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Abstract

Out-of-distribution (OOD) detection is essential for de-
ploying machine learning models in open-world environ-
ments. Activation-based methods are a key approach in
OOD detection, working to mitigate overconfident predic-
tions of OOD data. These techniques rectifying anoma-
lous activations, enhancing the distinguishability between
in-distribution (ID) data and OOD data. However, they as-
sume by default that every channel is necessary for OOD
detection, and rectify anomalous activations in each chan-
nel. Empirical evidence has shown that there is a significant
difference among various channels in OOD detection, and
discarding some channels can greatly enhance the perfor-
mance of OOD detection. Based on this insight, we pro-
pose Discriminability-Driven Channel Selection (DDCS),
which leverages an adaptive channel selection by estimat-
ing the discriminative score of each channel to boost OOD
detection. The discriminative score takes inter-class sim-
ilarity and inter-class variance of training data into ac-
count. However, the estimation of discriminative score
itself is susceptible to anomalous activations. To better
estimate score, we pre-rectify anomalous activations for
each channel mildly. The experimental results show that
DDCS achieves state-of-the-art performance on CIFAR and
ImageNet-1K benchmarks. Moreover, DDCS can general-
ize to different backbones and OOD scores.

1. Introduction

Deep neural networks are effective when the training and
test sets share the same labels. However, in real-world ap-
plications, these models often encounter out-of-distribution
(OOD) data, which includes labels not present in the train-
ing set’s label space [11]. Existing models tend to misclas-
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(a) FPR95 on each channel (b) AUROC on each channel

Figure 1. OOD detection performance across different channels.
We randomly select 8 channels from the penultimate layer of
Densenet-101 on the CIFAR-10 benchmark and evaluate the OOD
detection performance using FPR95 and AUROC.

sify OOD data as in-distribution (ID), leading to poor per-
formance of OOD detection. To address this, researchers
have introduced the OOD detection task, focusing on iden-
tifying whether a sample is ID or OOD. This task has gained
significant attention in both academic and industrial sectors
due to its critical role in various high-security applications,
such as autonomous driving [2], medical diagnostics [29],
and network intrusion detection [6].

OOD detection methods are generally classified into two
main types: density-based[19, 31, 43] and classification-
based[22, 33]. Density-based methods, although compre-
hensive, are often complex and time-consuming, often re-
sulting in performance that is inferior to classification-based
methods[36]. This paper primarily examines classification-
based methods, which are subdivided into training-time and
test-time approaches. Training-time methods[8, 13, 41]
necessitate model retraining, whereas test-time methods
do not, thus eliminating training costs and preserving the
model’s multi-classification performance. Test-time meth-
ods are further categorized into six types: confidence-
based [11, 25, 26], feature-based [34, 51], distance-
based [22, 33], gradient-based [16], pruning-based meth-
ods [1, 37], and activation-based [1, 38, 44, 53]. The first
five types do not account for abnormal activations in hidden
layers, which can lead to overconfidence in OOD data pre-
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dictions or underconfidence in ID data predictions, resulting
in poor performance of OOD detection.

Activation-based methods [38, 44, 53] rectify anoma-
lous activations, enhancing the distinguishability between
ID data and OOD data. However, they assume by default
that every channel is necessary for OOD detection, and rec-
tify anomalous activations in each channel. To be noted, we
adopt the term “channel” to denote the neurons in penul-
timate layer. Empirical evidence has shown that there is a
significant difference among various channels in OOD de-
tection, and discarding some channels can greatly enhance
the performance of OOD detection. For example, in Fig-
ure 1, we randomly select 8 channels from the penultimate
layer of DenseNet-101. Obviously, different channels ex-
hibit varying levels of performance in OOD detection, and
their contributions to this detection process also differ. Ahn
et al. [1] also demonstrates that different channels react dif-
ferently to ID and OOD data.

Based on this insight, we propose Discriminability-
Driven Channel Selection (DDCS), which leverages an
adaptive channel selection by estimating the discrimina-
tive score of each channel to boost OOD detection. We
hope to select channels that greatly aid in OOD detection
and discard those with minimal contribution to OOD de-
tection. However, an important question is how to iden-
tify the contribution of diffident channels to OOD detection
in the absence of OOD data. CIDER [27] shows that in-
creasing ID discriminability can improve the separability of
ID and OOD data, which demonstrates a positive correla-
tion between ID discriminability and OOD detection. In-
spired by this, we utilize ID discriminability to select chan-
nel for OOD detection. Specifically, we measure ID dis-
criminability score through inter-class similarity and inter-
class variance. Lower inter-class similarity and higher inter-
class variance indicates higher ID discriminability [47, 48].
However, the estimation of discriminative score itself is sus-
ceptible to anomalous activations. To better estimate dis-
criminability score, We pre-rectify anomalous activations in
both local and global perspective.

