
Density-guided Translator Boosts Synthetic-to-Real Unsupervised Domain

Adaptive Segmentation of 3D Point Clouds

Zhimin Yuan1 Wankang Zeng1 Yanfei Su1 Weiquan Liu1 Ming Cheng1* Yulan Guo2 Cheng Wang1

1 Fujian Key Laboratory of Sensing and Computing for Smart Cities, Xiamen University
2 National University of Defense Technology

Abstract

3D synthetic-to-real unsupervised domain adaptive seg-

mentation is crucial to annotating new domains. Self-

training is a competitive approach for this task, but its perfor-

mance is limited by different sensor sampling patterns (i.e.,

variations in point density) and incomplete training strate-

gies. In this work, we propose a density-guided translator

(DGT), which translates point density between domains, and

integrates it into a two-stage self-training pipeline named

DGT-ST. First, in contrast to existing works that simulta-

neously conduct data generation and feature/output align-

ment within unstable adversarial training, we employ the

non-learnable DGT to bridge the domain gap at the in-

put level. Second, to provide a well-initialized model for

self-training, we propose a category-level adversarial net-

work in stage one that utilizes the prototype to prevent neg-

ative transfer. Finally, by leveraging the designs above,

a domain-mixed self-training method with source-aware

consistency loss is proposed in stage two to narrow the

domain gap further. Experiments on two synthetic-to-real

segmentation tasks (SynLiDAR → semanticKITTI and SynL-

iDAR → semanticPOSS) demonstrate that DGT-ST outper-

forms state-of-the-art methods, achieving 9.4% and 4.3%
mIoU improvements, respectively. Code is available at

https://github.com/yuan-zm/DGT-ST.

1. Introduction

3D point cloud segmentation is crucial owing to its diverse

applications, e.g., autonomous driving and robotics. Al-

though supervised methods [1, 5, 11, 37, 47] have made sub-

stantial strides, they need costly human-annotated data. In

contrast, we can obtain massive synthetic labeled data from

simulation platforms. However, the domain gap between

the synthetic (source) and real-world (target) data makes

training directly using synthetic data infeasible. One alter-

native approach is unsupervised domain adaptation (UDA),
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Figure 1. Distinct sampling patterns between synthetic and real-

world scans. The synthetic scan (upper left) is integral and clean,

whereas the real-world data (upper and middle right) contains unex-

pected and irregular noise. DGT enhances the realism of synthetic

scan (middle left). Point densities of three datasets at various dis-

tances from the LiDAR center are shown at the bottom.

which transfers the learned source domain knowledge to

make models perform better on the unlabeled target domain.

UDA seeks to acquire invariant knowledge across do-

mains. As shown in Fig. 1, the sampling pattern mismatch

between different sensors is the primary cause of the 3D

domain gap, directly resulting in distinct point densities (i.e.,

the number of beams and the point number per beam) be-

tween domains. Besides, the synthetic data is integral and

clean, whereas real-world data contains varying degrees of

noise. Contemporary 3D synthetic-to-real UDA segmenta-

tion methods can generally be categorized into two groups:

(1) Adversarial training [6, 13, 38–40, 44], which adopts a

discriminator to ensure features/predictions of the segmentor

domain-invariant. The limitation of this line of approaches
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lies in the tendency of aligning the distributions of the two

domains as a whole (i.e., global-level alignment), resulting

in suboptimal performance; (2) Self-training [9, 22, 23, 33],

which usually performs better than the former. It adopts the

data mixing techniques to construct an intermediate domain

and uses the high confidence pseudo-labels to gradually learn

the target domain knowledge. However, it heavily relies on

a well-initialized model to provide confident pseudo-labels.

After dissecting the existing works, we find two key prob-

lems not adequately addressed. (1) Input data: although the

existing approaches [13, 34] notice the problem of different

sampling patterns, they strive to generate target-like source

data and fulfill feature alignment simultaneously in the un-

stable adversarial training, which are difficult to reconcile.

(2) Pretrained model: the existing 3D UDA self-training

methods [9, 22, 33] completely overlook the importance of

the well-initialized pretrained model. They directly employ

the model trained on the source domain as the pretrained

model, and the unsatisfactory pseudo-labels significantly

limit their performance. Drawing inspiration from the 2D

UDA counterparts [41, 42], we conjecture that adversarial

training warm-up is essential for 3D self-training.

In this work, we propose a LiDAR scan translation strat-

egy and integrate it into a two-stage self-training pipeline

named DGT-ST to address the two issues above respectively.

For (1), to solve the distinct point density across domains,

we propose a non-learnable density-guided translator (DGT).

It is a statistical-based module that narrows the domain gap

at the input level by generating the other domain-like scans

for each domain. Specifically, we divide a scan into discrete

areas and use point density of each area to determine the

location and number of points to be discarded, matching the

density of the corresponding area in the other domain.

