lack
of physical meaning of latent features and the inherent insta-
bility of these shallow features restrict the effective recon-
struction and generation of high-quality HSI. Moreover, the
spectral curve of the generated HSI exhibits noticeable dis-
tortion, as demonstrated in Fig. 9 (b). Finally, the proposed
abundance-based DDPM generates high-quality HSI in a
more realistic style and with physical meaning, as shown in
Fig. 9 (c). It implies that the utilization of abundance allows
us to overcome the challenge of generating high-quality HSI
in high-dimensional space.
HSI reconstruction and synthesis in different feature
space. As depicted in Fig. 9 (a), generation directly in
the HSI cube space still yielded meaningless results even
after training for 5 million steps, making it ineffective for

Figure 10. Comparison of the convergence rates and synthesis
quality with different endmember numbers.

𝑌𝐴 _1 𝐴 _2 𝐴 _3 𝐴 _4 𝐴 _5

Figure 11. Examples of the false-color image of typical synthe-
sized HSIs with only HSI training samples.

evaluating the generation quality. Fortunately, generation
in the abundance space noticeably alleviated the issue. No-
tably, the dimension of the abundance equals the quantity
of endmembers. Here, we list the evaluation on reconstruc-
tion quality, generation quality, and computational cost with
different quantities of endmembers {15, 8, 5, 3} in Table 2.
We also display Fig. 10 to show the FID curves of the cor-
responding training process. It suggests that setting 5 end-
members is the most efficient option. It offers a trade-off be-
tween generation quality and computational consumption.

4.4. With/without fusion

Due to limited quantity, training with HSI samples alone
results in generation outputs in monotonous, as shown in
Fig. 11. Introducing more varied and accessible data (i.e.,
RGB) is to provide rich and realistic spatial distributions.
Boosting by such external guidance, the abundance-based
diffusion is empowered to learn more robust and accurate
feature representation, generating various and vastness syn-
thesized abundance. Leveraging the strengths of both of
them, the proposed method produces the generated HSIs
with a diverse and reasonable spatial distribution.

4.5. Extension experiments in natural scenario

To broaden the application of our proposed HSI synthesis
paradigm, we extend it to complex natural scenes. The
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Synthetic Abundance Maps Generated HSI
(in false-color)

Spectral profile
(sampled 3 pixels)

(b) UBF + DDPM

(a) UBF + StyleGAN3

Figure 12. Typical examples of synthesis abundances and gener-
ated HSIs in different generative models under the proposed “Un-
mixing before Fusion” paradigm on the natural HSI dataset.

results we achieved, displayed in Fig. 12, attest to the ro-
bustness of our proposed paradigm, whether in conjunction
with StyleGAN or DDPM. The synthesized HSIs demon-
strate convincing visual effects, portraying a variety of nat-
ural scenes with remarkable fidelity. They yield abundance
maps that accurately reflect actual spatial distributions and
exhibit distinct spectral features. It underlines the effective-
ness and generalization ability of our proposed paradigm
in discerning the spatial distribution of different substances,
even amidst the huge uncertainty of natural scenes. Particu-
larly in Fig. 12(b), where the spectral curves align with our
anticipated understanding that the spectral reflection in real
backlight areas generally contains minimal information.

4.6. Extension experiments in downstream task

Our study confirms the beneficial impact of synthetic data
on downstream tasks, particularly scene classification. Ex-
isting HSI datasets are limited in scale, exemplified by
HSRS-SC [41], which encompasses only five categories
(farmland, city building, building, water, and idle region)
with sample sizes ranging from 154 to 485, totaling 1385.
We have selected the former four categories and three typ-
ical classification models to test the benefits of using dif-
ferent augmentation strategies in constructing a larger and
more balanced dataset. Related results are presented in
Table 3. Regarding the results under the same augmenta-
tion scale, it is verified that HSIs synthesized by the pro-
posed UBF paradigm hold superior diversity and reliability
as opposed to those synthesized via traditional affine trans-
formation. These synthesized HSIs generated by UBF of-
fer considerable advantages in the training of classification
models. It also demonstrates that synthetic HSI generated
by our proposed UBF paradigm can enhance the diversity
and scale of existing limited datasets, mitigate issues like
sample scarcity and class imbalance, and potentially benefit
other downstream tasks.

Augmentation
Training set

scale AlexNet VGG-16 ResNet-18

✗ 761 89.51% 87.30% 37.14%
Affine Trans. 4k 91.11% 88.84% 41.75%

Our UBF 4k 92.70% 93.97% 44.33%
Our UBF 8k 94.29% 94.60% 45.76%

Table 3. The overall scene classification accuracy on the HSRS-
SC HSI dataset with/without augmentation with synthetic HSIs.

5. Discussion
Our experiments demonstrate that StyleGAN3 slightly out-
performs DDPM in synthesis quality and excels in speed
and efficiency. It produces realistic and high-quality HSIs
resembling real-world remote sensing scenes but suffers
from interclass similarity. DDPM-based generation, how-
ever, offers greater diversity. Notably, our results represent
specific model instances, and variations or different archi-
tectures could potentially outperform them. We encourage
exploring different GAN architectures, or alternative diffu-
sion models with diverse priors or strategies, for potentially
superior results. For limited computational resources, we
suggest using GAN-based models for HSI Synthesis. If re-
sources are abundant, we believe that an advanced diffusion
model has the potential to show promising performance.

6. Conclusion
Standing at the forefront of high-dimensional data syn-
thesis, we have boldly introduced a novel and general-
ized paradigm for the synthesis of HSI. This paradigm
shifts the focus of HSI synthesis from the traditionally
high-dimensional HSI space to a more manageable, lower-
dimensional, and multi-source abundance space. This piv-
otal move not only gives us a dimensionality advantage but
also revolutionizes how we interpret multi-source data with
the spatial distribution of scenes. Furthermore, we have
bridged the dimension gap between HSI and RGB by abun-
dance, unlocking a promising future where RGB and HSI
can be seamlessly fused, and even data from other sources
like PAN, MSI, etc., can be incorporated. With the ap-
plication of advanced generative models, we have already
produced a vast quantity of diverse, high-fidelity synthetic
HSIs, which have shown initial positive impacts on down-
stream tasks, especially on scene classification. It demon-
strates a closed-loop from method proposal to application
verification. The proposed generalized paradigm is a sig-
nificant step in the field of high-dimensional data synthesis,
and we believe it has great potential to inspire and revolu-
tionize trustworthy AI-based HSI applications.
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