Our contributions can be summarized as follows:
• Each channel contributes differently to OOD detection.

Moreover, improving the class distinguishability of ID
data can enhance OOD detection. Inspired by these two
points, we propose DDCS to select channels with strong
class distinguishability for OOD detection.

• To achieve DDCS, we design a discriminative score,
which utilizes the inter-class difference of ID class proto-
types to evaluate the ID discriminability of each channel.

• We find that the estimation of discriminative score itself
is susceptible to anomalous activations. To address this
problem, we implement pre-rectification for anomalous
activations in both local and global perspective.

• We conduct extensive experiments on the CIFAR and

ImageNet-1K benchmarks, and the results show that our
proposed DDCS is state-of-the-art and can be generalized
to other backbone and OOD scores.

2. Related Work
2.1. Out-of-Distribution Detection

Determining whether inputs are OOD is an essential prob-
lem for the deployment of multimedia applications. The
methods of OOD detection can be categorized into two
main branches: classification-based methods [25, 26],
density-based methods [32, 43]. Classification-based meth-
ods in OOD detection aim to model conditional distribu-
tion and then design scoring function to measure uncer-
tainty of test data. Density-based methods in OOD detec-
tion explicitly model the in-distribution with some proba-
bilistic models and consider test data in low-density regions
as OOD data. Density-based methods are challenging to
train and optimize, and the performance often lags behind
the classification-based methods [46].

The research of classification-based methods can be cat-
egorized into two main branches: test-time OOD detection
methods [12, 16, 22, 25, 26, 28, 34, 38] and training-time
OOD detection methods [4, 13, 17, 18, 26]. Training-time
OOD detection methods aim to calibrate the model by using
auxiliary OOD datasets [4, 7, 9, 13, 23, 26]. The training-
time OOD detection methods use a set of extra collected
large-scale auxiliary OOD data during training to help the
model learn ID/OOD discrepancy. These collected OOD
data help the model output lower confidence on OOD data.
Lee et al. [21] and Hendrycks et al. [13] force the predic-
tive distribution of auxiliary OOD data to uniform distribu-
tion. Chen et al. [3] present informative OOD data min-
ing to select valuable OOD data for improving the perfor-
mance of OOD detection, and enhancing the method’s ro-
bustness. Liu et al. [26] proposes an energy-bounded learn-
ing objective, where the neural network is fine-tuned to ex-
plicitly create an energy gap by assigning lower energy to
the ID data and higher energy to the OOD data. Test-time
OOD detection methods have the advantage of being easy
to use without modifying the training procedure and objec-
tive [46]. This paper focuses on test-time OOD detection
methods.

Test-Time Out-of-Distribution Detection. Test-time
OOD detection methods are an important branch of OOD
detection. The test-time approaches do not require retrain-
ing the model, performs well, and is easy to implement
in the real world. In addition, the test-time approaches
are naturally suitable for privacy protection tasks where
it is impossible to fine-tune the model using private data.
Test-time OOD detection methods can be categorized into
confidence-based, feature-based, distance-based, gradient-
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based, pruning-based, and activation-based methods.
Confidence-based methods use the confidence score of a
pre-trained classifier to detect OOD data. The underlying
assumption is that the ID data should receive a high
confidence score, while the OOD data should receive a low
confidence score. MSP [11] directly uses the maximum
SoftMax score to determine whether the test sample is an
ID or OOD. ODIN [24] improves the SoftMax score by
perturbing the input and applying temperature scaling to the
logits. Energy [26] demonstrates that the Energy score (i.e.,
logsumexp of logits) outperforms the SoftMax score in
distinguishing between ID and OOD data. Feature-based
methods include GRAM [34] and SHE [51]. GRAM com-
putes the gram matrix within the hidden layers. SHE uses
the energy function defined in modern Hopfield networks.
Distance-based methods consider OOD data to be farther
away from the training set than ID data. Mahalanobis [22]
calculates the minimum Mahalanobis distance between
the test data and the class centroids of the training set as
an OOD score. Gradient-based approaches [16] uses
gradient statistics to calculate OOD score. Pruning-based
methods prunes the weights of model to address over-
confident prediction of OOD data. DICE [37] prunes the
weights of the classification layer to address overconfidence
in the model’s prediction of OOD data. These five OOD
detection methods fail to detect abnormal activations in the
neural network. However, abnormal activations can cause
the model to be overconfident in predicting OOD data or
underconfident in predicting ID data, which can impact the
performance of OOD detection.