For (2), to provide a well-initialized model for self-

training, we propose a prototype-guided category-level ad-

versarial network (PCAN) in DGT-ST stage one. We use

prototypes to dynamically measure the aligning confidence

of points, and propose a self-adaptive reweighting strategy to

reduce the impact of adversarial loss on those well-aligned

points. This strategy effectively prevents negative trans-

fer. We leverage this well-initialized model to perform self-

training in stage two. During the self-training process, we

propose a source-aware consistency LaserMix (SAC-LM)

to learn the source knowledge from the target data, which

enforces the segmentor to give consistent predictions on the

target scans and the corresponding scans translated by DGT.

Moreover, we employ the teacher-student training strategy

to provide robust pseudo-labels and extend LaserMix [10]

into UDA segmentation to fully utilize the spatial prior of

both domains and bridge the domain gap.

Our main contributions can be summarized as follows:

• We propose a statistical-based density-guided translator

(DGT) that directly bridges the domain gap at the in-

put level. Based on DGT, we propose DGT-ST training

pipeline for 3D synthetic-to-real UDA segmentation.

• We design PCAN and SAC-LM to constitute the two stages

of DGT-ST, respectively. For the former, we use the pro-

totype to perform category-level adversarial alignment to

prevent negative transfer and provide a well-initialized

model for subsequent self-training. For the latter, we pro-

pose a self-training method that extracts source knowledge

from target data, further improving the domain-invariant

feature extraction power of the segmentor.

• Extensive experiments on two synthetic-to-real tasks verify

the effectiveness of DGT-ST, which outperforms the state-

of-the-art UDA approaches by a large margin.

2. Related work

Point clouds semantic segmentation. 3D semantic segmen-

tation aims to give each point a semantic label. PointNet [19]

is the pioneering work in point-based [5, 11, 17, 20, 21, 36,

43] methods, employing multilayer perceptrons to extract

point features. Then, numerous point-based methods have

been proposed and achieved outstanding results. However,

these methods generally demand extensive computational

resources, which makes them difficult to deploy in practical

applications. In contrast, some approaches [1, 4, 8, 30, 31]

project the 3D point clouds into 2D grids and leverage

the 2D network to perform segmentation tasks. These ap-

proaches are efficient as they eliminate the demand for sam-

pling and neighbor search operations. However, the loss

of 3D geometric/topological information limits their perfor-

mance. Currently, the prevailing approach is the voxel-based

method [3, 12, 24, 35, 47]. These methods convert points

into voxels and use sparse convolutions to extract geomet-

ric relationships between voxels. Due to its efficiency and

promising result, we select MinkUnet [3] in this work.

Point clouds UDA semantic segmentation. UDA seg-

mentation aims to use the labeled source data and unlabeled

target data to train a model to perform well on the target.

Following the spirit of the 2D counterparts, the dominant 3D

UDA segmentation methods can be roughly divided into two

groups: adversarial training and self-training. ePointDA [44]

employs CycleGAN [46] to render dropout noise for do-

main alignment explicitly. Complete & Label [38] attempts

to complete the two different domain data to a canonical

domain, which bridges the domain gap at the input level.

LiDARNet [6] simultaneously extracts domain-shared and

domain-private features while employing two discrimina-

tors that jointly adapt for semantic and boundary predic-

tions. PCT [34] employs two generators and discriminators

to translate the point cloud appearance and sparsity, respec-

tively. ASM [13] designs a novel learnable masking module

to mimic the pattern of irregular noise and mitigate the do-

main gap. However, the global-level adversarial alignment

can easily cause negative transfer. Two category-level ad-
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versarial alignment methods [39, 40] are proposed and show

encouraging performance to solve this problem.

Self-training [9, 22, 23, 33] is another line for this task,

which leverages pseudo-labels to learn target knowledge

gradually. ConDA [9] proposes an image concatenation-

based framework for interchanging signals from both do-

mains. PolarMix [33] proposes cutting, editing, and blend-

ing of two domain scans to enrich the data distribution for

alignment. CosMix [22] proposes a domain-mixing strategy

that harnesses semantic and structural information to reduce

the domain gap. They adopt a mean-teacher [25] paradigm

to get robust pseudo-labels. However, these methods employ

a model trained only on the labeled source domain as the

pretrained model, and the unreliable pseudo-labels signifi-

cantly limit their performance. LiDAR-UDA [23] proposes

a two-stage method that exploits random discarding source

domain beams to obtain a pretrained model, and utilizes the

temporal consistency of consecutive frames to generate reli-

able pseudo-labels. However, it does not take into account

the number of points per beam.

3. Methodology

In the following, we first provide the necessary preliminaries

for 3D UDA segmentation (Sec. 3.1). Then, we introduce

the scan translation strategy DGT in Sec. 3.2. After that,

we elaborate on the two-stage training pipeline DGT-ST in

Secs. 3.3 and 3.4, which is also shown in Fig. 2.

3.1. Preliminaries

In 3D synthetic-to-real UDA segmentation, we have the

source XS = {xs
i}

Ns

i=1 and target X T = {xt
i}

Nt

i=1 dataset of

Ns and N t scans, respectively. XS has point-wise semantic

labels YS = {ysi }
Ns

i=1, while we lack labels for X T . We aim

to leverage these datasets to train a segmentation network G
that can provide accurate results on X T . Due to the domain

gap, G trained only on the source data cannot generalize well

to the target. Thus, G needs to have both discriminability

and transferability. Generally, to ensure discriminability, G
is optimized on source by cross-entropy (CE) loss:

Ls
ce = −

1

N

N
∑

i=1

K
∑

k=0

ysi logP
s
i,k, (1)

where N and K are the number of points and classes in

the current training batch, respectively. ysi and P s
i,k are the

ground-truth and probability of the i-th point, respectively.

For transferability, the prevalent strategies are adversarial

training and self-training. To ensure the features/predictions

of G domain-invariant, the adversarial methods adopt a do-

main discriminator D plus an auxiliary adversarial loss.

Here, we show the LS-GAN [15] and self-information

St
i = −P t

i logP
t
i adopted by ADVENT [27]:

Lt
adv = −

1

N t

Nt

∑

i=1

||D(St
i )− 0||2, (2)

LD = −
1

Ns

Ns

∑

i=1

||D(Ss
i )− 0||2 −

1

N t

Nt

∑

i=1

||D(St
i )− 1||2,

(3)

where 0/1 denotes the source/target domain label.

On the other hand, self-training uses the pseudo-label ŷt

to optimize G and gain knowledge from the target domain:

Lt
ce = −

1

N

N
∑

i=1

K
∑

k=0

ŷti logP
t
i,k. (4)

Typically, the mean-teacher framework [25] is adopted to

provide accurate and robust ŷt. The student model G, pa-

rameterized by θstu, is trained by gradient descent. And

θtea, the weights of the teacher model Gtea, is updated ev-

ery t iterations with an exponential moving average (EMA)

manner:

θteai = αθteai−t + (1− α)θstui , (5)

where i denotes the current training iteration and α is a

smoothing coefficient that determines the update speed. Fi-

nally, ŷt is obtained by a confidence strategy:

ŷti =







argmax
k

pt,teai , max(pt,teai ) > Thp,

0, otherwise,
(6)

where Thp is the threshold to obtain reliable pseudo-labels.

3.2. Density­guided translator

The sensor sampling pattern mismatch between the source

and target domains is the primary cause of the domain gap.

By taking a closer look at the synthetic and real-world scans,

as shown in Fig. 1, we observe two significant disparities:

(1) The density varies across domains, i.e., the number of

beams Db and the point number per beam Dp; (2) The syn-

thetic scan is integral and clean, whereas the real-world data

contains a varying amount of noise. To mitigate the domain

discrepancy at the input level, i.e., obtain Ds
b ≈ Dt

b and

Ds
p ≈ Dt

p, we can accomplish this in two ways: complete

surface [38] or discard points [13, 32, 34]. However, surface

completion inevitably increases the computational overhead

and may bring in points with inaccurate labels. Thus, we

choose to discard points and propose a density-guided trans-

lator (DGT), a non-learnable and statistical-based translator.

Inspired by LiDAR-Distillation [29], we use K-means to

label beams in each scan and discard beams to make the two

domains have a similar number of beams. However, it does
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Figure 2. Overview of our two-stage DGT-ST. We propose DGT to bridge the domain gap at the input level and be integrated into both

stages. In stage one, we propose PCAN with a segmentor G and a discriminator D. We take the target-like source xs→t and raw target data

xt as input to perform the category-level adversarial alignment. In stage two, SAC-LM, a teacher-student learning architecture is employed

and loads the stage one trained model. We use LaserMix [10] to mix two domain scans xs→t and xt and obtain the mixed scan xst. Finally,

the student model is trained by xs→t and xst. Moreover, we enforce the student model to give consistent predictions on xt and xt→s.

not work on two domains with the same number of beams

while Dp is still different between domains. Dp exhibits

substantial variation according to the distance to the LiDAR

center, where Dp in the nearby area is much greater than

the farther-away area. Two critical problems arise: where

and how many points to discard? To tackle these issues, we

propose a statistical-based random discarding strategy to

balance the point number for both domains. As shown in

Fig. 3, it mainly consists of the following steps:

(1) Partition. For both domains, we evenly partition

all points within each scan into m non-overlapping areas

A = {a1, a2, ..., am} by their distance to the LiDAR center.