Activation-based methods attempt to maximize the gap
between ID and OOD data by truncating abnormally low
or high activations. ReAct [38] observes that OOD in-
puts trigger abnormally high activations, which causes the
model to assign higher confidence to OOD inputs. There-
fore, ReAct truncates abnormally high activations using a
precomputed threshold. LHAct [50] finds that abnormally
low activations cause the model to be underconfident in
predicting the ID data. Therefore, LHAct truncates ab-
normally low activations. Additionally, LHAct designs a
constrained Butterworth filter to truncate abnormally high
activations. VRA [44] zeroes out abnormally low activa-
tions and truncates abnormally high activations through a
variational method. BATS [53] exhibits efficacy by truncat-
ing both abnormally low and abnormally high activations of
each channel. However, they assume by default that every
channel is necessary for OOD detection, and rectify anoma-
lous activations in each channel. Empirical evidence has
shown that there is a significant difference among various
channels in OOD detection, and discarding some channels
can greatly enhance the performance of OOD detection.
LINe [1] is a hybrid pruning-based and activation-based
approach. In detail, LINe prunes activations and weights

by measuring category contributions using Shapley values
and rectifies extremely high activations. Ahn et al. [1] also
demonstrates that different channels respond differently to
ID and OOD data. Therefore, selecting effective channels
is important for OOD detection.

3. Preliminaries

3.1. Overview

In this section, we first describe the general process of OOD
detection. Next, we mainly discuss typical activation-based
and pruning-based methods, which are relevant to DDCS.

3.2. Learning Set-Up

OOD detection aims to detect test samples that are drawn
from a distribution that differs from the training distribu-
tion. In supervised multi-classification tasks, this means
that OOD samples should not have overlapping labels with
the training data. The training setDtrain

in = {(xi, yi)}ni=1 is
drawn i.i.d from the joint data distribution P(X ,Y). Here,
X represents the input space, Y = {1, 2, . . . , C} represents
the label space, n is the number of instances in Dtrain

in , and
N = {n1, n2, . . . , nC} represents the number of instances
per ID class. Let P(X ) represent the marginal distribution
of X . Let F : X → RM be a feature extractor pre-trained
byDtrain

in , where M represents the number of channels. Let
G : RM → RC be a classifier pre-trained by Dtrain

in to pre-
dict labels for input samples.

During the test, we design an OOD detector, denoted as
Gλ, to determine whether a given sample xtest is ID or not.
The OOD detector can make a binary decision based on the
OOD score S:

Gλ(x
test) =

{
ID, if S(xtest) ≥ λ;

OOD, if S(xtest) < λ.
(1)

According to Eq. (1) (where λ represents the threshold),
test samples with higher OOD scores are classified as ID,
while those with lower scores are classified as OOD. The
pre-trained model refuses to make predictions for test data
that are identified as OOD by the OOD detector. Next, we
detail several typical activation-based OOD detection meth-
ods that are highly related to our DDCS.

3.3. Activation-based OOD detection

ReAct [38]: truncating extremely high activations. We
consider z = F (xtest) as the activations triggered by a
given test sample xtest, where F denotes the feature ex-
tractor. To address the extremely high activations, ReAct
proposes to truncate them with a pre-defined threshold t,
which is set based on the percentile of ID activation distri-
bution of the training set Dtrain

in .
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BATS [53]: truncating activations into typical set.
BATS finds that the activation distribution for each chan-
nel approximate a different Gaussian distribution and treats
the high-density region of each channel as a typical set.
BATS precomputes the mean and standard deviation of
the activations on each channel using the training data.
Here, z = {z1, z2, · · · , zM} represents the activations on
each channel, while µ = {µ1, µ2, · · · , µM} and σ =
{σ1, σ2, · · · , σM} represent the mean and standard devi-
ation of activation distributions on each channel, respec-
tively. For the k-th channel, BATS considers the high-
probability region (e.g. typical set) as [µk−λσk, µk+λσk].