(2) Calculation. For each domain, we count the number

of points in each area on the entire dataset to obtain NAs =
{nas1, na

s
2, ..., na

s
m} and NAt = {nat1, na

t
2, ..., na

t
m}. The

location and number of points that are chosen to be discarded

are determined by calculating R = [r1, r2, ..., rm], which

can be formulated as:

Rs→t =
[

nat1/na
s
1, na

t
2/na

s
2, ..., na

t
m/nasm

]

,

Rt→s =
[

nas1/na
t
1, na

s
2/na

t
2, ..., na

s
m/natm

]

,
(7)

where s → t denotes generating a target-like source scan,

vice versa. R directly reveals the point number differences

within each area for both domains. R will be further clipped

to [0, 1], i.e., R=np.clip(R,a_min=0,a_max=1.).

(3) Translation. For simplicity, we give an example

of translating a target-like source scan xs→t. We first

count the number of points within each area and obtain

Axs

= {ax
s

1 , ax
s

2 , ..., ax
s

m }. Then, the discarding point num-

ber Delai
of each area is:

Delai
=

{

ax
s

i ∗ (1−Rs→t
i ), if Rs→t

i ≤ 1,

0, otherwise.
(8)

Finally, to obtain xs→t, we randomly select Delai
points

within the area where Rs→t
i ≤ 1 and random noise is addi-

度

𝟏𝟎𝟏 𝟏𝟎𝟐 𝟏𝟎𝟑

𝟏𝟎𝟒

𝑎𝑖𝑠

𝑎𝑖𝑡
𝑁𝐴𝑠

𝑁𝐴𝑡
𝑅𝑠→𝑡

𝑥𝑠

𝑥𝑠→𝑡
Figure 3. Illustration of the density-guided translator (DGT).

tionally added to the X and Y axes to enhance its realism.

This strategy can also be employed to acquire xt→s.

Discussion: how about random discarding? Random

discarding does not align with our aim for the following

reasons: (1) Points located in farther-away areas already ex-

hibit high sparsity, and discarding these points would impede

model discriminability; (2) In certain regions, Ds
p/Dt

p may

be smaller than Dt
p/Ds

p, and discarding these points may

enlarge the domain gap. We verify this in Sec. 4.3.

3.3. Category­level adversarial with prototype

Traditional adversarial methods [26, 27] adopt a discrimina-

tor to bridge the domain gap. However, striving to make the

source and target marginal distributions match globally is

prone to negative transfer, i.e., well-aligned points mapped

to incorrect semantic categories. We resort to prototype and

propose PCAN to tackle this issue, as shown in Fig. 2 (left).

Inspired by previous works [41, 42], points belonging to

the same category tend to cluster together, and the prototype

(class centroid) can represent each class in the feature space.

Since the source data is fully labeled without noise, we only

use source data to calculate the prototype. We define λs
k as
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the prototype of class k, which can be calculated by:

λs
k =

1

|XS
k |

∑

xs
i
∈XS

k

G(xs
i ), (9)

where XS
k denotes all points whose labels are k in XS .

Instead of globally matching the source and target

marginal distributions, we propose to perform category-level

alignment. Specifically, G should make high-confidence

predictions for those well-aligned points, and we can easily

obtain their pseudo-labels through Eq. (6). Thus, we treat

those points with high confidence as well-aligned points

xt
wa, and evaluate how well xt

wa are semantically matched

based on the similarity distance M (e.g., cosine similarity)

between their feature and the corresponding prototype:

M(xt
wa,k, λ

s
k) =







1−
⟨G(xt

wa,k),λ
s
k⟩

∥G(xt
wa,k

)∥·∥λs
k
∥
, if xt

i ∈ xt
wa,

1, otherwise.

(10)

M reveals the alignment degree between the well-aligned

points and their corresponding source domain class in the

feature space. The more similar xt
wa,i and λs are, the smaller

the weight is. For the remaining points (i.e., xt /∈ xt
wa in

the current batch), we treat them as the unlabel class and cal-

culate their adversarial loss in the traditional manner. Then,

we leverage M to reweight the adversarial loss, adaptively

reduce their impact on xt
wa, and prevent negative transfer.

Besides, we adopt a class-wise aggregation strategy to

individually calculate each appearing class in xt
wa to reduce

interference with the other classes. With the help of the

above design, we explicitly incorporate the class information

into the adversarial loss. The new category-level adaptive

reweight adversarial loss Lt,ada
adv can be written as:

Lt,ada
adv = −

K
∑

k=0

1

Nk

M||D(St
i )− 0||2. (11)

In this adversarial training stage, we use the translated

source scan xs→t and target scan xt to perform the category-

level adversarial alignment. The final loss is:

Ltotal
adv = Ls

ce(x
s→t) + γ1L

t,ada
adv (xt), (12)

where γ1 is a balance parameter. Following previous adver-

sarial training works [14, 26, 27, 40], we fixed it as 0.001.

3.4. Source­aware consistency LaserMix

Although the source and target domains have distinct sam-

pling patterns, they are collected in driving scenarios with

similar scene layout. Inspired by LaserMix [10], initially

proposed for semi-supervised learning (SSL), we conjec-

ture that the spatial positions of objects/background in both

domain scans correlate with their respective distributions.

Thus, as shown in Fig. 2 (right), we extend it into UDA and

propose SAC-LM to mitigate the domain discrepancy.

LaserMix (LM). Given two scans xs and xt from two

domains, we first partition all points from each scan based

on their inclination angles and form n non-overlapping areas

A M = {a m1, a m2, ..., a mn}. Then, we mix A Ms and

A M t in an intertwining manner and result in two mixed

scans xst
1 and xst

2 , which can be formulated as:

xst
1 = a ms

1 ∪ a mt
2 ∪ ... ∪ a ms

n−1 ∪ a mt
n,

xst
2 = a mt

1 ∪ a ms
2 ∪ ... ∪ a mt

n−1 ∪ a ms
n.

(13)

Since the target domain is unlabeled, we adopt the teacher

model and Eq. (6) to obtain ŷt for xt. The semantic labels

(i.e., ys and ŷt) of the two scans are mixed similarly.

Source-aware consistency (SAC) regularization. In

Fig. 1 bottom, in certain areas, the target domain point

number is larger than the source. We can easily generate

the source-like target scan by DGT. When G is domain-

invariant, G should give similar predictions on raw target in-

put xt and its source-like input xt→s. We minimize the Kull-

back–Leibler divergence between P tea(xt) and P (xt→s):

Lsac = −
1

N

N
∑

i=1

P (xt→s)log
P (xt→s)

P tea(xt)
. (14)

Lsac enforces G to give consistent predictions for a target

input under two views in the mean-teacher framework. It

enables the segmentor to acquire source knowledge from

the target data, thereby enhancing the capability of domain-

invariant feature extraction and reducing the domain gap.

We use PCAN to provide a well-initialized model for

generating high-quality pseudo-labels in this stage. We use

the translated source scan xs→t and the mixed scans xst
1 to

perform self-training. Since DGT is used in both stages, we

name this overall pipeline as DGT-ST, and the final loss is:

Lst = Ls
ce(x

s→t) + Lt
ce(x

st
1 ) + γ2Lsac, (15)

where γ2 is a balance parameter, and we fixed it as 0.001.

4. Experiments

4.1. Setup

Datasets. We perform two synthetic-to-real UDA tasks.

SynLiDAR [34] is a recently published synthetic dataset

generated by a LiDAR simulator identical to the Velodyne

HDL-64E with a 100-meter working range and contains a

variety of realistic virtual scenarios. Following the official

recommendation, we use all subdataset, which contains 13

sequences of about 19840 scans.

SemanticKITTI [2] is the most prevalent real-world

dataset for evaluating the large-scale 3D segmentation

method, collected in Germany by a Velodyne HDL-64E
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PMAN [40] A 71.0 14.9 24.8 1.6 6.6 23.6 61.1 5.5 75.3 10.5 54.1 0.1 47.9 17.4 69.6 38.6 61.5 37.0 18.6 33.7 +13.3

PCAN (Ours) A 85.0 17.5 27.4 10.4 11.9 27.5 63.7 2.6 78.1 13.5 50.1 0.1 68.5 20.0 76.2 41.3 45.7 41.0 21.8 37.0 +16.6

CoSMix [22] S 56.4 10.2 20.8 2.1 13.0 25.6 41.3 2.2 67.4 8.2 43.4 0.0 57.9 12.2 68.4 44.8 35.0 42.1 17.0 29.9 +9.5

PolarMix [33] S - - - - - - - - - - - - - - - - - - - 31.0 +10.6

LaserMix [10] S 90.3 7.8 37.2 2.3 2.4 40.6 49.1 5.1 80.5 9.9 57.4 0.0 57.6 3.4 77.6 46.6 60.1 42.0 13.6 36.0 +15.6

DGT-ST (Ours) S 92.9 17.3 43.4 15.0 6.1 49.2 54.2 4.2 86.4 19.1 62.3 0.0 78.2 9.2 83.3 56.0 59.1 51.2 32.3 43.1 + 22.7

Table 1. Comparison results of SynLiDAR → semanticKITTI adaptation in terms of mIoU. A/S denotes adversarial training/self-training.

LiDAR sensor. Following [22, 33, 34, 40], we choose se-

quences 00-10 for training (19130 scans) except sequence

08 (4071 scans) for validation.

SemanticPOSS [16] is a real-world dataset, collected in

Peking University by a Pandora 40-line LiDAR sensor. Fol-

lowing [33, 34, 40], sequence 03 (500 scans) is used for

validation and the rest (2488 scans) for training.