LINe [1]: class-wise activation pruning. LINe prunes
activations based on Shapley values[35]. We consider
xc as an training data from class c, the Shapley value
of the i-th channel in class c is calculated as: γc

i =
|F (xc)− F (xc; zi ← 0)|, where zi ← 0 represents setting
activations of the i-th channel to zero. In other words, γc

i

denotes the contribution of the i-th channel to the class c.
For each class, LINe selects top-k channels based on the k-
largest Shapley values. Moreover, LINe defines an activa-
tion mask matrix A ∈ RM×C (i.e. pruning matrix), where
M and C denotes the number of channels and classes, re-
spectively, and set 1 for the k-largest elements from every
column, otherwise 0. The activation pruning operation for a
given class c can be defined as F (xc)⊙Ac, where⊙ denotes
the element-wise multiplication, and Ac represents the c-th
column of the activation pruning matrix A ∈ RM×C .

However, LINE has three drawbacks. First, calculating
the Shapley value requires significant computational over-
head. Secondly, in the inference phase, LINe is not suitable
for selecting channels based on the ID category with the
highest prediction probability because the OOD test data
does not belong to any ID category. Finally, the perfor-
mance of LINe is weaker than that of the DDCS proposed
in this paper. This is because the DDCS effectively utilizes
the knowledge that ID discriminability and OOD detection
are positively correlated. DDCS selects channels that are
favorable for OOD detection based on ID discriminability.

4. Method

Current activation-based methods typically assume that ev-
ery channel is essential for Out-of-Distribution (OOD) de-
tection. However, empirical studies have demonstrated sig-
nificant variation in the contributions of different channels
to OOD detection. Our hypothesis is that selectively re-
moving certain channels can markedly enhance OOD de-
tection performance. Additionally, there is a positive link
between In-Distribution (ID) discriminability and OOD de-
tection, leading us to focus on channels with high ID dis-
criminability for effective OOD detection.

This section elaborates on our method, termed
Discriminability-Driven Channel Selection (DDCS). First,
to minimize the impact of abnormal activations on as-
sessing ID discriminability, we introduce the Channel-
level Anomalous activations Pre-rectifying (CAP) module
in Section 4.1. This involves pre-rectifying anomalous ac-
tivations in both local and global perspective. Next, in Sec-
tion 4.2, the Channel Selection (CS) module is proposed for
evaluating the ID discriminability of each channel through
inter-class similarity and variance. Subsequently, we utilize
only the activations from channels exhibiting high ID dis-
criminability to calculate the OOD scores (e.g., Energy) for
OOD detection, as detailed in Section 4.3.

4.1. Channel-level Anomalous Activations Pre-
rectifying

According to [38], rectifying abnormal activations can im-
prove the ID discriminability to a certain extent. Therefore,
we introduce the Channel-level Anomalous activations Pre-
rectifying (CAP) module to pre-rectify abnormal activations
in both local and global perspective.

Specially, we rectify channel-level abnormal activations
into the high-density area of the activation distributions by

Local (z) =

 µ+ λσ, if z ≥ µ+ λσ ;
z, if µ− λσ < z ≤ µ+ λσ ;
µ− λσ, if z < µ− λσ ,

(2)
where λ is a hyper-parameter, z denotes activations, µ and
σ denote the mean and standard deviation of the channel-
level activation distribution of the training dataset.

Next, we pre-rectify the extremely high activations using
a global threshold, t. The formula for this pre-rectification
is defined as follows:

Global (z) = min(Local (z), t) . (3)

4.2. Channel Selection

In this section, we propose the Channel Selection (CS) mod-
ule, which evaluates the ID discriminability of each channel
based on inter-class similarity and variance. First, for each
class from the training set, we calculate the average of the
features to obtain a class prototype. Then, the inter-class
similarity and inter-class variance between all class proto-
types are calculated to determine the discriminant score for
each channel. Finally, we select channels with the highest
discriminability.

4.2.1 ID class prototypes estimating

The inter-class difference among ID prototypes is used
as an evaluation criterion for the channel’s class discrim-
inability. Thus, we precompute the class prototypes H =
{h1, h2, . . . , hC} for the training setDtrain

in . For a given ID
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class c, we consider xi as the i-th training data from class c,
and nc as the number of samples in class c. We then calcu-
late the mean of features for class c as the prototype, which
is defined by

hc =
1

nc

nc∑
i=1

CAP ◦ F (xi), (4)

where F denotes the feature extractor and CAP denotes the
channel abnormality pre-processing.

4.2.2 ID discriminative scoring

For the k-th channel, where k ∈ {1, 2, · · · ,M}, the inter-
class difference consists of two components: inter-class
similarity and inter-class variance. We consider channels
with low inter-class similarity and high inter-class variance
as discriminative channels. These channels are discrimina-
tive for multi-classification. First, we calculate the average
similarity Sk between ID prototypes as follows,

Sk =
1

C(C − 1)

C∑
i=1

C∑
j=1,j ̸=i

δ(hi
k, h

j
k) , (5)

where δ(·, ·) denotes cosine similarity, and i, j ∈
{1, 2, · · · , C} represent two different classes.

In addition to measuring inter-class similarity, we also
introduce inter-class variance to evaluate the channel’s sen-
sitivity to inter-class differences, which is defined by

Vk =
1

C

C∑
i=1

(hi
k − h̃k)

2 , (6)

where h̃k = 1
C

∑C
i=1 h

i
k represents the mean of ID pro-

totypes for the k-th channel. A greater inter-class vari-
ance signiffes that the classes are more distinctly separated,
thereby enhancing class discriminability.

Finally, we combine the inter-class similarity and vari-
ance with the balance factor a to calculate the discrimina-
tive score. For the k-th channel, we formulate discrimina-
tive score as

Jk = aSk − (1− a)Vk . (7)

The K channels with the lowest discriminative score are se-
lected as class-discriminative channels, indicating that these
channels have the greatest inter-class differences. We define
a pruning matrix B ∈ RM×C that sets the elements in the K
channels (i.e., rows) to 1 and the elements in the remaining
channels to 0. Finally, we summarize DDCS in a complete
formula by

DDCS(xi) = (CAP ◦ F (xi))⊙B . (8)

(a) Without DDCS (b) With DDCS

Figure 2. DDCS promotes the separation of ID and OOD data. (a)
shows the Energy score distribution for ID (CIFAR-100) and OOD
(iSUN) data when DDCS is not utilized. (b) shows the Energy
score distribution when utilizing DDCS. With the application of
DDCS, the overlap between the Energy score distributions of ID
and OOD data is significantly reduced.

The main difference between LINe and DDCS in terms of
activation pruning is how the pruning matrix is defined. For
each column (i.e., class), LINe keeps different channels.
However, it ignores the fact that certain channels with small
differences between classes can cause trouble in separating
ID and OOD data. Therefore, DDCS removes these chan-
nels on each class. It is worth mentioning that these two
activation pruning strategies are orthogonal and can be used
simultaneously.

4.3. OOD detection with selected channels

DDCS is compatible with any downstream OOD score. We
use the Energy score by default, and DDCS is also applied
to other scores in the generalization analysis (Sec. 5.5.2).

Given an test input xtest, we first perform abnormality
pre-processing for each channel. Then, we select channels
based on the discriminative score. Finally, we calculate the
Energy score:

Senergy(x
test) = − log

C∑
c=1

exp
(
G ◦ DDCS(xtest)

)
c
. (9)

Following Equation 1, we can redefine the binary deci-
sion function:

Gλ(x
test) =

{
ID if Senergy(x

test) ≥ λ,

OOD if Senergy(x
test) < λ.

(10)

The rule for selecting λ is allowing Eq. 10 to correctly pre-
dict the majority of the ID data (e.g. 95%). Figure. 2 shows
that the gap between ID and OOD data expands largely after
applying DDCS. It proves that selecting the channels with
high class discriminability helps to widen the gap between
ID and OOD data, thereby enhancing OOD detection.
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Table 1. OOD detection performance on CIFAR-10. We use DenseNet-101 as the backbone. All values are percentages. ↑ indicates larger
values are better, and ↓ indicates smaller values are better. The bold are superior results.

OOD Datasets
SVHN Textures iSUN LSUN-resize LSUN-crop Places365 Avg

Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP [11] 47.24 93.48 64.15 88.15 42.31 94.52 42.10 94.51 33.57 95.54 63.02 88.57 48.73 92.46
ODIN [24] 25.29 94.57 57.50 82.38 3.98 98.90 3.09 99.02 4.70 98.86 52.85 88.55 24.57 93.71
Mahalanobis [22] 6.42 98.31 21.51 92.15 9.78 97.25 9.14 97.09 56.55 86.96 85.14 63.15 31.42 89.15
Energy [26] 40.61 93.99 56.12 86.43 10.07 98.07 9.28 98.12 3.81 99.15 39.40 91.64 26.55 94.57
ReAct [38] 41.64 93.87 43.58 92.47 12.72 97.72 11.46 97.87 5.96 98.84 43.31 91.03 26.45 94.67
BATS [53] 25.86 95.91 41.61 92.42 8.19 98.26 7.60 98.34 4.22 99.09 39.31 92.05 21.13 96.01
DICE [37] 25.99 95.90 41.90 88.18 4.36 99.14 3.91 99.20 0.26 99.92 48.59 89.13 20.83 95.24
SHE [51] 28.12 94.72 51.98 83.07 10.99 97.95 9.73 98.15 0.76 99.84 59.35 84.16 26.82 92.98
VRA [44] 18.75 96.68 34.89 93.42 5.70 98.69 5.80 98.69 1.32 99.63 39.98 91.69 17.74 96.47
LINe[1] 11.38 97.75 23.44 95.12 4.90 99.01 4.19 99.09 0.61 99.83 43.96 91.17 14.75 96.99
DDCS (ours) 9.90 97.95 20.16 95.96 4.45 99.11 3.31 99.29 0.70 99.85 42.90 91.19 13.57 97.22

Table 2. OOD detection performance on CIFAR-100 with DenseNet-101 as the backbone.