Evaluation protocol. The SynLiDAR provides the

mapping details to pair with SynLiDAR→SemanticKITTI

(Syn→Sk) and SynLiDAR→SemanticPOSS (Syn→Sp). We

can fairly compare DGT-ST with other methods. Follow-

ing [22, 33, 40], the segmentation performance is reported

using the mean Intersection over Union (mIoU, as %) metric.

Implementation. All experiments are implemented in

PyTorch [18] and MinkowskiEngine [3] on a single NVIDIA

RTX 3090 GPU. For a fair comparison with other methods,

we adopt MinkUNet34 as the segmentation network and

set the voxel size as 0.05m. For PCAN, the discriminator

consists of 5 sparse convolution layers with kernel size 4

and stride 2, where the channel number is {32, 64, 64, 128,

1}. A Leaky-ReLU activation layer follows each convo-

lution layer except the last. To obtain the same size as the

input, we upsample the discriminator output by interpolation,

i.e., ME.MinkowskiInterpolation(). We adopt the

Adam [7] optimizer with the initial learning rate of 2.5e-4

and 1e-4 respectively for the segmentation network and dis-

criminator and is decayed by a poly learning rate policy with

power of 0.9. The batch size is set to 2 and the max training

iteration of all experiments is set as 100K. The input feature

of all methods is XYZ coordinates. Following CoSMix [22],

we set Thp, α and t as 0.9, 0.99 and 100, respectively.

4.2. Comparisons with previous methods

We comprehensively compare our proposed method with

the recent state-of-the-art approaches. These methods could

be divided into two groups: (1) adversarial training meth-

ods, including AdaptSeg [26], CLAN [14], ADVENT [27],

FADA [28], MRNet [45], and PMAN [40]; (2) self-training

methods, including CosMix [22], PolarMix [33] and Laser-

Mix (LM) [10]. Source only denotes the model trained on

the source without adaptation. The mechanism “A” and “S”

denotes adversarial training and self-training, respectively.

SynLiDAR→SemanticKITTI. In Tab. 1, we show the

comparison results. PCAN and DGT-ST significantly out-

perform the other methods, yielding an accuracy of 37.0%
and 43.1% in mIoU. Compared with the non-adapted source

only, PCAN and DGT-ST offer mIoU gains of 16.6% and

22.7%. PCAN outperforms the second-best adversarial

method PMAN by 3.3%. Among these adversarial training

methods, PCAN and PMAN are two specifically designed

category-level adversarial networks for 3D UDA segmenta-

tion. Their results show that class-level adversarial alignment

is effective for this task. For self-training methods, LM sig-

nificantly outperforms other methods, which means that the

spatial prior helps bridge the domain gap. Unlike CoSMix,

which requires hyperparameters to select the number of cat-

egories to mix and then select and paste the reliable points

to boost the performance of rare classes (e.g., oth-v.), LM is

more convenient. Among all the 19 classes, DGT-ST obtains

the best results in 14 classes with significant improvements.

SynLiDAR→SemanticPOSS. We present the results

in Tab. 2. PCAN achieves competitive performance in

adversarial-based methods, yielding an accuracy of 44.4%
in mIoU and outperforming the source-only model by 6.1%.

Compared with PMAN, which utilizes a multi-task network

and is trained with specially designed losses, PCAN is much

simpler. DGT-ST achieves an mIoU score 50.8 % and out-

performs the source only model by 12.5%. DGT-ST outper-

forms all compared methods by a large margin and achieves

the top performance in 6 out of the 13 categories.

4.3. Ablation Studies

We report DGT-ST with certain components ablated here.

Since the SynLiDAR and semanticKITTI are collected by

64-beam LiDAR, discarding beams does not work on Syn

→ Sk. Thus, we validate the effectiveness of discarding
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Methods Mech. bi.clst car trunk veget. traf. pole garb. build. cone. fence bi.cle ground pers. mIoU gain

Source only - 47.2 43.6 37.8 70.3 11.1 33.8 19.5 67.9 11.2 19.9 9.6 77.9 47.8 38.3 +0.0

AdaptSegNet [26] A 43.9 48.2 39.0 69.6 15.5 33.6 21.3 64.3 12.7 25.0 11.6 76.0 49.9 39.3 +1.0

CLAN [14] A 43.9 46.6 41.3 71.0 15.1 34.3 20.4 69.6 9.5 23.2 12.0 75.1 51.3 39.5 +1.2

ADVENT [27] A 44.6 47.6 40.3 71.2 15.6 35.6 22.0 68.4 10.6 25.9 10.4 76.7 52.3 40.1 +1.8

FADA [28] A 39.6 41.2 38.8 69.2 16.3 32.1 18.1 67.9 11.5 22.0 13.0 71.4 47.9 37.6 -0.7

MRNet [45] A 43.5 47.2 39.1 70.4 15.5 32.8 22.0 66.1 13.2 24.2 11.2 76.8 50.0 39.4 +1.1