OOD Datasets
SVHN Textures iSUN LSUN-resize LSUN-crop Places365 Avg

Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP [11] 81.70 75.40 84.79 71.48 85.99 70.17 85.24 69.18 60.49 85.60 82.55 74.31 80.13 74.36
ODIN [24] 41.35 92.65 82.34 71.48 67.05 83.84 65.22 84.22 10.54 97.93 82.32 76.84 58.14 84.49
Mahalanobis [22] 22.44 95.67 62.39 79.39 31.38 93.21 23.07 94.20 68.90 86.30 92.66 61.39 55.37 82.73
Energy [26] 87.46 81.85 84.15 71.03 74.54 78.95 70.65 80.14 14.72 97.43 79.20 77.72 68.45 81.19
ReAct [38] 83.81 81.41 77.78 78.95 65.27 86.55 60.08 87.88 25.55 94.92 82.65 74.04 62.27 84.47
BATS [53] 67.61 87.85 58.17 86.19 51.34 90.94 48.40 91.20 22.32 95.59 77.95 77.30 54.30 88.18
DICE [37] 54.65 88.84 65.04 76.42 48.72 90.08 49.40 91.04 0.93 99.74 79.58 77.26 49.72 87.23
SHE [51] 41.89 90.61 61.49 76.57 72.73 76.14 78.18 73.97 1.06 99.68 85.33 70.53 56.78 81.25
VRA [44] 70.91 87.46 47.64 90.17 38.53 93.42 38.52 93.49 10.73 98.04 76.39 78.66 47.12 90.21
LINe[1] 31.10 91.90 39.29 87.84 24.12 94.76 25.37 94.54 5.75 98.85 88.41 64.18 35.67 88.68
DDCS (ours) 31.34 92.58 35.30 90.29 18.46 96.17 20.90 95.71 3.84 99.21 87.11 67.91 32.83 90.31

5. Experiment

5.1. Set Up

To maintain consistency with previous research, we utilize
CIFAR [20] as the ID data for the small-scale OOD detec-
tion benchmark. To ensure that there is no overlap in cate-
gories between ID and OOD test data, we use SVHN [30],
LSUN-crop [49], LSUN-resize [49], iSUN [45], Tex-
tures [5], and Places365 [52] as OOD data. For the large-
scale OOD detection benchmark, we choose ImageNet-
1K [15] as our ID dataset. For the OOD test datasets, we
choose iNaturalist [40], SUN [42], Places [52], and Tex-
tures [5]. Compared to the CIFAR benchmark, the Ima-
geNet benchmark has a much larger label space and higher
resolution. This also means that the ImageNet-1K bench-
mark is more realistic and challenging.

In line with previous research, we use FPR95 and AU-
ROC as evaluation metrics for OOD detection. FPR95
measures the false positive rate of OOD data when the
true positive rate of ID data is 95%; AUROC measures
the area under the receiver operating characteristic curve.
The lower the FPR95 or the higher the AUROC, the better
the performance of OOD detection. We choose MSP [11],
ODIN [24], Mahalanobis [22], Energy [26], ReAct [38],
BATS [53], DICE [37], SHE[51], VRA [44], and LINe [1]
as baselines. For the CIFAR benchmark, we use DenseNet-
101 [14] as the backbone, which has been pre-trained

on CIFAR. In the ImageNet-1K benchmark, we utilize
ResNet50 [10] pre-trained on ImageNet-1K.

5.2. Main Results

Table 1 and 2 display the performance of OOD detection
on the CIFAR-10 and CIFAR-100. The results show that
common OOD detection methods, like MSP, ODIN, Ma-
halanobis, Energy, DICE, and SHE, perform poorly in de-
tecting OOD data. This is because they do not eliminate any
abnormal activations, causing the model to be overconfident
in predicting OOD data. Activation-based methods, such
as ReAct, BATS, VRA, and LINe, increase the separability
between ID and OOD data by truncating abnormal activa-
tions, resulting in improved performance. Unlike aforemen-
tioned activation-based methods, our proposed DDCS con-
siders the differences between different channels for OOD
detection. The results show that DDCS performs best on
average FPR95 and AUROC. This demonstrates that it is
important to select channels with strong ID discrimination.