PMAN [40] A 52.6 61.5 46.8 75.1 18.8 36.5 21.4 74.7 18.3 25.8 37.5 73.7 61.9 46.5 +8.2

PCAN (Ours) A 48.6 62.1 37.5 74.0 23.9 31.4 22.2 76.9 6.5 41.9 11.9 79.1 61.2 44.4 +6.1

CoSMix [22] S 53.6 47.6 44.8 75.1 16.8 37.9 25.3 72.7 19.9 39.7 10.8 80.0 56.5 44.6 +6.3

PolarMix [33] S - - - - - - - - - - - - - 30.4 -8.3

LaserMix [10] S 58.4 61.3 47.7 69.0 21.9 39.5 30.9 61.0 16.1 36.5 7.1 79.5 62.6 45.5 +7.2

DGT-ST (Ours) S 55.1 70.7 46.1 74.2 30.1 36.3 44.1 81.0 4.3 62.8 10.3 78.5 67.2 50.8 +12.5

Table 2. Comparison results of SynLiDAR → semanticPOSS adaptation in terms of mIoU. A/S denotes adversarial training/self-training.

Baseline PCAN XY-noise Random Dp Density Dp mIoU gain

0

ADVENT

30.5 +0.0

1 ! 35.4 +4.9

2 ! ! 35.8 +5.3

3 ! ! ! 34.9 +4.4

4 ! ! ! 37.0 +6.5

LM DGT SAC PCAN model

5

Source only

20.4 +0.0

6 ! 36.0 +15.6

7 ! ! 37.5 +17.1

8 ! ! ! 38.7 +18.3

9 ! ! 39.8 +19.4

10 ! ! ! ! 43.1 +22.7

Table 3. Ablation of each component in DGT-ST on Syn → Sk.

The whole training consists of adversarial training (upper) and self-

training (bottom). The PCAN model represents the initialization

model of the self-training provided by PCAN.

beams and points of DGT on Syn → Sp. For others, we

only present the results on Syn → Sk due to its much larger

validation set than semanticPOSS and limited space.

Density-guided translator. To validate the effectiveness

of DGT, we conduct experiments in adversarial training and

self-training in Tabs. 3 and 4. As shown in Tab. 3, with

DGT, we respectively obtain +1.6% (rows 1 and 4) mIoU

gain in PCAN, and +1.5% (rows 6 and 7) mIoU gain in LM,

on Syn → Sk task. Specifically, DGT consists of injecting

noise on the X and Y axes (XY-noise), discarding beams

Db and discarding points Dp. Comparing rows 1 and 2, we

get +0.4% mIoU increase by adding XY-noise. Discarding

points based on the point density (Density Dp) brings +1.2%
(rows 2 and 4) mIoU improvement. However, randomly

discarding points reduces the performance, which drops the

mIoU by 0.9% (rows 2 and 3). These results confirm the

discussion part in Sec. 3.2. In Tab. 4, DGT also brings +2.1%
(rows 1 and 3) and +2.2% (rows 5 and 7) mIoU gains on

Syn → Sp task. Besides, when the source and target domain

are collected by sensors with different beams, DGT will

discard both beams and points. We validate each of them

Baseline PCAN Discard beams Discard points mIoU gain

0

ADVENT

40.1 +0.0

1 ! 42.3 +2.2

2 ! ! 43.6 +3.5

3 ! ! ! 44.4 +4.3

LM Discard beams Discard points

4

source only

38.3 +0.0

5 ! 45.5 +7.2

6 ! ! 46.7 +8.4

7 ! ! ! 47.7 +9.4

Table 4. Ablations of PCAN and LaserMix on Syn → Sp. In

addition to XY-noise, DGT needs to discard beams and points, we

ablate them in adversarial training and self-training, respectively.

on Syn → Sp. In Tab. 4, compared to PCAN and LM, we

respectively obtain +1.3% (rows 1 and 2) and +1.2% (rows

5 and 6) mIoU gain by discarding beams. Discarding points

further improves the performance, which brings +0.8% and

+1.0% mIoU gain in PCAN and LM, respectively.

We further verify the effectiveness of DGT in CoSMix.

In Tab. 5, DGT brings +0.6% (rows 1 and 2) mIoU gain.

Notably, CoSMix is already equipped with some data aug-

mentation strategies, including random subsample and scan

rotation. DGT still improves its performance. All these ex-

perimental results prove that DGT can boost the performance

of the prevalent 3D UDA segmentation methods.

PCAN. We investigate the effectiveness of using the

prototype to perform category-level adversarial alignment.