Table 3 display the OOD detection performance on the
more challenging ImageNet-1K benchmark. LINe is the
most advanced among the previous activation-based OOD
detection methods. Surprisingly, DDCS outperforms LINe
on almost all OOD datasets, particularly on iNaturalist and
Texture. Compared with LINe, DDCS reduces the FPR95
by 10.89% on iNaturalist and 10.14% on Textures. With
Fig. 3, we can see that DDCS widens the gap between ID
and OOD data more dramatically than LINe. This proves
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Table 3. OOD detection performance on ImageNet-1K. We use ResNet50 as the backbone.
OOD Datasets

iNaturalist SUN Places Textures Avg
Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP [11] 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99
ODIN [24] 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41
Mahalanobis [22] 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47
Energy [26] 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17
ReAct [38] 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95
BATS [53] 12.57 97.67 22.62 95.33 34.34 91.83 38.90 92.27 27.11 94.28
DICE [37] 25.63 94.49 35.15 90.83 46.49 87.48 31.72 90.30 34.75 90.77
SHE [51] 34.22 90.18 54.19 84.69 45.35 90.15 45.09 87.93 44.71 88.24
VRA [44] 15.70 97.12 26.94 94.25 37.85 91.27 21.47 95.62 25.49 94.57
LINe[1] 22.52 94.44 19.48 95.26 12.24 97.56 28.54 92.84 20.69 95.03
DDCS (ours) 11.63 97.85 18.63 95.68 28.78 92.89 18.40 95.77 19.36 95.55

Table 4. Ablation study. CAP denotes the Channel-level Anoma-
lous activations Pre-rectifying module, and CS denotes the Chan-
nel Selection module. DDCS w/o all is equivalent to Energy[26].

Method FPR95 ↓ AUROC ↑
DDCS w/o all 26.55 94.57
DDCS w/o CAP 23.65 95.32
DDCS w/o CS 14.70 97.01

DDCS (ours) 13.57 97.22

that using ID discrimination to select channels is effective.

5.3. Ablation Study

As shown in Table 4, we conduct ablation experiments
to verify the effectiveness of two key modules of DDCS:
Channel-level Anomalous activations Pre-rectifying (CAP)
and Channel Selection (CS). We conduct ablation experi-
ments on these two modules using the CIFAR-10 bench-
mark to demonstrate their impact on the performance of
DDCS. From Table 4, we find that the performance signifi-
cantly degrades when either module is missing.

5.4. Sensitivity Analysis

The trade-off factor a. In Figure 3 (a), a presents trade-
off factor for inter-class similarity and inter-class variance.
We use DenseNet as the backbone pretrained on CIFAR-
10. OOD detection performs best when a is in the range of
[0.22, 0.38]. This suggests that both inter-class similarity
and inter-class variance are useful for assessing the level
of class discriminability of each channel. At the same time,
the trade-off factor a for inter-class similarity and inter-class
variance should not be too small or large.

The number of selected channels K. In Figure 3 (b), we
use MobileNetV2 as the backbone pretrained on ImageNet-
1K, and the number of channels in the penultimate layer
is 1280. We investigate the sensitivity of the number of
selected channels, K, which produces the best performance

(a) Sensitivity of a (b) Sensitivity of K

Figure 3. Parameter sensitivity analysis. For each ID dataset, we
report the averaged results across multiple OOD datasets. In (a),
for the weighting factor a of the CSC score, we use CIFAR-10 as
the ID dataset and DenseNet-101 as the backbone. In (b), for the
number of selected channels K, we use ImageNet as the ID dataset
and MobileNetV2 as the backbone.

at 1050. DDCS fails when K is either too small or too large.
When too few channels are selected, a significant number of
features are lost. When the number of selected channels is
too large, the noise from redundant channels can impede the
model’s ability to detect OOD data. The most extreme case
is shown as the dotted line: OOD detection performance is
poor when all channels are selected. This proves that our
proposed channel selection is necessary.

5.5. Generalization Analysis

5.5.1 Generalizing to different backbones

As shown in Table 5, we use MobileNet as the backbone on
the ImageNet benchmark to evaluate the generalization of
DDCS across various backbones. In this case, DDCS uses
LHAct as the CAP module. We find that the average FPR95
of DDCS is reduced by 18.30% and the average AUROC is
improved by 4.23% compared to LHAct. This shows that
DDCS can be applied to various backbones. It also proves
that the CAP module is not limited to specific abnormal ac-
tivation processing methods, such as ReAct, BATS, etc.