In Tab. 3, the baseline method ADVENT only gives 30.5%
mIoU score on the target domain (row 0). PCAN brings

+4.9% mIoU gain on Syn → Sk task (rows 0 and 1). Its

effectiveness is also proved in Tab. 4, where PCAN brings

+2.2% mIoU gain on Syn → Sp task (rows 0 and 1).

LaserMix. Although LaserMix (LM) is proposed for

3D SSL, we extend it to 3D UDA segmentation and shows

encouraging performance. LM brings +15.6% (rows 5 and

6 in Tab. 3) and +7.2% (rows 4 and 5 in Tab. 4) mIoU

gain on Syn → Sk and Syn → Sp, respectively. Compared
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Figure 4. Visual results of UDA segmentation for SynLiDAR → SemanticKITTI and SynLiDAR → SemanticPOSS tasks. Black circles

highlight some regions of interest. Best viewed in color.

Method mIoU gain

0 Source only 20.4 +0.0

1 CoSMix [22] 29.9 +9.5

2 CoSMix [22] + DGT 30.5 +10.1

3 CoSMix [22] + DGT + PCAN model 39.1 +18.7

4 CoSMix [22] + DGT + PCAN model+ SAC 40.0 +19.6

Table 5. Validation of the effectiveness of each proposed component

with CoSMix [22] on Syn → Sk.

γ2 0 0.1 0.01 0.001 0.0001

mIoU 37.5 37.4 38.3 38.7 38.6

Table 6. The effect of the hyper-parameter γ2 in the second stage

of DGT-ST on Syn → Sk.

with CoSMix (results in Tabs. 1 and 2), it respectively

outperforms CoSMix by 6.1% and 0.9% on two UDA tasks.

Source-aware consistency (SAC) regularization. We

aim to use DGT to generate source-like target scans to bridge

the domain gap. SAC is employed to give consistent predic-

tions about a target scan with and without DGT. In Tabs. 3

and 5, its effectiveness is proved by the fact that adding

this term offers +1.2% (rows 7 and 8 in Tab. 3) and +0.9%
(rows 3 and 4 in Tab. 5) mIoU gains for LM and CosMix on

Syn → Sk task, respectively. These results also validate the

effectiveness of our method in the single-stage setting.

PCAN pretrained model. In Tabs. 3 and 5, we conduct

experiments with and without PCAN pretrained model for

LM and CoSMix. The pretrained model brings +3.8% (rows

6 and 9 in Tab. 3) and +8.6% (rows 2 and 3 in Tab. 5) mIoU

gains for them, respectively. It also brings +4.4% (rows 8 and

10 in Tab. 3) mIoU gain for our final model. These results

are consistent with 2D counterparts, i.e., the well-initialized

model helps the self-training methods.

Parameter sensitivity of γ2. γ2 is a hyper-parameter in

Eq. (15) to balance the SAC loss and the other two CE losses.

A larger γ2 would force the student model to pay more atten-

tion to make consistent predictions with the teacher model,

thereby influencing the student to learn the target domain

knowledge. Thus, we conduct experiments to observe the

impact of changing this trade-off value, and the results are

shown in Tab. 6. The final result is stable when γ2 is smaller

than 0.1. A proper choice of γ2 is between 0.001 and 0.0001.

4.4. Qualitative Results

Fig. 4 presents a visual comparison of DGT-ST against the

previous two lines of methods, including adversarial train-

ing (PMAN) and self-training (CoSMix and LM). From the

first row , we can see that PMAN and CoSMix incorrectly

classify the car as tree or road while DGT-ST identifies them

precisely. DGT-ST gives more accurate results (top black

circle) than LM. In the bottom row, DGT-ST can not only

accurately classify the person walking on the road, but also

identify the plants that are easily misclassified as cars (bot-

tom black circle). Thus, we can conclude that DGT-ST can

extract more discriminative features than the previous works.

5. Conclusions

In this paper, we present a LiDAR scan translation strat-

egy DGT and a two-stage training pipeline DGT-ST for 3D

synthetic-to-real UDA segmentation. DGT leverages the

point density to discard points of each scan, thereby allevi-

ating the domain gap at the input level. It can be integrated

into the prevalent UDA methods and boost their final perfor-

mance. In the first stage of DGT-ST, we propose PCAN to

provide a well-initialized pretrained model for self-training.

It is a category-level adversarial network and uses prototypes

to prevent negative transfer. By leveraging DGT and PCAN,

in the second stage of DGT-ST, we use LaserMix to construct

an intermediate domain and propose SAC-LM to perform

self-training. A source-aware consistent loss is proposed to

empower the segmentor to learn the source knowledge from

the target data, thereby mitigating the domain discrepancy

further. Extensive experiments on two prevalent synthetic-

to-real tasks demonstrate the superiority of DGT-ST, which

outperforms the previous approaches by a large margin.
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