5.5.2 Generalizing to different OOD scores

Table 6 shows the generalization of DDCS to different OOD
scores such as MSP and Energy. Compared to existing

26177



Table 5. Generalizing to different backbones. For MobileNetV2 pretrained on ImageNet-1K, DDCS consistently performs better than
baselines across all the OOD datasets.

OOD Datasets
iNaturalist SUN Places Textures Avg

Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
MSP [11] 64.29 85.32 77.02 77.10 79.23 76.27 73.51 77.30 73.51 79.00
ODIN [24] 55.39 87.62 54.07 85.88 57.36 84.71 49.96 85.03 54.20 85.81
Mahalanobis [22] 62.11 81.00 47.82 86.33 52.09 83.63 92.38 33.06 63.60 71.01
Energy [26] 59.50 88.91 62.65 84.50 69.37 81.19 58.05 85.03 62.39 84.91
ReAct [38] 42.40 91.53 47.69 88.16 51.56 86.64 38.42 91.53 45.02 89.47
BATS [53] 50.63 91.26 57.36 86.30 64.46 83.06 40.00 91.14 53.11 87.94
DICE [37] 43.09 90.83 38.69 90.46 53.11 85.81 32.80 91.30 41.92 89.60
LHAct [50] 34.49 94.07 46.34 89.00 55.26 85.34 27.55 94.02 40.91 90.61
DDCS (ours) 17.44 96.87 17.42 95.83 30.49 91.80 25.11 94.86 22.61 94.84

Table 6. Generalizing to different OOD scores. We use ImageNet-
1K as the ID dataset and ResNet50 as the pre-trained model. The
results are averaged over four OOD test datasets.

Method FPR95 ↓ AUROC ↑
MSP 66.95 81.99
MSP + ReAct 55.68 87.28
MSP + DICE 67.41 82.24
MSP + BATS 53.89 88.23
MSP + VRA 47.09 89.62
MSP + DDCS 43.20 89.95

Energy 58.41 86.17
Energy + ReAct 32.68 93.08
Energy + DICE 34.75 90.77
Energy + BATS 30.16 93.59
Energy + VRA 25.49 94.57
Energy + DDCS 19.36 95.55

activation-based methods such as ReAct, BATS and VRA,
and the pruning-based method DICE, the experimental re-
sults show that DDCS maximally corrects the model’s OOD
scores (e.g.MSP and Energy) for the input, and is able to re-
duce the model’s confidence in the OOD data and increase
the confidence in the ID data.

5.5.3 DDCS widens the gap between ID and OOD data

To visually demonstrate the contribution of DDCS to ID-
OOD separation. We use the CIFAR-10 benchmark as an
example to demonstrate the data distribution before and af-
ter discriminability-driven channel selection (DDCS). Fig-
ure 4 shows the t-SNE[39] visualization results of the (a)
original deep feature space and (b) the feature space after
DDCS. Dots indicate samples from the ID dataset, while
triangles indicate samples from the OOD dataset. For ID
data, different categories are represented by different col-
ors. OOD data is all colored in black. It is clear that DDCS
can widen the gap between various categories. Therefore,
DDCS reduces the difficulty to detect OOD data.

(a) Without DDCS (b) With DDCS

Figure 4. DDCS favors widening interclass differences. (a) and
(b) are t-SNE visualizations before and after applying DDCS on
features. We visualize the features of the penultimate layer of
DenseNet-101, with colored dots indicating the ten categories of
CIFAR-10 (ID) and black triangles indicating the OOD data. In-
terclass differences increase significantly when applying DDCS.

6. Conclusion
In this paper, we found that each channel contributes differ-
ently to OOD detection. In addition, empirical evidence
demonstrated that increasing the ID discriminability en-
hances OOD detection. Therefore, we propose DDCS to
select channels with strong class distinguishability for OOD
detection. Firstly, we design a discriminant score that uti-
lizes the inter-class differences to assess the discrimination
of each channel. Secondly, to address this issue that the
estimation of the discriminant score itself is susceptible to
anomalous activation, we designed a CAP module. Ex-
periments results showed that DDCS performs best. Also,
DDCS is plug-and-play, making it applicable to various sce-
narios. Furthermore, DDCS can be generalized to other
backbones and OOD scores. In the future, we will integrate
DDCS into other dynamic open-world tasks.
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